def iron_oc(self): m = ConcreteModel() m.fs = FlowsheetBlock(default={"dynamic": False}) # Set up thermo props and reaction props m.fs.gas_properties = GasPhaseThermoParameterBlock() m.fs.solid_properties = SolidPhaseThermoParameterBlock() m.fs.hetero_reactions = HeteroReactionParameterBlock( default={ "solid_property_package": m.fs.solid_properties, "gas_property_package": m.fs.gas_properties }) m.fs.unit = MBR( default={ "energy_balance_type": EnergyBalanceType.none, "gas_phase_config": { "property_package": m.fs.gas_properties }, "solid_phase_config": { "property_package": m.fs.solid_properties, "reaction_package": m.fs.hetero_reactions } }) return m
def test_config(): m = ConcreteModel() m.fs = FlowsheetBlock(default={"dynamic": False}) # Set up thermo props and reaction props m.fs.gas_properties = GasPhaseParameterBlock() m.fs.solid_properties = SolidPhaseParameterBlock() m.fs.hetero_reactions = HeteroReactionParameterBlock( default={ "solid_property_package": m.fs.solid_properties, "gas_property_package": m.fs.gas_properties }) m.fs.unit = MBR( default={ "gas_phase_config": { "property_package": m.fs.gas_properties }, "solid_phase_config": { "property_package": m.fs.solid_properties, "reaction_package": m.fs.hetero_reactions } }) # Check unit config arguments assert len(m.fs.unit.config) == 15 assert isinstance(m.fs.unit.config.gas_phase_config, ConfigBlock) assert isinstance(m.fs.unit.config.solid_phase_config, ConfigBlock) assert m.fs.unit.config.finite_elements == 10 assert m.fs.unit.config.length_domain_set == [0.0, 1.0] assert m.fs.unit.config.transformation_method == "dae.finite_difference" assert m.fs.unit.config.transformation_scheme == 'BACKWARD' assert m.fs.unit.config.collocation_points == 3 assert m.fs.unit.config.flow_type == "counter_current" assert m.fs.unit.config.material_balance_type == \ MaterialBalanceType.componentTotal assert m.fs.unit.config.energy_balance_type == \ EnergyBalanceType.enthalpyTotal assert m.fs.unit.config.momentum_balance_type == \ MomentumBalanceType.pressureTotal assert m.fs.unit.config.has_pressure_change is True # Check gas phase config arguments assert len(m.fs.unit.config.gas_phase_config) == 7 assert m.fs.unit.config.gas_phase_config.has_equilibrium_reactions is False assert m.fs.unit.config.gas_phase_config.property_package is \ m.fs.gas_properties assert m.fs.unit.config.gas_phase_config.reaction_package is None # Check solid phase config arguments assert len(m.fs.unit.config.solid_phase_config) == 7 assert m.fs.unit.config.solid_phase_config.has_equilibrium_reactions is \ False assert m.fs.unit.config.solid_phase_config.property_package is \ m.fs.solid_properties assert m.fs.unit.config.solid_phase_config.reaction_package is \ m.fs.hetero_reactions
def iron_oc(self): m = ConcreteModel() m.fs = FlowsheetBlock(default={"dynamic": False}) # Set up thermo props and reaction props m.fs.gas_properties = GasPhaseParameterBlock() m.fs.solid_properties = SolidPhaseParameterBlock() m.fs.hetero_reactions = HeteroReactionParameterBlock( default={ "solid_property_package": m.fs.solid_properties, "gas_property_package": m.fs.gas_properties }) m.fs.unit = MBR( default={ "energy_balance_type": EnergyBalanceType.none, "gas_phase_config": { "property_package": m.fs.gas_properties }, "solid_phase_config": { "property_package": m.fs.solid_properties, "reaction_package": m.fs.hetero_reactions } }) # Fix geometry variables m.fs.unit.bed_diameter.fix(6.5) # m m.fs.unit.bed_height.fix(5) # m # Fix inlet port variables for gas and solid m.fs.unit.gas_inlet.flow_mol[0].fix(128.20513) # mol/s m.fs.unit.gas_inlet.temperature[0].fix(1183.15) # K m.fs.unit.gas_inlet.pressure[0].fix(2.00) # bar m.fs.unit.gas_inlet.mole_frac_comp[0, "CO2"].fix(0.02499) m.fs.unit.gas_inlet.mole_frac_comp[0, "H2O"].fix(0.00001) m.fs.unit.gas_inlet.mole_frac_comp[0, "CH4"].fix(0.975) m.fs.unit.solid_inlet.flow_mass[0].fix(591.4) # kg/s m.fs.unit.solid_inlet.temperature[0].fix(1183.15) # K m.fs.unit.solid_inlet.particle_porosity[0].fix(0.27) # (-) m.fs.unit.solid_inlet.mass_frac_comp[0, "Fe2O3"].fix(0.45) m.fs.unit.solid_inlet.mass_frac_comp[0, "Fe3O4"].fix(1e-9) m.fs.unit.solid_inlet.mass_frac_comp[0, "Al2O3"].fix(0.55) return m
def main(): m = ConcreteModel() m.fs = FlowsheetBlock(default={"dynamic": False}) # Set up thermo props and reaction props m.fs.gas_properties = GasPhaseThermoParameterBlock() m.fs.solid_properties = SolidPhaseThermoParameterBlock() m.fs.hetero_reactions = HeteroReactionParameterBlock( default={ "solid_property_package": m.fs.solid_properties, "gas_property_package": m.fs.gas_properties }) m.fs.MB = MBR( default={ "transformation_method": "dae.collocation", "gas_phase_config": { "property_package": m.fs.gas_properties }, "solid_phase_config": { "property_package": m.fs.solid_properties, "reaction_package": m.fs.hetero_reactions } }) # Fix bed geometry variables m.fs.MB.bed_diameter.fix(6.5) # m m.fs.MB.bed_height.fix(5) # m # Fix inlet port variables for gas and solid m.fs.MB.gas_inlet.flow_mol[0].fix(128.20513) # mol/s m.fs.MB.gas_inlet.temperature[0].fix(298.15) # K m.fs.MB.gas_inlet.pressure[0].fix(2.00) # bar m.fs.MB.gas_inlet.mole_frac_comp[0, "CO2"].fix(0.02499) m.fs.MB.gas_inlet.mole_frac_comp[0, "H2O"].fix(0.00001) m.fs.MB.gas_inlet.mole_frac_comp[0, "CH4"].fix(0.975) m.fs.MB.solid_inlet.flow_mass[0].fix(591.4) # kg/s # Particle porosity: # The porosity of the OC particle at the inlet is calculated from the # known bulk density of the fresh OC particle (3251.75 kg/m3), and the # skeletal density of the fresh OC particle (calculated from the known # composition of the fresh particle, and the skeletal density of its # components [see the solids property package]) m.fs.MB.solid_inlet.particle_porosity[0].fix(0.27) m.fs.MB.solid_inlet.temperature[0].fix(1183.15) # K m.fs.MB.solid_inlet.mass_frac_comp[0, "Fe2O3"].fix(0.45) m.fs.MB.solid_inlet.mass_frac_comp[0, "Fe3O4"].fix(1e-9) m.fs.MB.solid_inlet.mass_frac_comp[0, "Al2O3"].fix(0.55) # Initialize fuel reactor t_start = time.time() # Run start time # State arguments for initializing property state blocks # Gas phase temperature is initialized at solid # temperature because thermal mass of solid >> thermal mass of gas # Particularly useful for initialization if reaction takes place blk = m.fs.MB gas_phase_state_args = { 'flow_mol': blk.gas_inlet.flow_mol[0].value, 'temperature': blk.solid_inlet.temperature[0].value, 'pressure': blk.gas_inlet.pressure[0].value, 'mole_frac': { 'CH4': blk.gas_inlet.mole_frac_comp[0, 'CH4'].value, 'CO2': blk.gas_inlet.mole_frac_comp[0, 'CO2'].value, 'H2O': blk.gas_inlet.mole_frac_comp[0, 'H2O'].value } } solid_phase_state_args = { 'flow_mass': blk.solid_inlet.flow_mass[0].value, 'particle_porosity': blk.solid_inlet.particle_porosity[0].value, 'temperature': blk.solid_inlet.temperature[0].value, 'mass_frac': { 'Fe2O3': blk.solid_inlet.mass_frac_comp[0, 'Fe2O3'].value, 'Fe3O4': blk.solid_inlet.mass_frac_comp[0, 'Fe3O4'].value, 'Al2O3': blk.solid_inlet.mass_frac_comp[0, 'Al2O3'].value } } m.fs.MB.initialize(outlvl=idaeslog.INFO, gas_phase_state_args=gas_phase_state_args, solid_phase_state_args=solid_phase_state_args) t_initialize = time.time() # Initialization time # Create a solver solver = get_solver() solver.solve(m.fs.MB, tee=True) t_simulation = time.time() # Simulation time print("\n") print("----------------------------------------------------------") print('Total initialization time: ', value(t_initialize - t_start), " s") print("----------------------------------------------------------") print("\n") print("----------------------------------------------------------") print('Total simulation time: ', value(t_simulation - t_start), " s") print("----------------------------------------------------------") return m