Пример #1
0
def handler(event, context):

    return console_logger('handler 2!')
Пример #2
0
import asyncio
import time
from flags import FLAGS
from pywizlight.bulb import PilotBuilder, wizlight
import re

from helpers import console_logger

LOGGER = console_logger(__name__, "DEBUG")

_SEQUENCE_NOT_FOUND = "Sekvence hodnot nenalezena. Ignoruji příkaz."


class WizLight:
    def __init__(self, ip: str, loop):
        self.light = wizlight(ip)
        self.loop = loop

        self.initial_state = self.get_state()

    def set_brightness(self, brightness=None):
        if brightness is None:
            state = self.get_state()
            brightness = state.get_brightness()
        brightness = int(brightness)
        brightness = max(brightness, 0)  # lower bound
        brightness = min(brightness, 255)  # upper bound
        self.loop.run_until_complete(
            self.light.turn_on(PilotBuilder(brightness=brightness)))

    def set_color(self, rgb=(0, 0, 0)):
import time

import numpy as np
import tensorflow as tf
from helpers import console_logger

_NUM_SAMPLES = 2
_DATA_SHAPE = (10, 5)  # time, num_features
_BATCH_SIZE = 1
_NUM_INSTANCES = 1  # > 1 not supported
_BANDWIDTH_RANGE = (2, 5)
_AXIS = 1

LOGGER = console_logger('tensorflow', "INFO")

# TODO:
#
# DONE:
#  - TimeMasking
#  - FrequencyMasking


class ArtificialDataset(tf.data.Dataset):
    def _generator(num_samples):
        # Opening the file
        time.sleep(0.03)

        for sample_idx in range(num_samples):
            # Reading data (line, record) from the file
            time.sleep(0.015)
Пример #4
0
def train_model(run_number):
    logger = console_logger(__name__, FLAGS.logger_level)

    logger.info("Clearning Keras session.")
    K.clear_session()
    save_path = create_save_path()
    logger.debug(f"New save path: {save_path}")

    # __INPUT PIPELINE__ #
    logger.info("Loading datasets.")
    ds_train, ds_test, num_train_batches, num_test_batches = load_datasets(
        FLAGS.load_dir)
    logger.debug(
        f"num_train_batches: {num_train_batches}, num_test_batches: {num_test_batches}"
    )

    # __MODEL__ #
    logger.info("Initializing kernel.")
    kernel_initializer = tf.initializers.TruncatedNormal(
        mean=FLAGS.weight_init_mean, stddev=FLAGS.weight_init_stddev)
    logger.info("Building model")
    model = build_model(kernel_initializer)
    #        print('Trainable params: {}'.format(model.count_params()))
    logger.info(model.summary())

    # Load model weights from checkpoint if checkpoint_path is provided
    if FLAGS.checkpoint_path:
        logger.info("Loading model weights from checkpoint.")
        model.load_weights(FLAGS.checkpoint_path)

    # save model FLAGS to save_path
    logger.info(f"Saving flags (settings) to {save_path}")
    save_config(save_path)

    # save model architecture image to save_path directory
    if FLAGS.save_architecture_image:
        logger.info(f"Saving model architecture image to {save_path}")
        tf.keras.utils.plot_model(model,
                                  os.path.join(save_path, 'architecture.png'),
                                  show_shapes=FLAGS.show_shapes)

    # __LOGGING__ #
    logger.info(f"Initializing summyary writers.")
    summary_writer_train = tf.summary.create_file_writer(save_path + '/train',
                                                         name='sw-train')
    summary_writer_test = tf.summary.create_file_writer(save_path + '/test',
                                                        name='sw-test')

    # __TRAINING__ #
    logger.info(f"Initializing variables, optimizer and metrics.")
    best_cer = 100.0
    best_epoch = -1
    optimizer = tf.keras.optimizers.Adam(lr=FLAGS.lr,
                                         epsilon=FLAGS.epsilon,
                                         amsgrad=FLAGS.amsgrad)
    train_loss = tf.keras.metrics.Mean(name='train_loss', dtype=tf.float32)
    test_loss = tf.keras.metrics.Mean(name='test_loss', dtype=tf.float32)
    test_cer = tf.keras.metrics.Mean(name='test_cer', dtype=tf.float32)
    test_ccer = tf.keras.metrics.Mean(name="test_ccer", dtype=tf.float32)

    for epoch in range(FLAGS.max_epochs):
        logger.log(35, f'_______| Run {run_number} | Epoch {epoch} |_______')

        # TRAINING DATA
        with summary_writer_train.as_default():
            logger.info(f"Training model.")
            train_fn(model, ds_train, optimizer, train_loss, num_train_batches,
                     epoch)

        # TESTING DATA
        with summary_writer_test.as_default():
            logger.info(f"Testing model.")
            _, test_mean_cer = test_fn(model, ds_test, test_loss, test_cer,
                                       test_ccer, num_test_batches, epoch)

        # EARLY STOPPING AND KEEPING THE BEST MODEL
        stop_training, best_cer, best_epoch = early_stopping(
            model, test_mean_cer, best_cer, epoch, best_epoch, save_path)
        logger.log(35, f'| Best CER {best_cer} | Best epoch {best_epoch} |')
        if stop_training:
            logger.log(35, f'Model stopped early at epoch {epoch}')
            break
class FLAGS:
    # noinspection DuplicatedCode
    use_digits = False
    if use_digits:
        c2n_map = {
            '0': 0,
            '1': 1,
            '2': 2,
            '3': 3,
            '4': 4,
            '5': 5,
            '6': 6,
            '7': 7,
            '8': 8,
            '9': 9,
            'a': 10,
            'á': 11,
            'b': 12,
            'c': 13,
            'č': 14,
            'd': 15,
            'ď': 16,
            'e': 17,
            'é': 18,
            'ě': 19,
            'f': 20,
            'g': 21,
            'h': 22,
            'ch': 23,
            'i': 24,
            'í': 25,
            'j': 26,
            'k': 27,
            'l': 28,
            'm': 29,
            'n': 30,
            'ň': 31,
            'o': 32,
            'ó': 33,
            'p': 34,
            'q': 35,
            'r': 36,
            'ř': 37,
            's': 38,
            'š': 39,
            't': 40,
            'ť': 41,
            'u': 42,
            'ú': 43,
            'ů': 44,
            'v': 45,
            'w': 46,
            'x': 47,
            'y': 48,
            'ý': 49,
            'z': 50,
            'ž': 51,
            ' ': 52
        }
    else:
        c2n_map = {
            'a': 0,
            'á': 1,
            'b': 2,
            'c': 3,
            'č': 4,
            'd': 5,
            'ď': 6,
            'e': 7,
            'é': 8,
            'ě': 9,
            'f': 10,
            'g': 11,
            'h': 12,
            'ch': 13,
            'i': 14,
            'í': 15,
            'j': 16,
            'k': 17,
            'l': 18,
            'm': 19,
            'n': 20,
            'ň': 21,
            'o': 22,
            'ó': 23,
            'p': 24,
            'q': 25,
            'r': 26,
            'ř': 27,
            's': 28,
            'š': 29,
            't': 30,
            'ť': 31,
            'u': 32,
            'ú': 33,
            'ů': 34,
            'v': 35,
            'w': 36,
            'x': 37,
            'y': 38,
            'ý': 39,
            'z': 40,
            'ž': 41,
            ' ': 42
        }
    n2c_map = {val: idx for idx, val in c2n_map.items()}
    alphabet_size = len(c2n_map)

    logger_level = "INFO"
    logger = console_logger(__name__, logger_level)

    load_dir = "b:/!temp/PDTSC_MFSC_unigram_40_banks_DEBUG_min_100_max_3000_tfrecord/1.0/"
    # load_dir = "g:/datasets/PDTSC_Debug/"
    # load_dir = "g:/datasets/PDTSC_MFSC_unigram_40_banks_min_100_max_3000_tfrecord/"
    # load_dir = "g:/datasets/PDTSC_MFSC_unigram_40_banks_min_100_max_3000_tfrecord_DAspeed/"
    # load_dir = "g:/datasets/ORAL_MFSC_unigram_40_banks_min_100_max_3000_tfrecord/"
    # load_dir = "g:/datasets/COMBINED_MFSC_unigram_40_banks_min_100_max_3000_tfrecord/1.0/"
    save_dir = "./results/"
    save_config_as = "FLAGS.py"
    checkpoint_path = None
    # Tried to remove LM, see what it does now
    # Removing LM didn't help so its somewhere else. Removed softmax from final activations.
    #  Next - Trying to add LM without BN and DP
    #  Changed lr from 0.01 to 0.1
    # TODO:
    #  Add BN and DP to LM
    num_runs = 2
    max_epochs = 60
    batch_size_per_GPU = 8

    fs = 16000  # sampling rate of the loaded audiofiles

    # noinspection DuplicatedCode
    try:
        with open(load_dir + "data_config.json", "r") as f:
            dc = json.load(f)
            num_train_data = dc[
                "num_train_data"]  # int(48812/2)  # int(11308/2)  # full ORAL == 374714/2
            num_test_data = dc[
                "num_test_data"]  # int(4796/2)  # int(1304/2)  # full ORAL == 16502/2
            num_features = dc["num_features"]  # 123
            min_time = dc["min_time"]  # 100
            max_time = dc["max_time"]  # 3000
    except FileNotFoundError:
        logger.warning(
            f"data_config.json file not found at {load_dir}. Loading default values."
        )
        num_train_data = 24406
        num_test_data = 2398
        num_features = 123
        min_time = 100
        max_time = 3000

    buffer_size = int(0.1 * num_train_data / batch_size_per_GPU)
    shuffle_seed = 42

    bucket_width = 100

    feature_pad_val = 0.0
    label_pad_val = -1

    # MODEL
    save_architecture_image = False
    show_shapes = True

    weight_init_mean = 0.0
    weight_init_stddev = 0.0001

    ff_first_params = {
        'use': False,
        'num_units': [128, 64],
        'batch_norm': False,
        'drop_rates': [0.],
    }
    conv_params = {
        'use': True,
        'channels': [32, 64, 128, 256],
        'kernels': [(16, 32), (8, 16), (4, 8), (4, 4)],
        'strides': [(2, 4), (2, 4), (1, 2), (1, 2)],
        'dilation_rates': [(1, 1), (1, 1), (1, 1), (1, 1)],
        'padding': 'same',
        'data_format': 'channels_last',
        'batch_norm': True,
        'drop_rates': [0., 0., 0., 0.],
    }
    bn_momentum = 0.9
    relu_clip_val = 20
    relu_alpha = 0.2
    rnn_params = {
        'use': True,
        'num_units': [512, 512],
        'batch_norm': True,
        'drop_rates': [0., 0.],
    }
    ff_params = {
        'use': True,
        'num_units': [256, 128],
        'batch_norm': True,
        'drop_rates': [0., 0.],
    }

    # LANGUAGE MODEL params
    lm_gru_params = {
        'use': True,
        'num_units': [128, 64],
        'batch_norm': False,
        'drop_rates': [0.0, 0.0]
    }

    # Optimizer
    lr = 0.01
    lr_decay = True
    lr_decay_rate = 0.9
    lr_decay_epochs = 2
    epsilon = 0.1
    amsgrad = True

    # Data Augmentation (in pipeline)
    data_aug = {
        'mode':
        "0x",  # mode of many times to apply data aug (allowed: 0x, 1x or 2x)
        'bandwidth_time': (10, 100),
        'bandwidth_freq': (10, 30),
        'max_percent_time': 0.2,
        'max_percent_freq': 1.,
    }

    # Test Pipeline:
    spell_check = True
    transcribe_digits = True

    # Decoder
    beam_width = 32
    top_paths = 1  # > 1 not implemented

    # Early stopping
    patience_epochs = 3