Пример #1
0
	def test_sample_posterior(self):
		isa = ISA(2, 3, num_scales=10)
		isa.A = asarray([[1., 0., 1.], [0., 1., 1.]])

		isa.initialize()

		params = isa.default_parameters()
		params['gibbs']['verbosity'] = 0
		params['gibbs']['num_iter'] = 100

		states_post = isa.sample_posterior(isa.sample(1000), params)
		states_prio = isa.sample_prior(states_post.shape[1])

		states_post = states_post.flatten()
		states_post = states_post[permutation(states_post.size)]
		states_prio = states_prio.flatten()
		states_prio = states_prio[permutation(states_prio.size)]

		# on average, posterior samples should be distributed like prior samples
		p = ks_2samp(states_post, states_prio)[1]

		self.assertGreater(p, 0.0001)

		samples = isa.sample(100)
		states = isa.sample_posterior(samples, params)

		# reconstruction should be perfect
		self.assertLess(sum(square(dot(isa.A, states) - samples).flatten()), 1e-10)
Пример #2
0
    def test_sample_posterior(self):
        isa = ISA(2, 3, num_scales=10)
        isa.A = asarray([[1., 0., 1.], [0., 1., 1.]])

        isa.initialize()

        params = isa.default_parameters()
        params['gibbs']['verbosity'] = 0
        params['gibbs']['num_iter'] = 100

        states_post = isa.sample_posterior(isa.sample(1000), params)
        states_prio = isa.sample_prior(states_post.shape[1])

        states_post = states_post.flatten()
        states_post = states_post[permutation(states_post.size)]
        states_prio = states_prio.flatten()
        states_prio = states_prio[permutation(states_prio.size)]

        # on average, posterior samples should be distributed like prior samples
        p = ks_2samp(states_post, states_prio)[1]

        self.assertGreater(p, 0.0001)

        samples = isa.sample(100)
        states = isa.sample_posterior(samples, params)

        # reconstruction should be perfect
        self.assertLess(sum(square(dot(isa.A, states) - samples).flatten()),
                        1e-10)
Пример #3
0
	def test_evaluate(self):
		isa1 = ISA(2)
		isa1.A = eye(2)

		subspaces = isa1.subspaces()
		for gsm in subspaces:
			gsm.scales = ones(gsm.num_scales)
		isa1.set_subspaces(subspaces)

		# equivalent overcomplete model
		isa2 = ISA(2, 4)
		A = copy(isa2.A)
		A[:, :2] = isa1.A / sqrt(2.)
		A[:, 2:] = isa1.A / sqrt(2.)
		isa2.A = A

		subspaces = isa2.subspaces()
		for gsm in subspaces:
			gsm.scales = ones(gsm.num_scales)
		isa2.set_subspaces(subspaces)

		data = isa1.sample(100)

		# the results should not depend on the parameters
		ll1 = isa1.evaluate(data)
		ll2 = isa2.evaluate(data)

		self.assertLess(abs(ll1 - ll2), 1e-5)

		isa1 = ISA(2)
		isa1.initialize()

		# equivalent overcomplete model
		isa2 = ISA(2, 4)

		isa2.set_subspaces(isa1.subspaces() * 2)
		A = isa2.basis()
		A[:, :2] = isa1.basis()
		A[:, 2:] = 0.
		isa2.set_basis(A)

		data = isa1.sample(100)

		params = isa2.default_parameters()
		params['ais']['num_iter'] = 100
		params['ais']['num_samples'] = 100

		ll1 = isa1.evaluate(data)
		ll2 = isa2.evaluate(data, params)

		self.assertLess(abs(ll1 - ll2), 0.1)
Пример #4
0
    def test_evaluate(self):
        isa1 = ISA(2)
        isa1.A = eye(2)

        subspaces = isa1.subspaces()
        for gsm in subspaces:
            gsm.scales = ones(gsm.num_scales)
        isa1.set_subspaces(subspaces)

        # equivalent overcomplete model
        isa2 = ISA(2, 4)
        A = copy(isa2.A)
        A[:, :2] = isa1.A / sqrt(2.)
        A[:, 2:] = isa1.A / sqrt(2.)
        isa2.A = A

        subspaces = isa2.subspaces()
        for gsm in subspaces:
            gsm.scales = ones(gsm.num_scales)
        isa2.set_subspaces(subspaces)

        data = isa1.sample(100)

        # the results should not depend on the parameters
        ll1 = isa1.evaluate(data)
        ll2 = isa2.evaluate(data)

        self.assertLess(abs(ll1 - ll2), 1e-5)

        isa1 = ISA(2)
        isa1.initialize()

        # equivalent overcomplete model
        isa2 = ISA(2, 4)

        isa2.set_subspaces(isa1.subspaces() * 2)
        A = isa2.basis()
        A[:, :2] = isa1.basis()
        A[:, 2:] = 0.
        isa2.set_basis(A)

        data = isa1.sample(100)

        params = isa2.default_parameters()
        params['ais']['num_iter'] = 100
        params['ais']['num_samples'] = 100

        ll1 = isa1.evaluate(data)
        ll2 = isa2.evaluate(data, params)

        self.assertLess(abs(ll1 - ll2), 0.1)
Пример #5
0
	def test_sample_posterior_ais(self):
		isa = ISA(2, 3, num_scales=10)
		isa.A = asarray([[1., 0., 1.], [0., 1., 1.]])

		isa.initialize()

		params = isa.default_parameters()
		params['ais']['verbosity'] = 0
		params['ais']['num_iter'] = 100

		samples = isa.sample(100)
		states, _ = isa.sample_posterior_ais(samples, params)

		# reconstruction should be perfect
		self.assertLess(sum(square(dot(isa.A, states) - samples).flatten()), 1e-10)
Пример #6
0
    def test_sample_posterior_ais(self):
        isa = ISA(2, 3, num_scales=10)
        isa.A = asarray([[1., 0., 1.], [0., 1., 1.]])

        isa.initialize()

        params = isa.default_parameters()
        params['ais']['verbosity'] = 0
        params['ais']['num_iter'] = 100

        samples = isa.sample(100)
        states, _ = isa.sample_posterior_ais(samples, params)

        # reconstruction should be perfect
        self.assertLess(sum(square(dot(isa.A, states) - samples).flatten()),
                        1e-10)
Пример #7
0
	def test_train_lbfgs(self):
		isa = ISA(2)
		isa.initialize()

		isa.A = eye(2)

		samples = isa.sample(10000)

		# initialize close to original parameters
		isa.A = asarray([[cos(0.4), sin(0.4)], [-sin(0.4), cos(0.4)]])

		params = isa.default_parameters()
		params['training_method'] = 'LBFGS'
		params['train_prior'] = False
		params['max_iter'] = 1
		params['lbfgs']['max_iter'] = 50

		isa.train(samples, params)

		# L-BFGS should be able to recover the parameters
		self.assertLess(sqrt(sum(square(isa.A.flatten() - eye(2).flatten()))), 0.1)
Пример #8
0
    def test_initialize(self):
        def sqrtmi(mat):
            """
			Compute matrix inverse square root.

			@type  mat: array_like
			@param mat: matrix for which to compute inverse square root
			"""

            # find eigenvectors
            eigvals, eigvecs = eig(mat)

            # eliminate eigenvectors whose eigenvalues are zero
            eigvecs = eigvecs[:, eigvals > 0.]
            eigvals = eigvals[eigvals > 0.]

            # inverse square root
            return dot(eigvecs, dot(diag(1. / sqrt(eigvals)), eigvecs.T))

        # white data
        data = randn(5, 1000)
        data = dot(sqrtmi(cov(data)), data)

        isa = ISA(5, 10)
        isa.initialize(data)

        # rows of A should be roughly orthogonal
        self.assertLess(sum(square(dot(isa.A, isa.A.T) - eye(5)).flatten()),
                        1e-3)

        p = kstest(
            isa.sample_prior(100).flatten(),
            lambda x: laplace.cdf(x, scale=1. / sqrt(2.)))[1]

        # prior marginals should be roughly Laplace
        self.assertGreater(p, 0.0001)

        # test initialization with larger subspaces
        isa = ISA(5, 10, ssize=2)
        isa.initialize(data)
Пример #9
0
	def test_initialize(self):
		def sqrtmi(mat):
			"""
			Compute matrix inverse square root.

			@type  mat: array_like
			@param mat: matrix for which to compute inverse square root
			"""

			# find eigenvectors
			eigvals, eigvecs = eig(mat)

			# eliminate eigenvectors whose eigenvalues are zero
			eigvecs = eigvecs[:, eigvals > 0.]
			eigvals = eigvals[eigvals > 0.]

			# inverse square root
			return dot(eigvecs, dot(diag(1. / sqrt(eigvals)), eigvecs.T))

		# white data
		data = randn(5, 1000)
		data = dot(sqrtmi(cov(data)), data)

		isa = ISA(5, 10)
		isa.initialize(data)

		# rows of A should be roughly orthogonal
		self.assertLess(sum(square(dot(isa.A, isa.A.T) - eye(5)).flatten()), 1e-3)

		p = kstest(
			isa.sample_prior(100).flatten(),
			lambda x: laplace.cdf(x, scale=1. / sqrt(2.)))[1]

		# prior marginals should be roughly Laplace
		self.assertGreater(p, 0.0001)

		# test initialization with larger subspaces
		isa = ISA(5, 10, ssize=2)
		isa.initialize(data)
Пример #10
0
	def test_merge(self):
		isa1 = ISA(5, ssize=2)
		isa2 = ISA(5)

		isa1.initialize()
		isa1.orthogonalize()

		isa2.initialize()
		isa2.A = isa1.A

		params = isa2.default_parameters()
		params['train_basis'] = False
		params['merge_subspaces'] = True
		params['merge']['verbosity'] = 0

		isa2.train(isa1.sample(10000), params)

		ssizes1 = [gsm.dim for gsm in isa1.subspaces()]
		ssizes2 = [gsm.dim for gsm in isa2.subspaces()]

		# algorithm should be able to recover subspace sizes
		self.assertTrue(all(sort(ssizes1) == sort(ssizes2)))
Пример #11
0
    def test_merge(self):
        isa1 = ISA(5, ssize=2)
        isa2 = ISA(5)

        isa1.initialize()
        isa1.orthogonalize()

        isa2.initialize()
        isa2.A = isa1.A

        params = isa2.default_parameters()
        params['train_basis'] = False
        params['merge_subspaces'] = True
        params['merge']['verbosity'] = 0

        isa2.train(isa1.sample(10000), params)

        ssizes1 = [gsm.dim for gsm in isa1.subspaces()]
        ssizes2 = [gsm.dim for gsm in isa2.subspaces()]

        # algorithm should be able to recover subspace sizes
        self.assertTrue(all(sort(ssizes1) == sort(ssizes2)))
Пример #12
0
    def test_train_lbfgs(self):
        isa = ISA(2)
        isa.initialize()

        isa.A = eye(2)

        samples = isa.sample(10000)

        # initialize close to original parameters
        isa.A = asarray([[cos(0.4), sin(0.4)], [-sin(0.4), cos(0.4)]])

        params = isa.default_parameters()
        params['training_method'] = 'LBFGS'
        params['train_prior'] = False
        params['max_iter'] = 1
        params['lbfgs']['max_iter'] = 50

        isa.train(samples, params)

        # L-BFGS should be able to recover the parameters
        self.assertLess(sqrt(sum(square(isa.A.flatten() - eye(2).flatten()))),
                        0.1)
Пример #13
0
	def test_train(self):
		# make sure train() doesn't throw any errors
		isa = ISA(2)
		params = isa.default_parameters()
		params['verbosity'] = 0
		params['max_iter'] = 2
		params['training_method'] = 'SGD'
		params['sgd']['max_iter'] = 1
		params['sgd']['batch_size'] = 57

		isa.initialize(randn(2, 1000))
		isa.train(randn(2, 1000), params)

		isa = ISA(4, ssize=2)
		isa.initialize(randn(4, 1000))
		isa.train(randn(4, 1000), params)

		isa = ISA(2, 3)
		params['gibbs']['ini_iter'] = 2
		params['gibbs']['num_iter'] = 2
		params['verbosity'] = 0
		params['gibbs']['verbosity'] = 0
		isa.initialize(randn(2, 1000))
		isa.train(randn(2, 1000), params)
Пример #14
0
    def test_train(self):
        # make sure train() doesn't throw any errors
        isa = ISA(2)
        params = isa.default_parameters()
        params['verbosity'] = 0
        params['max_iter'] = 2
        params['training_method'] = 'SGD'
        params['sgd']['max_iter'] = 1
        params['sgd']['batch_size'] = 57

        isa.initialize(randn(2, 1000))
        isa.train(randn(2, 1000), params)

        isa = ISA(4, ssize=2)
        isa.initialize(randn(4, 1000))
        isa.train(randn(4, 1000), params)

        isa = ISA(2, 3)
        params['gibbs']['ini_iter'] = 2
        params['gibbs']['num_iter'] = 2
        params['verbosity'] = 0
        params['gibbs']['verbosity'] = 0
        isa.initialize(randn(2, 1000))
        isa.train(randn(2, 1000), params)