def visual_coannotation(lnds_user, lnds_refs, path_dataset, path_user,
                        img_name, path_visu):
    """ visualise the co-annotation

    show consensus annotation and use annotation

    :param DF lnds_user: loaded DataFrame
    :param DF lnds_refs: loaded DataFrame
    :param path_dataset: path to the image dataset (root)
    :param name_set: name of the image set
    :param name_user_scale: annotation folder containing user name and used scale
    :param img_name: particular image/annotation/stain name
    :param str|None path_visu: path to output
    :return str: figure path
    """
    name_set, name_user_scale = path_user.split(os.sep)[-2:]
    user, scale = parse_path_user_scale(name_user_scale)
    folder_scale = TEMPLATE_FOLDER_SCALE % scale
    image = None
    if path_dataset is not None and os.path.isdir(path_dataset):
        path_dir = os.path.join(path_dataset, name_set, folder_scale)
        paths_image = find_images(path_dir, img_name)
        image = load_image(paths_image[0]) if paths_image else None

    lnds_user = lnds_user * (scale / 100.)
    lnds_refs = lnds_refs * (scale / 100.)
    fig = figure_image_landmarks(lnds_refs, image, lnds_user, lnds2_name=user)

    fig_name = NAME_FIGURE_COANNOT % img_name
    path_dir = os.path.join(path_visu, name_set, name_user_scale)
    create_folder_path(path_dir)
    path_fig = os.path.join(path_dir, fig_name)
    fig.savefig(path_fig)
    plt.close(fig)
    return path_fig
Пример #2
0
def main(path_annots,
         path_dataset,
         path_output,
         nb_jobs=NB_THREADS,
         visual=False):
    coll_dirs, _ = collect_triple_dir([path_annots], '', '', with_user=True)
    logging.info('Collected sub-folder: %i', len(coll_dirs))
    user_names = sorted(
        {parse_path_user_scale(d['landmarks'])[0]
         for d in coll_dirs})
    logging.info('Found users: %r', user_names)
    if len(user_names) < 2:
        logging.info('Not enough user annotations.')

    _evaluate_user = partial(evaluate_user,
                             path_annots=path_annots,
                             path_dataset=path_dataset,
                             path_out=path_output,
                             visual=visual)
    counts = list(
        wrap_execute_parallel(_evaluate_user,
                              user_names,
                              nb_jobs=nb_jobs,
                              desc='evaluate'))
    logging.info('Created %i statistics.', sum(counts))
    return counts
def main(path_annots,
         path_dataset,
         path_output,
         consensus='mean',
         visual=False,
         nb_jobs=NB_THREADS):
    coll_dirs, _ = collect_triple_dir([path_annots], '', '', with_user=True)
    logging.info('Collected sub-folder: %i', len(coll_dirs))
    user_names = sorted(
        {parse_path_user_scale(d['landmarks'])[0]
         for d in coll_dirs})
    logging.info('Found users: %r', user_names)
    if len(user_names) < 2:
        logging.info('Not enough user annotations.')

    _evaluate_user = partial(evaluate_user,
                             path_annots=path_annots,
                             path_dataset=path_dataset,
                             path_out=path_output,
                             tp_consensus=consensus,
                             visual=visual)
    dfs = list(
        iterate_mproc_map(_evaluate_user,
                          user_names,
                          nb_workers=nb_jobs,
                          desc='evaluate'))

    # aggregate results
    df_all = pd.concat(dfs, sort=False)
    df_all.to_csv(os.path.join(path_output, 'STATISTIC__partial.csv'))
    df_short = pd.DataFrame()
    for user, dfg in df_all.groupby('user'):
        stat = dict(dfg['rTRE median'].describe().T[['mean', 'std', 'max']])
        stat = {'%s [median rTRE]' % k: stat[k] for k in stat if k != 'count'}
        stat.update({
            'user': user,
            'count': len(dfg),
        })
        df_short = df_short.append(stat, ignore_index=True)
    df_short.set_index('user', inplace=True)
    logging.info('OVERALL \n%s \n %s' % ('=' * 10, df_short))
    df_short.to_csv(os.path.join(path_output, 'STATISTIC__overview.csv'))

    logging.info('Created %i statistics.', len(df_all))
    return len(df_all)
Пример #4
0
def evaluate_user(user_name,
                  path_annots,
                  path_out,
                  path_dataset=None,
                  visual=False):
    """ evaluate single user statistic against consensus

    :param str user_name: annotator name
    :param str path_annots: path to the root of annotations
    :param str path_out: path for statistic and visualisation
    :param str path_dataset: path to image dataset
    :param bool visual: visualise also outputs
    :return int: processed items
    """
    tissue_sets = list_sub_folders(path_annots)
    path_visu = path_out if visual else None
    stats = []
    for p_set in tissue_sets:
        paths = list_sub_folders(p_set, '*_scale-*pc')
        user_names = [parse_path_user_scale(p)[0].lower() for p in paths]
        paths_lnds_user = [
            p for p, u in zip(paths, user_names) if u == user_name.lower()
        ]
        paths_lnds_refs = [
            p for p, u in zip(paths, user_names) if u != user_name.lower()
        ]
        if not paths_lnds_user or not paths_lnds_refs:
            continue
        for path_user in paths_lnds_user:
            stats += compute_statistic(path_user, paths_lnds_refs,
                                       path_dataset, path_visu)
    if not stats:
        logging.warning('no statistic collected')
        return 0

    df_stats = pd.DataFrame(stats)
    df_stats.set_index(['name_image_set', 'name_user', 'landmarks'],
                       inplace=True)
    path_csv = os.path.join(path_out, 'STATISTIC_%s.csv' % user_name)
    logging.debug('exporting CSV stat.: %s', path_csv)
    df_stats.to_csv(path_csv)
    df_stat_short = df_stats.describe().T[['count', 'mean', 'std', 'max']]
    logging.info('USER: %s \n%s \n %s' % (user_name, '=' * 10, df_stat_short))
    return len(df_stats)
def compute_statistic(path_user,
                      path_refs,
                      tp_consensus='mean',
                      path_dataset=None,
                      path_visu=None):
    """ aggregate statistics over all his annotations

    :param str path_user: path to user annotation
    :param [str] path_refs: path to annotation of other users
    :param str tp_consensus: type of consensus landmarks
    :param str path_dataset: path to image dataset
    :param str path_visu: path for visualisation (root)
    :return [{}]: list of stat. dictionaries
    """
    assert path_user and path_refs, 'missing user or reference annotation'
    lnds_user, _ = create_consensus_landmarks([path_user])
    lnds_refs, _ = create_consensus_landmarks(path_refs, method=tp_consensus)

    list_stats = []
    name_set, name_user_scale = path_user.split(os.sep)[-2:]
    user, scale = parse_path_user_scale(name_user_scale)
    for csv_name in lnds_user:
        if csv_name not in lnds_refs:
            continue
        im_size = find_image_full_size(path_dataset, name_set,
                                       os.path.splitext(csv_name)[0])
        d_stat = compute_landmarks_statistic(lnds_refs[csv_name],
                                             lnds_user[csv_name],
                                             use_affine=False,
                                             im_size=im_size)
        d_stat.update({
            'image_set': name_set,
            'user': user,
            'scale': scale,
            'landmarks': csv_name
        })
        list_stats.append(d_stat)
        if path_visu is not None and os.path.isdir(path_visu):
            img_name = os.path.splitext(csv_name)[0]
            visual_coannotation(lnds_user[csv_name], lnds_refs[csv_name],
                                path_dataset, path_user, img_name, path_visu)
    return list_stats
def evaluate_user(user_name,
                  path_annots,
                  path_out,
                  path_dataset=None,
                  tp_consensus='mean',
                  visual=False):
    """ evaluate single user statistic against consensus

    :param str user_name: annotator name
    :param str path_annots: path to the root of annotations
    :param str tp_consensus: type of consensus landmarks
    :param str path_out: path for statistic and visualisation
    :param str path_dataset: path to image dataset
    :param bool visual: visualise also outputs
    :return int: processed items
    """
    tissue_sets = list_sub_folders(path_annots)
    path_visu = path_out if visual else None
    stats = []
    for p_set in tissue_sets:
        paths = list_sub_folders(p_set, '*_scale-*pc')
        user_names = [parse_path_user_scale(p)[0].lower() for p in paths]
        paths_lnds_user = [
            p for p, u in zip(paths, user_names) if u == user_name.lower()
        ]
        paths_lnds_refs = [
            p for p, u in zip(paths, user_names) if u != user_name.lower()
        ]
        if not paths_lnds_user or not paths_lnds_refs:
            continue
        for path_user in paths_lnds_user:
            stats += compute_statistic(path_user, paths_lnds_refs,
                                       tp_consensus, path_dataset, path_visu)
    if not stats:
        logging.warning('no statistic collected')
        return 0

    df_stats = pd.DataFrame(stats)
    return df_stats