class DlcQC(base.QC): """A class for computing camera QC metrics""" bbox = { 'body': { 'xrange': range(201, 500), 'yrange': range(81, 330) }, 'left': { 'xrange': range(301, 700), 'yrange': range(181, 470) }, 'right': { 'xrange': range(301, 600), 'yrange': range(110, 275) }, } dstypes = { 'left': ['_ibl_leftCamera.dlc.*', '_ibl_leftCamera.times.*', '_ibl_leftCamera.features.*'], 'right': ['_ibl_rightCamera.dlc.*', '_ibl_rightCamera.times.*', '_ibl_rightCamera.features.*'], 'body': ['_ibl_bodyCamera.dlc.*', '_ibl_bodyCamera.times.*'], } def __init__(self, session_path_or_eid, side, **kwargs): """ :param session_path_or_eid: A session eid or path :param side: The camera to run QC on :param log: A logging.Logger instance, if None the 'ibllib' logger is used :param one: An ONE instance for fetching and setting the QC on Alyx """ # Make sure the type of camera is chosen self.side = side # When an eid is provided, we will download the required data by default (if necessary) download_data = not is_session_path(session_path_or_eid) self.download_data = kwargs.pop('download_data', download_data) super().__init__(session_path_or_eid, **kwargs) self.data = Bunch() # QC outcomes map self.metrics = None def load_data(self, download_data: bool = None) -> None: """Extract the data from data files Extracts all the required task data from the data files. Data keys: - camera_times (float array): camera frame timestamps extracted from frame headers - dlc_coords (dict): keys are the points traced by dlc, items are x-y coordinates of these points over time, those with likelihood <0.9 set to NaN :param download_data: if True, any missing raw data is downloaded via ONE. """ if download_data is not None: self.download_data = download_data if self.one and not self.one.offline: self._ensure_required_data() alf_path = self.session_path / 'alf' # Load times self.data['camera_times'] = alfio.load_object(alf_path, f'{self.side}Camera')['times'] # Load dlc traces dlc_df = alfio.load_object(alf_path, f'{self.side}Camera', namespace='ibl')['dlc'] targets = np.unique(['_'.join(col.split('_')[:-1]) for col in dlc_df.columns]) # Set values to nan if likelihood is too low dlc_coords = {} for t in targets: idx = dlc_df.loc[dlc_df[f'{t}_likelihood'] < 0.9].index dlc_df.loc[idx, [f'{t}_x', f'{t}_y']] = np.nan dlc_coords[t] = np.array((dlc_df[f'{t}_x'], dlc_df[f'{t}_y'])) self.data['dlc_coords'] = dlc_coords # load pupil diameters if self.side in ['left', 'right']: features = alfio.load_object(alf_path, f'{self.side}Camera', namespace='ibl')['features'] self.data['pupilDiameter_raw'] = features['pupilDiameter_raw'] self.data['pupilDiameter_smooth'] = features['pupilDiameter_smooth'] def _ensure_required_data(self): """ Ensures the datasets required for QC are local. If the download_data attribute is True, any missing data are downloaded. If all the data are not present locally at the end of it an exception is raised. :return: """ for ds in self.dstypes[self.side]: # Check if data available locally if not next(self.session_path.rglob(ds), None): # If download is allowed, try to download if self.download_data is True: assert self.one is not None, 'ONE required to download data' try: self.one.load_dataset(self.eid, ds, download_only=True) except ALFObjectNotFound: raise AssertionError(f'Dataset {ds} not found locally and failed to download') else: raise AssertionError(f'Dataset {ds} not found locally and download_data is False') def run(self, update: bool = False, **kwargs) -> (str, dict): """ Run DLC QC checks and return outcome :param update: if True, updates the session QC fields on Alyx :param download_data: if True, downloads any missing data if required :returns: overall outcome as a str, a dict of checks and their outcomes """ _log.info(f'Running DLC QC for {self.side} camera, session {self.eid}') namespace = f'dlc{self.side.capitalize()}' if all(x is None for x in self.data.values()): self.load_data(**kwargs) def is_metric(x): return isfunction(x) and x.__name__.startswith('check_') checks = getmembers(DlcQC, is_metric) self.metrics = {f'_{namespace}_' + k[6:]: fn(self) for k, fn in checks} values = [x if isinstance(x, str) else x[0] for x in self.metrics.values()] code = max(base.CRITERIA[x] for x in values) outcome = next(k for k, v in base.CRITERIA.items() if v == code) if update: extended = { k: None if v is None or v == 'NOT_SET' else base.CRITERIA[v] < 3 if isinstance(v, str) else (base.CRITERIA[v[0]] < 3, *v[1:]) # Convert first value to bool if array for k, v in self.metrics.items() } self.update_extended_qc(extended) self.update(outcome, namespace) return outcome, self.metrics def check_time_trace_length_match(self): ''' Check that the length of the DLC traces is the same length as the video. ''' dlc_coords = self.data['dlc_coords'] times = self.data['camera_times'] for target in dlc_coords.keys(): if times.shape[0] != dlc_coords[target].shape[1]: _log.warning(f'{self.side}Camera length of camera.times does not match ' f'length of camera.dlc {target}') return 'FAIL' return 'PASS' def check_trace_all_nan(self): ''' Check that none of the dlc traces, except for the 'tube' traces, are all NaN. ''' dlc_coords = self.data['dlc_coords'] for target in dlc_coords.keys(): if 'tube' not in target: if all(np.isnan(dlc_coords[target][0])) or all(np.isnan(dlc_coords[target][1])): _log.warning(f'{self.side}Camera dlc trace {target} all NaN') return 'FAIL' return 'PASS' def check_mean_in_bbox(self): ''' Empirical bounding boxes around average dlc points, averaged across time and points; sessions with points out of this box were often faulty in terms of raw videos ''' dlc_coords = self.data['dlc_coords'] with warnings.catch_warnings(): warnings.simplefilter("ignore", category=RuntimeWarning) x_mean = np.nanmean([np.nanmean(dlc_coords[k][0]) for k in dlc_coords.keys()]) y_mean = np.nanmean([np.nanmean(dlc_coords[k][1]) for k in dlc_coords.keys()]) xrange = self.bbox[self.side]['xrange'] yrange = self.bbox[self.side]['yrange'] if int(x_mean) not in xrange or int(y_mean) not in yrange: return 'FAIL' else: return 'PASS' def check_pupil_blocked(self): ''' Check if pupil diameter is nan for more than 60 % of the frames (might be blocked by a whisker) Check if standard deviation is above a threshold, found for bad sessions ''' if self.side == 'body': return 'NOT_SET' if np.mean(np.isnan(self.data['pupilDiameter_raw'])) > 0.9: _log.warning(f'{self.eid}, {self.side}Camera, pupil diameter too often NaN') return 'FAIL' thr = 5 if self.side == 'right' else 10 if np.nanstd(self.data['pupilDiameter_raw']) > thr: _log.warning(f'{self.eid}, {self.side}Camera, pupil diameter too unstable') return 'FAIL' return 'PASS' def check_lick_detection(self): ''' Check if both of the two tongue edge points are less than 10 % NaN, indicating that wrong points are detected (spout edge, mouth edge) ''' if self.side == 'body': return 'NOT_SET' dlc_coords = self.data['dlc_coords'] nan_l = np.mean(np.isnan(dlc_coords['tongue_end_l'][0])) nan_r = np.mean(np.isnan(dlc_coords['tongue_end_r'][0])) if (nan_l < 0.1) and (nan_r < 0.1): return 'FAIL' return 'PASS' def check_pupil_diameter_snr(self): if self.side == 'body': return 'NOT_SET' thresh = 5 if self.side == 'right' else 10 if 'pupilDiameter_raw' not in self.data.keys() or 'pupilDiameter_smooth' not in self.data.keys(): return 'NOT_SET' # compute signal to noise ratio between raw and smooth dia good_idxs = np.where(~np.isnan(self.data['pupilDiameter_smooth']) & ~np.isnan(self.data['pupilDiameter_raw']))[0] snr = (np.var(self.data['pupilDiameter_smooth'][good_idxs]) / (np.var(self.data['pupilDiameter_smooth'][good_idxs] - self.data['pupilDiameter_raw'][good_idxs]))) if snr < thresh: return 'FAIL', float(round(snr, 3)) return 'PASS', float(round(snr, 3))
def _get_trials(self, sess_dates): trials_copy = copy.deepcopy(self.trial_data) trials = Bunch(zip(sess_dates, [trials_copy[k] for k in sess_dates])) task_protocol = [trials[k].pop('task_protocol') for k in trials.keys()] return trials, task_protocol