def init_objects(self): # Add meter # meter = MeterPoint() # meter.name = 'BuildingElectricMeter' # meter.measurementType = MeasurementType.PowerReal # meter.measurementUnit = MeasurementUnit.kWh # self.meterPoints.append(meter) # Add weather forecast service weather_service = TemperatureForecastModel(self.config_path, self) self.informationServiceModels.append(weather_service) # # Add inelastive asset # inelastive_load = LocalAsset() # inelastive_load.name = 'InelasticBldgLoad' # inelastive_load.maximumPower = 0 # Remember that a load is a negative power [kW] # inelastive_load.minimumPower = -200 # # # Add inelastive asset model # inelastive_load_model = LocalAssetModel() # inelastive_load_model.name = 'InelasticBuildingModel' # inelastive_load_model.defaultPower = -100 # [kW] # inelastive_load_model.defaultVertices = [Vertex(float("inf"), 0, -100, True)] # # # Cross-reference asset & asset model # inelastive_load_model.object = inelastive_load # inelastive_load.model = inelastive_load_model # Add elastive asset elastive_load = LocalAsset() elastive_load.name = 'TccLoad' elastive_load.maximumPower = 0 # Remember that a load is a negative power [kW] elastive_load.minimumPower = -self.max_deliver_capacity # Add inelastive asset model # self.elastive_load_model = LocalAssetModel() self.elastive_load_model = TccModel() self.elastive_load_model.name = 'TccModel' self.elastive_load_model.defaultPower = -0.5*self.max_deliver_capacity # [kW] self.elastive_load_model.defaultVertices = [Vertex(0.055, 0, -self.elastive_load_model.defaultPower, True), Vertex(0.06, 0, -self.elastive_load_model.defaultPower/2, True)] # Cross-reference asset & asset model self.elastive_load_model.object = elastive_load elastive_load.model = self.elastive_load_model # Add inelastive and elastive loads as building' assets self.localAssets.extend([elastive_load]) # Add Market market = Market() market.name = 'dayAhead' market.commitment = False market.converged = False market.defaultPrice = 0.0428 # [$/kWh] market.dualityGapThreshold = self.duality_gap_threshold # [0.02 = 2#] market.initialMarketState = MarketState.Inactive market.marketOrder = 1 # This is first and only market market.intervalsToClear = 1 # Only one interval at a time market.futureHorizon = timedelta(hours=24) # Projects 24 hourly future intervals market.intervalDuration = timedelta(hours=1) # [h] Intervals are 1 h long market.marketClearingInterval = timedelta(hours=1) # [h] market.marketClearingTime = Timer.get_cur_time().replace(hour=0, minute=0, second=0, microsecond=0) # Aligns with top of hour market.nextMarketClearingTime = market.marketClearingTime + timedelta(hours=1) self.markets.append(market) # Campus object campus = Neighbor() campus.name = 'PNNL_Campus' campus.description = 'PNNL_Campus' campus.maximumPower = self.max_deliver_capacity campus.minimumPower = 0. # [avg.kW] campus.lossFactor = self.campus_loss_factor # Campus model campus_model = NeighborModel() campus_model.name = 'PNNL_Campus_Model' campus_model.location = self.name campus_model.defaultVertices = [Vertex(0.045, 25, 0, True), Vertex(0.048, 0, self.max_deliver_capacity, True)] campus_model.demand_threshold_coef = self.demand_threshold_coef # campus_model.demandThreshold = self.demand_threshold_coef * self.monthly_peak_power campus_model.demandThreshold = self.monthly_peak_power campus_model.transactive = True campus_model.inject(self, system_loss_topic=self.system_loss_topic) # Avg building meter building_meter = MeterPoint() building_meter.name = self.name + ' ElectricMeter' building_meter.measurementType = MeasurementType.AverageDemandkW building_meter.measurementUnit = MeasurementUnit.kWh campus_model.meterPoints.append(building_meter) # Cross-reference object & model campus_model.object = campus campus.model = campus_model self.campus = campus # Add campus as building's neighbor self.neighbors.append(campus)
def init_objects(self): # Add meter meter = MeterPoint() meter.measurementType = MeasurementType.PowerReal meter.name = 'CoRElectricMeter' meter.measurementUnit = MeasurementUnit.kWh self.meterPoints.append(meter) # Add weather forecast service weather_service = TemperatureForecastModel(self.config_path, self) self.informationServiceModels.append(weather_service) # Add inelastive asset # Source: https://www.ci.richland.wa.us/home/showdocument?id=1890 # Residential customers: 23,768 # Electricity sales in 2015: # Total: 100.0# 879,700,000 kWh 100,400 avg. kW) # Resident: 46.7 327,200,000 37,360 # Gen. Serv.: 38.1 392,300,000 44,790 # Industrial: 15.2 133,700,000 15,260 # Irrigation: 2.4 21,110,000 2,410 # Other: 0.6 5,278,000 603 # 2015 Res. rate: $0.0616/kWh # Avg. annual residential cust. use: 14,054 kWh # Winter peak, 160,100 kW (1.6 x average) # Summer peak, 180,400 kW (1.8 x average) # Annual power supply expenses: $35.5M # ************************************************************************* inelastive_load = LocalAsset() inelastive_load.name = 'InelasticLoad' inelastive_load.maximumPower = -50000 # Remember that a load is a negative power [kW] inelastive_load.minimumPower = -200000 # Assume twice the averag PNNL load [kW] # Add inelastive asset model inelastive_load_model = OpenLoopRichlandLoadPredictor(weather_service) inelastive_load_model.name = 'InelasticLoadModel' inelastive_load_model.defaultPower = -100420 # [kW] inelastive_load_model.defaultVertices = [ Vertex(float("inf"), 0.0, -100420.0) ] # Cross-reference asset & asset model inelastive_load_model.object = inelastive_load inelastive_load.model = inelastive_load_model # Add inelastic as city's asset self.localAssets.extend([inelastive_load]) # Add Market market = Market() market.name = 'dayAhead' market.commitment = False market.converged = False market.defaultPrice = 0.0428 # [$/kWh] market.dualityGapThreshold = self.duality_gap_threshold # [0.02 = 2#] market.initialMarketState = MarketState.Inactive market.marketOrder = 1 # This is first and only market market.intervalsToClear = 1 # Only one interval at a time market.futureHorizon = timedelta( hours=24) # Projects 24 hourly future intervals market.intervalDuration = timedelta( hours=1) # [h] Intervals are 1 h long market.marketClearingInterval = timedelta(hours=1) # [h] market.marketClearingTime = Timer.get_cur_time().replace( hour=0, minute=0, second=0, microsecond=0) # Aligns with top of hour market.nextMarketClearingTime = market.marketClearingTime + timedelta( hours=1) self.markets.append(market) self.campus = self.make_campus() supplier = self.make_supplier() # Add campus as city's neighbor self.neighbors.extend([self.campus, supplier])
def init_objects(self): # Add meter meter = MeterPoint() meter.measurementType = MeasurementType.PowerReal meter.name = 'CampusElectricityMeter' meter.measurementUnit = MeasurementUnit.kWh self.meterPoints.append(meter) # Add weather forecast service weather_service = TemperatureForecastModel(self.config_path, self) self.informationServiceModels.append(weather_service) # Add inelastive asset inelastive_load = LocalAsset() inelastive_load.name = 'InelasticBuildings' # Campus buildings that are not responsive inelastive_load.maximumPower = 0 # Remember that a load is a negative power [kW] inelastive_load.minimumPower = -2 * 8200 # Assume twice the average PNNL load [kW] # Add inelastive asset model inelastive_load_model = OpenLoopPnnlLoadPredictor(weather_service) inelastive_load_model.name = 'InelasticBuildingsModel' inelastive_load_model.engagementCost = [ 0, 0, 0 ] # Transition costs irrelevant inelastive_load_model.defaultPower = -6000 # [kW] inelastive_load_model.defaultVertices = [Vertex(0, 0, -6000.0, 1)] # Cross-reference asset & asset model inelastive_load_model.object = inelastive_load inelastive_load.model = inelastive_load_model # Add solar PV asset solar_pv = SolarPvResource() solar_pv.maximumPower = self.PV_max_kW # [avg.kW] solar_pv.minimumPower = 0.0 # [avg.kW] solar_pv.name = 'SolarPv' solar_pv.description = '120 kW solar PV site on the campus' # Add solar PV asset model solar_pv_model = SolarPvResourceModel() solar_pv_model.cloudFactor = 1.0 # dimensionless solar_pv_model.engagementCost = [0, 0, 0] solar_pv_model.name = 'SolarPvModel' solar_pv_model.defaultPower = 0.0 # [avg.kW] solar_pv_model.defaultVertices = [Vertex(0, 0, 30.0, True)] solar_pv_model.costParameters = [0, 0, 0] solar_pv_model.inject(self, power_topic=self.solar_topic) # Cross-reference asset & asset model solar_pv.model = solar_pv_model solar_pv_model.object = solar_pv # Add inelastive and solar_pv as campus' assets self.localAssets.extend([inelastive_load, solar_pv]) # Add Market market = Market() market.name = 'dayAhead' market.commitment = False market.converged = False market.defaultPrice = 0.04 # [$/kWh] market.dualityGapThreshold = self.duality_gap_threshold # [0.02 = 2#] market.initialMarketState = MarketState.Inactive market.marketOrder = 1 # This is first and only market market.intervalsToClear = 1 # Only one interval at a time market.futureHorizon = timedelta( hours=24) # Projects 24 hourly future intervals market.intervalDuration = timedelta( hours=1) # [h] Intervals are 1 h long market.marketClearingInterval = timedelta(hours=1) # [h] market.marketClearingTime = Timer.get_cur_time().replace( hour=0, minute=0, second=0, microsecond=0) # Aligns with top of hour market.nextMarketClearingTime = market.marketClearingTime + timedelta( hours=1) self.markets.append(market) # City object city = Neighbor() city.name = 'CoR' city.description = 'City of Richland (COR) electricity supplier node' city.maximumPower = 20000 # Remember loads have negative power [avg.kW] city.minimumPower = 0 # [avg.kW] city.lossFactor = self.city_loss_factor # City model city_model = NeighborModel() city_model.name = 'CoR_Model' city_model.location = self.name city_model.transactive = True city_model.defaultPower = 10000 # [avg.kW] city_model.defaultVertices = [ Vertex(0.046, 160, 0, True), Vertex(0.048, 160 + city.maximumPower * (0.046 + 0.5 * (0.048 - 0.046)), city.maximumPower, True) ] city_model.costParameters = [0, 0, 0] city_model.demand_threshold_coef = self.demand_threshold_coef city_model.demandThreshold = self.monthly_peak_power city_model.inject(self, system_loss_topic=self.system_loss_topic, dc_threshold_topic=self.dc_threshold_topic) # Cross-reference object & model city_model.object = city city.model = city_model self.city = city # Add city as campus' neighbor self.neighbors.append(city) # Add buildings for bldg_name in self.building_names: bldg_neighbor = self.make_bldg_neighbor(bldg_name) self.neighbors.append(bldg_neighbor)