Пример #1
0
 def plot(self):
     clrs = {0: 'y', 1: 'r', 2: 'g', 3: 'b'}
     # fig = plt.figure()
     fix, ax = plt.subplots()
     if self.is_valid_cell():
         # Get bbox and translate to origin
         rects = []
         bbox = self.cell.bbox
         new_bbox = list(
             ((bbox[0][0] - bbox[0][0], bbox[0][1] - bbox[0][1]),
              (bbox[1][0] - bbox[0][0], bbox[1][1] - bbox[0][1])))
         # create grid based on bbox max/min in appropriate steps
         for obj in self.cell.objects:
             rect = Rectangle(obj.points[0],
                              self.get_width(obj.points),
                              self.get_height(obj.points),
                              alpha=0.4,
                              color=clrs[obj.num])
             rect.set_label(obj.name)
             rects.append(rect)
             # plotting stuff...
         # do stuff...
         collection = PatchCollection(rects, match_original=True)
         ax.add_collection(collection)
         ax.legend(loc='lower center', handles=rects)
         # plt.plot(rects)
         plt.show()
     else:
         print("Invalid Cell")
    def __init__(self, df, state = np):
        #select a random ROI
        roi = df.ROI_ID.unique()[state]
        df  = df[df.ROI_ID == roi]
        df_on_f = df.dF_on_F.values[:self.total_points]
        x = np.linspace(0,len(df_on_f)//5, len(df_on_f))
        nontrial_idxs = pd.isnull(df.Trial_ID.values)[:self.total_points]
        trial_idxs = ~nontrial_idxs
        trial_starts, = np.array(np.where(rising_edges(trial_idxs,cutoff=0.5)))//5
        trial_ends,   = np.array(np.where(falling_edges(trial_idxs,cutoff=0.5)))//5
        self.fig = plt.figure(figsize=(10,11), tight_layout=True)
        gs = GridSpec(self.nrows, 8, self.fig)
        ax = np.zeros(self.nplots,dtype=object)
        ax[0] = self.fig.add_subplot(gs[0,:])
        ax[1] = self.fig.add_subplot(gs[1,:])
        ax[2] = self.fig.add_subplot(gs[2,:-2])
        ax[3] = self.fig.add_subplot(gs[2,-2:])
        ax[4] = self.fig.add_subplot(gs[3,0:2])
        ax[5] = self.fig.add_subplot(gs[3,3:5])
        ax[6] = self.fig.add_subplot(gs[3,6:8])
        ax[7] = self.fig.add_subplot(gs[4,:])
        minus_plot = self.fig.add_subplot(gs[3,2])
        minus_plot.set_axis_off(); minus_plot.text(0.5,0.5,"$\\bf{-}$",
                                                   transform=minus_plot.transAxes)
        equals_plot = self.fig.add_subplot(gs[3,5])
        equals_plot.set_axis_off(); equals_plot.text(0.5,0.5,"$\\bf{=}$",
                                                   transform=equals_plot.transAxes)
        dff_trial = df_on_f.copy(); dff_trial[nontrial_idxs]=np.nan
        dff_nontrial = df_on_f.copy(); dff_nontrial[trial_idxs]=np.nan
        
        ax[0].plot(x,dff_nontrial, color='k', label = "Fluorescnece outside trials")
        ax[0].plot(x,dff_trial,color=sns.color_palette()[3],
                   label="Fluorescence during trials (discarded)")
        ymax,ymin = ax[0].get_ylim()
        for start,end in zip(trial_starts,trial_ends):
            xy = (start,ymin)
            width = end-start
            height = ymax - ymin
            patch = Rectangle(xy,width,height, alpha=0.6)
            ax[0].add_patch(patch)
        patch.set_label("Trials")
        
        ax[1].plot(x,dff_nontrial, color = 'k')
        for a in ax[:2]:
            a.set_xlim(0,self.total_points//5)

        ymin,ymax = ax[1].get_ylim()
        xmin,xmax = ax[1].get_xlim()
        training_dataset = Rectangle((xmin,ymin), 0.8*(xmax-xmin),
                                     (ymax-ymin),
                                     color=sns.color_palette()[1],
                                     label = "Training Dataset",
                                     alpha = 0.6)
        testing_dataset = Rectangle(((xmin+ 0.8*(xmax-xmin)),ymin), 
                                    0.2*(xmax-xmin),
                                     (ymax-ymin),
                                     color=sns.color_palette()[2],
                                     label = "Testing Dataset",
                                     alpha = 0.6)
        for patch in (training_dataset,testing_dataset):
            ax[1].add_patch(patch)
        
        training_x = x[:self.training_points]
        testing_x  = x[self.training_points:self.total_points]
        training_dat = dff_nontrial[:self.training_points]
        training_licking = df.lick_factor[:self.training_points].values
        testing_dat = dff_nontrial[self.training_points:self.total_points]
        testing_licking = df.lick_factor[self.training_points:self.total_points]
        #define some R variables
        r.globalenv["dff"]    = r.FloatVector(dff_nontrial)
        r.globalenv["licking"]= r.FloatVector(df.lick_factor[:self.total_points].values)
        r.r("dat   <- data.frame(dff,licking)")
        r.r(f"train <- dat[1:{self.training_points},]")
        r.r(f"test  <- dat[-(1:{self.training_points}),]")
        r.r("model <- lm(dff~as.factor(licking),na.action=na.omit,dat=train)")
        r.r("preds <- predict(model,test)")
        model = r.r.model
        fitted_vals = np.array(r.r("predict(model,train)"))
        fitted_vals[trial_idxs[:self.training_points]] = np.nan
        preds = np.array(r.r.preds)
        preds[trial_idxs[self.training_points:self.total_points]] = np.nan
        ax[2].plot(training_x,training_dat, 
                   color = 'k')
        ax[2].plot(training_x,fitted_vals, color=sns.color_palette()[1],
                   label = "Fitted model values based on licking (significant)")
        ax[3].plot(x[self.total_points*4//5:self.total_points],dff_nontrial[self.total_points*4//5:self.total_points], 
                   color = 'k')
        ax[3].plot(testing_x,preds, color = sns.color_palette()[2],
                   label = "Model predictions")
        ax[3].set_yticklabels([])
        ax[4].plot(testing_x,testing_dat,color='k',label="Testing data")
        ax[5].plot(testing_x,preds, color=sns.color_palette()[2],label="Prediction")
        ax[6].plot(testing_x,testing_dat - preds, color = 'k',label="Licking-adjusted fluorescence")
        for idx,a in enumerate(ax):
            if idx in (0,1,2,3,4,7):
                a.set_ylabel("Fluorescence ($\\Delta$F/F0 units)")
        ymin,ymax = (min(a.get_ylim()[0] for a in ax), 
                     max(a.get_ylim()[1] for a in ax))

        for a in ax[-3:-1]:
            a.set_yticklabels([])
        ax[-1].plot(testing_x,testing_dat-preds, color='k',
                    label = "Licking-adjusted fluroescence")
        r.r("res <- test")
        r.r("res$dff = res$dff - preds")
        r.r("model2 <- lm(dff~as.factor(licking),na.action=na.omit,dat=res)")
        newpreds = np.array(r.r("predict(model2,test)"))
        newpreds[trial_idxs[self.training_points:self.total_points]] = np.nan
        ax[-1].plot(testing_x,newpreds,color=sns.color_palette()[3],
                    label = "A new fitted model, based on licking (NOT significant))")
        for a in ax:
            a.set_ylim((ymin,ymax))
            a.legend(loc="upper right")
            a.set_xticklabels([])
        ax[3].set_ylabel("")
        for a,char in zip(ax,"ABCDEFGE"):
            a.set_title("$\\bf{(" + f"{char}" +")}$", loc="right")
 def __init__(self,df,state=0):
     fig,ax = plt.subplots(nrows = 5, figsize = (10,11), tight_layout=True)
     roi = df.sample(random_state=state).ROI_ID.values[0]
     df  = df[df.ROI_ID == roi]
     df_on_f = df.dF_on_F.values[:self.npoints]
     x = np.linspace(0,len(df_on_f)//5, len(df_on_f))
     nontrial_idxs = pd.isnull(df.Trial_ID.values)[:self.npoints]
     trial_idxs = ~nontrial_idxs
     trial_starts, = np.array(np.where(rising_edges(trial_idxs,cutoff=0.5)))//5
     trial_ends,   = np.array(np.where(falling_edges(trial_idxs,cutoff=0.5)))//5
     dff_trial = df_on_f.copy(); dff_trial[nontrial_idxs]=np.nan
     dff_nontrial = df_on_f.copy(); dff_nontrial[trial_idxs]=np.nan
     ax[0].plot(x,dff_trial,color=sns.color_palette('bright')[0],
                label="Fluorescence during trials")
     ax[0].plot(x,dff_nontrial, color=sns.color_palette()[1], 
                label = "Fluorescnece outside trials")
     ymax,ymin = ax[0].get_ylim()
     for start,end in zip(trial_starts,trial_ends):
         xy = (start,ymin)
         width = end-start
         height = ymax - ymin
         patch = Rectangle(xy,width,height, alpha=0.6)
         ax[0].add_patch(patch)
     r.globalenv["dff"]    = r.FloatVector(dff_nontrial)
     r.globalenv["licking"]= r.FloatVector(df.lick_factor[:self.npoints].values)
     r.r("nontrial   <- data.frame(dff,licking)")
     r.globalenv["dff"]    = r.FloatVector(dff_trial)
     r.globalenv["licking"]= r.FloatVector(df.lick_factor[:self.npoints].values)
     r.r("trial <- data.frame(dff,licking)")
     r.r("model <- lm(dff~as.factor(licking),na.action=na.omit,dat=nontrial)")
     r.r("preds <- predict(model,trial)")
     patch.set_label("Trials")
     ax[1].plot(x,dff_nontrial, color = sns.color_palette()[1],label="Fluorescence outside trials")
     ax[1].plot(x,np.array(r.r.preds),color=sns.color_palette()[3], 
                label="Fitted licking model")
     ax[2].plot(x,dff_trial,color=sns.color_palette('bright')[0])
     ax[2].plot(x,np.array(r.r.preds),color=sns.color_palette()[3],
                 label = "Model predictions")
     ax[3].plot(x,(dff_trial-np.array(r.r.preds)),
                color = sns.color_palette('bright')[0],
                label = "Licking-corrected trial fluorescence")
     for start,end in zip(trial_starts,trial_ends):
         xy = (start,ymin)
         width = end-start
         height = ymax - ymin
         patch1 = Rectangle(xy,width,height, alpha=0.3)
         patch2 = Rectangle(xy,width,height, alpha=0.3)
         ax[3].add_patch(patch1)
         ax[4].add_patch(patch2)
     trials = dff_trial[~np.isnan(dff_trial)].reshape(-1,25)
     tone = trials[:,:5].mean(axis=-1)
     stim = trials[:,5:15].mean(axis=-1)
     resp = trials[:,15:25].mean(axis=-1)
     tone_idxs = trial_starts + 0.5
     stim_idxs = trial_starts + 2
     resp_idxs = trial_starts + 4
     for x1,x2,x3,y1,y2,y3 in zip(tone_idxs,stim_idxs,resp_idxs,tone,stim,resp):
         ax[4].plot((x1,x2,x3),(y1,y2,y3),color='k',marker='o',
                    label = "Collapsed data" if x1==tone_idxs[0] else "")
     for a in ax[:-1]: a.set_xticklabels([])
     for a in ax: a.set_xlim(ax[0].get_xlim()); a.legend(loc='upper right')
     for a,char in zip(ax,"ABCDEFG"):
         a.set_title("$\\bf{(" + f"{char}" +")}$", loc="right")
     ax[2].set_ylabel("Fluorescence ($\Delta$F/F0 units)")
     ax[-1].set_xlabel("Time (s)")
     fig.show()