Пример #1
0
    def test_sample_posterior(self):
        isa = ISA(2, 3, num_scales=10)
        isa.A = asarray([[1., 0., 1.], [0., 1., 1.]])

        isa.initialize()

        params = isa.default_parameters()
        params['gibbs']['verbosity'] = 0
        params['gibbs']['num_iter'] = 100

        states_post = isa.sample_posterior(isa.sample(1000), params)
        states_prio = isa.sample_prior(states_post.shape[1])

        states_post = states_post.flatten()
        states_post = states_post[permutation(states_post.size)]
        states_prio = states_prio.flatten()
        states_prio = states_prio[permutation(states_prio.size)]

        # on average, posterior samples should be distributed like prior samples
        p = ks_2samp(states_post, states_prio)[1]

        self.assertGreater(p, 0.0001)

        samples = isa.sample(100)
        states = isa.sample_posterior(samples, params)

        # reconstruction should be perfect
        self.assertLess(sum(square(dot(isa.A, states) - samples).flatten()),
                        1e-10)
Пример #2
0
	def test_sample_posterior(self):
		isa = ISA(2, 3, num_scales=10)
		isa.A = asarray([[1., 0., 1.], [0., 1., 1.]])

		isa.initialize()

		params = isa.default_parameters()
		params['gibbs']['verbosity'] = 0
		params['gibbs']['num_iter'] = 100

		states_post = isa.sample_posterior(isa.sample(1000), params)
		states_prio = isa.sample_prior(states_post.shape[1])

		states_post = states_post.flatten()
		states_post = states_post[permutation(states_post.size)]
		states_prio = states_prio.flatten()
		states_prio = states_prio[permutation(states_prio.size)]

		# on average, posterior samples should be distributed like prior samples
		p = ks_2samp(states_post, states_prio)[1]

		self.assertGreater(p, 0.0001)

		samples = isa.sample(100)
		states = isa.sample_posterior(samples, params)

		# reconstruction should be perfect
		self.assertLess(sum(square(dot(isa.A, states) - samples).flatten()), 1e-10)
Пример #3
0
	def test_sample_prior(self):
		isa = ISA(5, 10)
		samples = isa.sample_prior(20)

		# simple sanity checks
		self.assertEqual(samples.shape[0], 10)
		self.assertEqual(samples.shape[1], 20)
Пример #4
0
    def test_sample_scales(self):
        isa = ISA(2, 5, num_scales=4)

        # get a copy of subspaces
        subspaces = isa.subspaces()

        # replace scales
        for gsm in subspaces:
            gsm.scales = asarray([1., 2., 3., 4.])

        isa.set_subspaces(subspaces)

        samples = isa.sample_prior(100000)
        scales = isa.sample_scales(samples)

        # simple sanity checks
        self.assertEqual(scales.shape[0], isa.num_hiddens)
        self.assertEqual(scales.shape[1], samples.shape[1])

        priors = mean(
            abs(scales.flatten() - asarray([[1., 2., 3., 4.]]).T) < 0.5, 1)

        # prior probabilities of scales should be equal and sum up to one
        self.assertLess(max(abs(priors - 1. / subspaces[0].num_scales)), 0.01)
        self.assertLess(abs(sum(priors) - 1.), 1e-10)
Пример #5
0
    def test_sample_prior(self):
        isa = ISA(5, 10)
        samples = isa.sample_prior(20)

        # simple sanity checks
        self.assertEqual(samples.shape[0], 10)
        self.assertEqual(samples.shape[1], 20)
Пример #6
0
	def test_sample(self):
		isa = ISA(3, 4)

		samples = isa.sample(100)
		samples_prior = isa.sample_prior(100)

		# simple sanity checks
		self.assertEqual(samples.shape[0], isa.num_visibles)
		self.assertEqual(samples.shape[1], 100)
		self.assertEqual(samples_prior.shape[0], isa.num_hiddens)
		self.assertEqual(samples_prior.shape[1], 100)
Пример #7
0
    def test_sample(self):
        isa = ISA(3, 4)

        samples = isa.sample(100)
        samples_prior = isa.sample_prior(100)

        # simple sanity checks
        self.assertEqual(samples.shape[0], isa.num_visibles)
        self.assertEqual(samples.shape[1], 100)
        self.assertEqual(samples_prior.shape[0], isa.num_hiddens)
        self.assertEqual(samples_prior.shape[1], 100)
Пример #8
0
	def test_prior_energy_gradient(self):
		isa = ISA(4)

		samples = isa.sample_prior(100)
		grad = isa.prior_energy_gradient(samples)

		# simple sanity checks
		self.assertEqual(grad.shape[0], samples.shape[0])
		self.assertEqual(grad.shape[1], samples.shape[1])

		f = lambda x: isa.prior_energy(x.reshape(-1, 1)).flatten()
		df = lambda x: isa.prior_energy_gradient(x.reshape(-1, 1)).flatten()

		for i in range(samples.shape[1]):
			relative_error = check_grad(f, df, samples[:, i]) / sqrt(sum(square(df(samples[:, i]))))

			# comparison with numerical gradient
			self.assertLess(relative_error, 0.001)
Пример #9
0
    def test_prior_energy_gradient(self):
        isa = ISA(4)

        samples = isa.sample_prior(100)
        grad = isa.prior_energy_gradient(samples)

        # simple sanity checks
        self.assertEqual(grad.shape[0], samples.shape[0])
        self.assertEqual(grad.shape[1], samples.shape[1])

        f = lambda x: isa.prior_energy(x.reshape(-1, 1)).flatten()
        df = lambda x: isa.prior_energy_gradient(x.reshape(-1, 1)).flatten()

        for i in range(samples.shape[1]):
            relative_error = check_grad(f, df, samples[:, i]) / sqrt(
                sum(square(df(samples[:, i]))))

            # comparison with numerical gradient
            self.assertLess(relative_error, 0.001)
Пример #10
0
    def test_initialize(self):
        def sqrtmi(mat):
            """
			Compute matrix inverse square root.

			@type  mat: array_like
			@param mat: matrix for which to compute inverse square root
			"""

            # find eigenvectors
            eigvals, eigvecs = eig(mat)

            # eliminate eigenvectors whose eigenvalues are zero
            eigvecs = eigvecs[:, eigvals > 0.]
            eigvals = eigvals[eigvals > 0.]

            # inverse square root
            return dot(eigvecs, dot(diag(1. / sqrt(eigvals)), eigvecs.T))

        # white data
        data = randn(5, 1000)
        data = dot(sqrtmi(cov(data)), data)

        isa = ISA(5, 10)
        isa.initialize(data)

        # rows of A should be roughly orthogonal
        self.assertLess(sum(square(dot(isa.A, isa.A.T) - eye(5)).flatten()),
                        1e-3)

        p = kstest(
            isa.sample_prior(100).flatten(),
            lambda x: laplace.cdf(x, scale=1. / sqrt(2.)))[1]

        # prior marginals should be roughly Laplace
        self.assertGreater(p, 0.0001)

        # test initialization with larger subspaces
        isa = ISA(5, 10, ssize=2)
        isa.initialize(data)
Пример #11
0
	def test_initialize(self):
		def sqrtmi(mat):
			"""
			Compute matrix inverse square root.

			@type  mat: array_like
			@param mat: matrix for which to compute inverse square root
			"""

			# find eigenvectors
			eigvals, eigvecs = eig(mat)

			# eliminate eigenvectors whose eigenvalues are zero
			eigvecs = eigvecs[:, eigvals > 0.]
			eigvals = eigvals[eigvals > 0.]

			# inverse square root
			return dot(eigvecs, dot(diag(1. / sqrt(eigvals)), eigvecs.T))

		# white data
		data = randn(5, 1000)
		data = dot(sqrtmi(cov(data)), data)

		isa = ISA(5, 10)
		isa.initialize(data)

		# rows of A should be roughly orthogonal
		self.assertLess(sum(square(dot(isa.A, isa.A.T) - eye(5)).flatten()), 1e-3)

		p = kstest(
			isa.sample_prior(100).flatten(),
			lambda x: laplace.cdf(x, scale=1. / sqrt(2.)))[1]

		# prior marginals should be roughly Laplace
		self.assertGreater(p, 0.0001)

		# test initialization with larger subspaces
		isa = ISA(5, 10, ssize=2)
		isa.initialize(data)
Пример #12
0
	def test_sample_scales(self):
		isa = ISA(2, 5, num_scales=4)

		# get a copy of subspaces
		subspaces = isa.subspaces()

		# replace scales
		for gsm in subspaces:
			gsm.scales = asarray([1., 2., 3., 4.])

		isa.set_subspaces(subspaces)

		samples = isa.sample_prior(100000)
		scales = isa.sample_scales(samples)

		# simple sanity checks
		self.assertEqual(scales.shape[0], isa.num_hiddens)
		self.assertEqual(scales.shape[1], samples.shape[1])

		priors = mean(abs(scales.flatten() - asarray([[1., 2., 3., 4.]]).T) < 0.5, 1)

		# prior probabilities of scales should be equal and sum up to one
		self.assertLess(max(abs(priors - 1. / subspaces[0].num_scales)), 0.01)
		self.assertLess(abs(sum(priors) - 1.), 1e-10)