示例#1
0
def upload(feature_manifest: Pathlike, url: str, output_manifest: Pathlike,
           num_jobs: int):
    """
    Read an existing FEATURE_MANIFEST, upload the feature matrices it contains to a URL location,
    and save a new feature OUTPUT_MANIFEST that refers to the uploaded features.

    The URL can refer to endpoints such as AWS S3, GCP, Azure, etc.
    For example: "s3://my-bucket/my-features" is a valid URL.

    This script does not currently support credentials,
    and assumes that you have the write permissions.
    """
    from concurrent.futures import ProcessPoolExecutor
    from tqdm import tqdm

    output_manifest = Path(output_manifest)
    assert (".jsonl" in output_manifest.suffixes
            ), "This mode only supports writing to JSONL feature manifests."

    local_features: FeatureSet = FeatureSet.from_file(feature_manifest)

    with FeatureSet.open_writer(
            output_manifest) as manifest_writer, ProcessPoolExecutor(
                num_jobs) as ex:
        futures = []
        for item in tqdm(local_features,
                         desc="Submitting parallel uploading tasks..."):
            futures.append(ex.submit(_upload_one, item, url))
        for item in tqdm(futures, desc=f"Uploading features to {url}"):
            manifest_writer.write(item.result())
示例#2
0
def test_feature_set_serialization(feature_set, format, compressed):
    with NamedTemporaryFile(suffix='.gz' if compressed else '') as f:
        if format == 'jsonl':
            feature_set.to_jsonl(f.name)
            feature_set_deserialized = FeatureSet.from_jsonl(f.name)
        if format == 'json':
            feature_set.to_json(f.name)
            feature_set_deserialized = FeatureSet.from_json(f.name)
        if format == 'yaml':
            feature_set.to_yaml(f.name)
            feature_set_deserialized = FeatureSet.from_yaml(f.name)
    assert feature_set_deserialized == feature_set
示例#3
0
def test_feature_set_serialization(feature_set, format, compressed):
    with NamedTemporaryFile(suffix=".gz" if compressed else "") as f:
        if format == "jsonl":
            feature_set.to_jsonl(f.name)
            feature_set_deserialized = FeatureSet.from_jsonl(f.name)
        if format == "json":
            feature_set.to_json(f.name)
            feature_set_deserialized = FeatureSet.from_json(f.name)
        if format == "yaml":
            feature_set.to_yaml(f.name)
            feature_set_deserialized = FeatureSet.from_yaml(f.name)
    assert feature_set_deserialized == feature_set
示例#4
0
def test_feature_set_copy_feats(cuts):
    feature_set = FeatureSet.from_features([cuts[0].features])
    with TemporaryDirectory() as d, NumpyFilesWriter(d) as w:
        cpy = feature_set.copy_feats(writer=w)
        data = cpy[0].load()
        assert isinstance(data, np.ndarray)
        ref_data = feature_set[0].load()
        np.testing.assert_almost_equal(data, ref_data)
示例#5
0
def feature_set():
    return FeatureSet(features=[
        Features(recording_id='irrelevant',
                 channels=0,
                 start=0.0,
                 duration=20.0,
                 type='fbank',
                 num_frames=2000,
                 num_features=20,
                 frame_shift=0.01,
                 sampling_rate=16000,
                 storage_type='lilcom',
                 storage_path='/irrelevant/',
                 storage_key='path.llc')
    ])
示例#6
0
def feature_set():
    return FeatureSet(features=[
        Features(
            recording_id="irrelevant",
            channels=0,
            start=0.0,
            duration=20.0,
            type="fbank",
            num_frames=2000,
            num_features=20,
            frame_shift=0.01,
            sampling_rate=16000,
            storage_type="lilcom",
            storage_path="/irrelevant/",
            storage_key="path.llc",
        )
    ])
示例#7
0
def load_kaldi_data_dir(
    path: Pathlike,
    sampling_rate: int,
    frame_shift: Optional[Seconds] = None,
) -> Tuple[RecordingSet, Optional[SupervisionSet], Optional[FeatureSet]]:
    """
    Load a Kaldi data directory and convert it to a Lhotse RecordingSet and SupervisionSet manifests.
    For this to work, at least the wav.scp file must exist.
    SupervisionSet is created only when a segments file exists.
    All the other files (text, utt2spk, etc.) are optional, and some of them might not be handled yet.
    In particular, feats.scp files are ignored.
    """
    path = Path(path)
    assert path.is_dir()

    # must exist for RecordingSet
    recordings = load_kaldi_text_mapping(path / 'wav.scp', must_exist=True)

    durations = defaultdict(float)
    reco2dur = path / 'reco2dur'
    if not reco2dur.is_file():
        raise ValueError(
            f"No such file: '{reco2dur}' -- fix it by running: utils/data/get_reco2dur.sh <data-dir>"
        )
    with reco2dur.open() as f:
        for line in f:
            recording_id, dur = line.strip().split()
            durations[recording_id] = float(dur)

    recording_set = RecordingSet.from_recordings(
        Recording(id=recording_id,
                  sources=[
                      AudioSource(type='command' if path_or_cmd.
                                  endswith('|') else 'file',
                                  channels=[0],
                                  source=path_or_cmd[:-1] if path_or_cmd.
                                  endswith('|') else path_or_cmd)
                  ],
                  sampling_rate=sampling_rate,
                  num_samples=int(durations[recording_id] * sampling_rate),
                  duration=durations[recording_id])
        for recording_id, path_or_cmd in recordings.items())

    supervision_set = None
    segments = path / 'segments'
    if segments.is_file():
        with segments.open() as f:
            supervision_segments = [l.strip().split() for l in f]

        texts = load_kaldi_text_mapping(path / 'text')
        speakers = load_kaldi_text_mapping(path / 'utt2spk')
        genders = load_kaldi_text_mapping(path / 'spk2gender')
        languages = load_kaldi_text_mapping(path / 'utt2lang')

        supervision_set = SupervisionSet.from_segments(
            SupervisionSegment(id=segment_id,
                               recording_id=recording_id,
                               start=float(start),
                               duration=float(end) - float(start),
                               channel=0,
                               text=texts[segment_id],
                               language=languages[segment_id],
                               speaker=speakers[segment_id],
                               gender=genders[speakers[segment_id]])
            for segment_id, recording_id, start, end in supervision_segments)

    feature_set = None
    feats_scp = path / 'feats.scp'
    if feats_scp.exists() and is_module_available('kaldiio'):
        if frame_shift is not None:
            import kaldiio
            from lhotse.features.io import KaldiReader
            feature_set = FeatureSet.from_features(
                Features(type='kaldiio',
                         num_frames=mat.shape[0],
                         num_features=mat.shape[1],
                         frame_shift=frame_shift,
                         sampling_rate=sampling_rate,
                         start=0,
                         duration=mat.shape[0] * frame_shift,
                         storage_type=KaldiReader.name,
                         storage_path=str(feats_scp),
                         storage_key=utt_id,
                         recording_id=supervision_set[utt_id].recording_id
                         if supervision_set is not None else utt_id,
                         channels=0)
                for utt_id, mat in kaldiio.load_scp_sequential(str(feats_scp)))
        else:
            warnings.warn(f"Failed to import Kaldi 'feats.scp' to Lhotse: "
                          f"frame_shift must be not None. "
                          f"Feature import omitted.")

    return recording_set, supervision_set, feature_set
示例#8
0
文件: kaldi.py 项目: glynpu/lhotse
def load_kaldi_data_dir(
    path: Pathlike,
    sampling_rate: int,
    frame_shift: Optional[Seconds] = None,
    map_string_to_underscores: Optional[str] = None,
    num_jobs: int = 1,
) -> Tuple[RecordingSet, Optional[SupervisionSet], Optional[FeatureSet]]:
    """
    Load a Kaldi data directory and convert it to a Lhotse RecordingSet and
    SupervisionSet manifests. For this to work, at least the wav.scp file must exist.
    SupervisionSet is created only when a segments file exists.
    All the other files (text, utt2spk, etc.) are optional, and some of them might
    not be handled yet. In particular, feats.scp files are ignored.

    :param map_string_to_underscores: optional string, when specified, we will replace
        all instances of this string in SupervisonSegment IDs to underscores.
        This is to help with handling underscores in Kaldi
        (see :func:`.export_to_kaldi`). This is also done for speaker IDs.
    """
    path = Path(path)
    assert path.is_dir()

    def fix_id(t: str) -> str:
        if map_string_to_underscores is None:
            return t
        return t.replace(map_string_to_underscores, "_")

    # must exist for RecordingSet
    recordings = load_kaldi_text_mapping(path / "wav.scp", must_exist=True)

    with ProcessPoolExecutor(num_jobs) as ex:
        dur_vals = ex.map(get_duration, recordings.values())
    durations = dict(zip(recordings.keys(), dur_vals))

    recording_set = RecordingSet.from_recordings(
        Recording(
            id=recording_id,
            sources=[
                AudioSource(
                    type="command" if path_or_cmd.endswith("|") else "file",
                    channels=[0],
                    source=path_or_cmd[:-1]
                    if path_or_cmd.endswith("|")
                    else path_or_cmd,
                )
            ],
            sampling_rate=sampling_rate,
            num_samples=compute_num_samples(durations[recording_id], sampling_rate),
            duration=durations[recording_id],
        )
        for recording_id, path_or_cmd in recordings.items()
    )

    supervision_set = None
    segments = path / "segments"
    if segments.is_file():
        with segments.open() as f:
            supervision_segments = [sup_string.strip().split() for sup_string in f]

        texts = load_kaldi_text_mapping(path / "text")
        speakers = load_kaldi_text_mapping(path / "utt2spk")
        genders = load_kaldi_text_mapping(path / "spk2gender")
        languages = load_kaldi_text_mapping(path / "utt2lang")

        supervision_set = SupervisionSet.from_segments(
            SupervisionSegment(
                id=fix_id(segment_id),
                recording_id=recording_id,
                start=float(start),
                duration=add_durations(
                    float(end), -float(start), sampling_rate=sampling_rate
                ),
                channel=0,
                text=texts[segment_id],
                language=languages[segment_id],
                speaker=fix_id(speakers[segment_id]),
                gender=genders[speakers[segment_id]],
            )
            for segment_id, recording_id, start, end in supervision_segments
        )

    feature_set = None
    feats_scp = path / "feats.scp"
    if feats_scp.exists() and is_module_available("kaldi_native_io"):
        if frame_shift is not None:
            import kaldi_native_io
            from lhotse.features.io import KaldiReader

            feature_set = FeatureSet.from_features(
                Features(
                    type="kaldi_native_io",
                    num_frames=mat_shape.num_rows,
                    num_features=mat_shape.num_cols,
                    frame_shift=frame_shift,
                    sampling_rate=sampling_rate,
                    start=0,
                    duration=mat_shape.num_rows * frame_shift,
                    storage_type=KaldiReader.name,
                    storage_path=str(feats_scp),
                    storage_key=utt_id,
                    recording_id=supervision_set[utt_id].recording_id
                    if supervision_set is not None
                    else utt_id,
                    channels=0,
                )
                for utt_id, mat_shape in kaldi_native_io.SequentialMatrixShapeReader(
                    f"scp:{feats_scp}"
                )
            )
        else:
            warnings.warn(
                "Failed to import Kaldi 'feats.scp' to Lhotse: "
                "frame_shift must be not None. "
                "Feature import omitted."
            )

    return recording_set, supervision_set, feature_set