Пример #1
0
def evaluate_model(args, epoch, val_loader, fast_device, generator_model, discriminator_model): #val_loader
    os.makedirs(os.path.join(args.modelName, str(epoch)))
    gen_loss = 0.0
    disc_loss = 0.0
    disc_loss_pose = 0.0
    all_images = None
    all_outputs = []
    all_ground_truth = {}
    for i, data in enumerate(val_loader):
        print("index :",i)
        if i>=100: break  #---------------------------------------> validation samples 
        images = data['image']
        if (all_images is None):
            all_images = images.numpy()
        else:
            all_images = np.concatenate((all_images, images.numpy()), axis=0)
        ground_truth = {}
        ground_truth['heatmaps'] = data['heatmaps']
        ground_truth['occlusions'] = data['occlusions']
        if (len(all_ground_truth) == 0):
            for k, v in ground_truth.items():
                all_ground_truth[k] = ground_truth[k].numpy()
        else:
            for k, v in ground_truth.items():
                all_ground_truth[k] = np.concatenate((all_ground_truth[k], ground_truth[k].numpy()), axis=0)
        
        if (args.use_gpu):
            images = images.to(fast_device)
            ground_truth['heatmaps'] = ground_truth['heatmaps'].to(fast_device)
            ground_truth['occlusions'] = ground_truth['occlusions'].to(fast_device)

        with torch.no_grad():
            outputs = generator_model(images)
            cur_gen_loss_dic = gen_single_loss(ground_truth, outputs, discriminator_model, mode=args.loss)
 #           cur_disc_loss_dic = disc_single_loss(ground_truth, outputs, discriminator_model)

            cur_gen_loss = cur_gen_loss_dic['loss']
 #          cur_disc_loss = cur_disc_loss_dic['loss']

            gen_loss += cur_gen_loss
 #           disc_loss += cur_disc_loss

            if (len(all_outputs) == 0):
                for output in outputs:
                    all_outputs.append(output.to(cpu_device).numpy())
            else:
                for i in range(len(outputs)):
                    all_outputs[i] = np.concatenate((all_outputs[i], outputs[i].to(cpu_device).numpy()), axis=0)

    with open(os.path.join(args.modelName, str(epoch), 'validation_outputs.dat'), 'wb') as f:
        pickle.dump((all_images, all_ground_truth, all_outputs), f)
        
    return gen_loss #, disc_loss
        outputs = generator_model(images)
        pck_out = outputs

        outputs_disc = [
            nn.Upsample(scale_factor=256 / 64,
                        mode='nearest')(outputs[-1].detach())
        ]

        #print("outputs  for the generator :",len(outputs))
        #        outputs = [outputs[-1]]
        #        print("outputs  for the discriminators :",len(outputs))
        _, _, p_fake = pck.StackedHourGlass(pck_out, ground_truth['heatmaps'])

        cur_gen_loss_dic = gen_single_loss(ground_truth,
                                           outputs,
                                           None,
                                           mode=args.loss)

        #cur_gen_loss_dic = gen_single_loss(ground_truth, outputs, mode=args.loss)
        cur_disc_loss_dic_conf = 0.0

        cur_disc_loss_dic_pose = 0.0
        for output in outputs_disc:
            cur_disc_loss_dic_conf += get_loss_disc_bce_with_logits(
                output,
                discriminator_model_conf,
                real=False,
                ground_truth=ground_truth['heatmaps'],
                p_fake=p_fake)
            cur_disc_loss_dic_pose += get_loss_disc_bce_with_logits(torch.cat([output, images], 1), discriminator_model_pose, real=False,\
                                                                   ground_truth =ground_truth['heatmaps'],p_fake = p_fake)
            images = images.to(fast_device)
            ground_truth['heatmaps'] = ground_truth['heatmaps'].to(fast_device)
            ground_truth['occlusions'] = ground_truth['occlusions'].to(
                fast_device)

    ################################## Check and complete the code here #######################################################

    ############# Forward pass and calculate losses here #########
        if (i % (config['training']['gen_iters'] +
                 config['training']['disc_iters']) <
                config['training']['gen_iters']):
            # Generator training
            outputs = generator_model(images)

            cur_gen_loss_dic = gen_single_loss(ground_truth,
                                               outputs,
                                               discriminator_model,
                                               mode=args.loss)
            cur_disc_loss_dic = 0.0
            for output in outputs:
                cur_disc_loss_dic = get_loss_disc(output,
                                                  discriminator_model,
                                                  real=True)

            cur_gen_loss = cur_gen_loss_dic['loss']
            cur_disc_loss = cur_disc_loss_dic

            loss = cur_gen_loss  # + config['training']['alpha'] * cur_disc_loss
            loss.backward()

            optim_gen.step()
            optim_disc.zero_grad()