def upload(feature_manifest: Pathlike, url: str, output_manifest: Pathlike, num_jobs: int): """ Read an existing FEATURE_MANIFEST, upload the feature matrices it contains to a URL location, and save a new feature OUTPUT_MANIFEST that refers to the uploaded features. The URL can refer to endpoints such as AWS S3, GCP, Azure, etc. For example: "s3://my-bucket/my-features" is a valid URL. This script does not currently support credentials, and assumes that you have the write permissions. """ from concurrent.futures import ProcessPoolExecutor from tqdm import tqdm output_manifest = Path(output_manifest) assert (".jsonl" in output_manifest.suffixes ), "This mode only supports writing to JSONL feature manifests." local_features: FeatureSet = FeatureSet.from_file(feature_manifest) with FeatureSet.open_writer( output_manifest) as manifest_writer, ProcessPoolExecutor( num_jobs) as ex: futures = [] for item in tqdm(local_features, desc="Submitting parallel uploading tasks..."): futures.append(ex.submit(_upload_one, item, url)) for item in tqdm(futures, desc=f"Uploading features to {url}"): manifest_writer.write(item.result())
def test_feature_set_serialization(feature_set, format, compressed): with NamedTemporaryFile(suffix='.gz' if compressed else '') as f: if format == 'jsonl': feature_set.to_jsonl(f.name) feature_set_deserialized = FeatureSet.from_jsonl(f.name) if format == 'json': feature_set.to_json(f.name) feature_set_deserialized = FeatureSet.from_json(f.name) if format == 'yaml': feature_set.to_yaml(f.name) feature_set_deserialized = FeatureSet.from_yaml(f.name) assert feature_set_deserialized == feature_set
def test_feature_set_serialization(feature_set, format, compressed): with NamedTemporaryFile(suffix=".gz" if compressed else "") as f: if format == "jsonl": feature_set.to_jsonl(f.name) feature_set_deserialized = FeatureSet.from_jsonl(f.name) if format == "json": feature_set.to_json(f.name) feature_set_deserialized = FeatureSet.from_json(f.name) if format == "yaml": feature_set.to_yaml(f.name) feature_set_deserialized = FeatureSet.from_yaml(f.name) assert feature_set_deserialized == feature_set
def test_feature_set_copy_feats(cuts): feature_set = FeatureSet.from_features([cuts[0].features]) with TemporaryDirectory() as d, NumpyFilesWriter(d) as w: cpy = feature_set.copy_feats(writer=w) data = cpy[0].load() assert isinstance(data, np.ndarray) ref_data = feature_set[0].load() np.testing.assert_almost_equal(data, ref_data)
def feature_set(): return FeatureSet(features=[ Features(recording_id='irrelevant', channels=0, start=0.0, duration=20.0, type='fbank', num_frames=2000, num_features=20, frame_shift=0.01, sampling_rate=16000, storage_type='lilcom', storage_path='/irrelevant/', storage_key='path.llc') ])
def feature_set(): return FeatureSet(features=[ Features( recording_id="irrelevant", channels=0, start=0.0, duration=20.0, type="fbank", num_frames=2000, num_features=20, frame_shift=0.01, sampling_rate=16000, storage_type="lilcom", storage_path="/irrelevant/", storage_key="path.llc", ) ])
def load_kaldi_data_dir( path: Pathlike, sampling_rate: int, frame_shift: Optional[Seconds] = None, ) -> Tuple[RecordingSet, Optional[SupervisionSet], Optional[FeatureSet]]: """ Load a Kaldi data directory and convert it to a Lhotse RecordingSet and SupervisionSet manifests. For this to work, at least the wav.scp file must exist. SupervisionSet is created only when a segments file exists. All the other files (text, utt2spk, etc.) are optional, and some of them might not be handled yet. In particular, feats.scp files are ignored. """ path = Path(path) assert path.is_dir() # must exist for RecordingSet recordings = load_kaldi_text_mapping(path / 'wav.scp', must_exist=True) durations = defaultdict(float) reco2dur = path / 'reco2dur' if not reco2dur.is_file(): raise ValueError( f"No such file: '{reco2dur}' -- fix it by running: utils/data/get_reco2dur.sh <data-dir>" ) with reco2dur.open() as f: for line in f: recording_id, dur = line.strip().split() durations[recording_id] = float(dur) recording_set = RecordingSet.from_recordings( Recording(id=recording_id, sources=[ AudioSource(type='command' if path_or_cmd. endswith('|') else 'file', channels=[0], source=path_or_cmd[:-1] if path_or_cmd. endswith('|') else path_or_cmd) ], sampling_rate=sampling_rate, num_samples=int(durations[recording_id] * sampling_rate), duration=durations[recording_id]) for recording_id, path_or_cmd in recordings.items()) supervision_set = None segments = path / 'segments' if segments.is_file(): with segments.open() as f: supervision_segments = [l.strip().split() for l in f] texts = load_kaldi_text_mapping(path / 'text') speakers = load_kaldi_text_mapping(path / 'utt2spk') genders = load_kaldi_text_mapping(path / 'spk2gender') languages = load_kaldi_text_mapping(path / 'utt2lang') supervision_set = SupervisionSet.from_segments( SupervisionSegment(id=segment_id, recording_id=recording_id, start=float(start), duration=float(end) - float(start), channel=0, text=texts[segment_id], language=languages[segment_id], speaker=speakers[segment_id], gender=genders[speakers[segment_id]]) for segment_id, recording_id, start, end in supervision_segments) feature_set = None feats_scp = path / 'feats.scp' if feats_scp.exists() and is_module_available('kaldiio'): if frame_shift is not None: import kaldiio from lhotse.features.io import KaldiReader feature_set = FeatureSet.from_features( Features(type='kaldiio', num_frames=mat.shape[0], num_features=mat.shape[1], frame_shift=frame_shift, sampling_rate=sampling_rate, start=0, duration=mat.shape[0] * frame_shift, storage_type=KaldiReader.name, storage_path=str(feats_scp), storage_key=utt_id, recording_id=supervision_set[utt_id].recording_id if supervision_set is not None else utt_id, channels=0) for utt_id, mat in kaldiio.load_scp_sequential(str(feats_scp))) else: warnings.warn(f"Failed to import Kaldi 'feats.scp' to Lhotse: " f"frame_shift must be not None. " f"Feature import omitted.") return recording_set, supervision_set, feature_set
def load_kaldi_data_dir( path: Pathlike, sampling_rate: int, frame_shift: Optional[Seconds] = None, map_string_to_underscores: Optional[str] = None, num_jobs: int = 1, ) -> Tuple[RecordingSet, Optional[SupervisionSet], Optional[FeatureSet]]: """ Load a Kaldi data directory and convert it to a Lhotse RecordingSet and SupervisionSet manifests. For this to work, at least the wav.scp file must exist. SupervisionSet is created only when a segments file exists. All the other files (text, utt2spk, etc.) are optional, and some of them might not be handled yet. In particular, feats.scp files are ignored. :param map_string_to_underscores: optional string, when specified, we will replace all instances of this string in SupervisonSegment IDs to underscores. This is to help with handling underscores in Kaldi (see :func:`.export_to_kaldi`). This is also done for speaker IDs. """ path = Path(path) assert path.is_dir() def fix_id(t: str) -> str: if map_string_to_underscores is None: return t return t.replace(map_string_to_underscores, "_") # must exist for RecordingSet recordings = load_kaldi_text_mapping(path / "wav.scp", must_exist=True) with ProcessPoolExecutor(num_jobs) as ex: dur_vals = ex.map(get_duration, recordings.values()) durations = dict(zip(recordings.keys(), dur_vals)) recording_set = RecordingSet.from_recordings( Recording( id=recording_id, sources=[ AudioSource( type="command" if path_or_cmd.endswith("|") else "file", channels=[0], source=path_or_cmd[:-1] if path_or_cmd.endswith("|") else path_or_cmd, ) ], sampling_rate=sampling_rate, num_samples=compute_num_samples(durations[recording_id], sampling_rate), duration=durations[recording_id], ) for recording_id, path_or_cmd in recordings.items() ) supervision_set = None segments = path / "segments" if segments.is_file(): with segments.open() as f: supervision_segments = [sup_string.strip().split() for sup_string in f] texts = load_kaldi_text_mapping(path / "text") speakers = load_kaldi_text_mapping(path / "utt2spk") genders = load_kaldi_text_mapping(path / "spk2gender") languages = load_kaldi_text_mapping(path / "utt2lang") supervision_set = SupervisionSet.from_segments( SupervisionSegment( id=fix_id(segment_id), recording_id=recording_id, start=float(start), duration=add_durations( float(end), -float(start), sampling_rate=sampling_rate ), channel=0, text=texts[segment_id], language=languages[segment_id], speaker=fix_id(speakers[segment_id]), gender=genders[speakers[segment_id]], ) for segment_id, recording_id, start, end in supervision_segments ) feature_set = None feats_scp = path / "feats.scp" if feats_scp.exists() and is_module_available("kaldi_native_io"): if frame_shift is not None: import kaldi_native_io from lhotse.features.io import KaldiReader feature_set = FeatureSet.from_features( Features( type="kaldi_native_io", num_frames=mat_shape.num_rows, num_features=mat_shape.num_cols, frame_shift=frame_shift, sampling_rate=sampling_rate, start=0, duration=mat_shape.num_rows * frame_shift, storage_type=KaldiReader.name, storage_path=str(feats_scp), storage_key=utt_id, recording_id=supervision_set[utt_id].recording_id if supervision_set is not None else utt_id, channels=0, ) for utt_id, mat_shape in kaldi_native_io.SequentialMatrixShapeReader( f"scp:{feats_scp}" ) ) else: warnings.warn( "Failed to import Kaldi 'feats.scp' to Lhotse: " "frame_shift must be not None. " "Feature import omitted." ) return recording_set, supervision_set, feature_set