def __init__( self, name="", host=None, serializer=None, transport=None, attributes=None, backend=Backend.OSBRAIN, mesa_model=None, ): self.backend = self.validate_backend(backend) if self.backend == Backend.OSBRAIN: self._remove_methods(MesaAgent) osBrainAgent.__init__( self, name=name, host=host, serializer=serializer, transport=transport, attributes=attributes, ) elif self.backend == Backend.MESA: MesaAgent.__init__(self, name, mesa_model) self._remove_methods(osBrainAgent) self.init_mesa(name) self.unique_id = name self.name = name self.mesa_model = mesa_model
def __init__(self, home_store): self.num_agents = 1000 self.grid = MultiGrid(200, 200, True) self.schedule = RandomActivation(self) self.running = True for i in range(self.num_agents): a = Agent(i, self) self.schedule.add(a) while True: #x = round(int(np.random.normal(self.grid.width/2, 10, 1))) #y = round(int(np.random.normal(self.grid.height/2, 10, 1))) x = self.random.randrange(self.grid.width) y = self.random.randrange(self.grid.height) if len( self.grid.get_neighbors( (x, y), moore=True, include_center=True, radius=10)) <= 7: self.grid.place_agent(a, (x, y)) home_store[i, :] = x, y break if i < 1: a.infected = 1 self.datacollector = DataCollector( model_reporters={"Tot informed": compute_informed}, agent_reporters={"Infected": "infected"})
def __init__(self, no_people, total_area, no_agents, all_x, all_y, infection_rate, first_infected, mobility, work_store, home_store): self.num_agents = no_agents grid_size = round( math.sqrt((self.num_agents / no_people) * total_area) * 100) self.grid = MultiGrid(grid_size, grid_size, False) self.schedule = RandomActivation(self) self.running = True for i in range(self.num_agents): a = Agent(i, self, infection_rate, work_store, home_store, mobility) self.schedule.add(a) self.grid.place_agent(a, (int(all_x[i]), int(all_y[i]))) if i == first_infected: a.infected = 1 self.datacollector = DataCollector( model_reporters={"Tot infections": compute_informed}, agent_reporters={ "Infected": "infected", "R-Number": "rnumber" })
def __init__(self, city_to_country, no_people, total_area, city_to_country_area, countryside): self.num_agents = 2000 grid_size = round(math.sqrt((self.num_agents/no_people)*total_area)*100) self.grid = MultiGrid(grid_size, grid_size, True) self.schedule = RandomActivation(self) self.running = True centers = np.zeros((1, 2)) centers[0, :] = random.randrange(10, self.grid.width - 10), random.randrange(10, self.grid.height - 10) x = np.zeros((1, round(int(city_to_country * self.num_agents)))) y = np.zeros((1, round(int(city_to_country * self.num_agents)))) x[0, :] = np.around(np.random.normal(centers[0, 0], 3, round(int(city_to_country * self.num_agents)))) y[0, :] = np.around(np.random.normal(centers[0, 1], 3, round(int(city_to_country * self.num_agents)))) count = 0 countryside_count = 0 while countryside_count < (countryside * self.num_agents): countryside_count += counter(x) runner = True while runner: new_center = (random.randrange(10, self.grid.width - 10), random.randrange(10, self.grid.height - 10)) if dist_check(new_center, centers): centers = np.vstack((centers, new_center)) runner = False new_x = np.around(np.random.normal(centers[count, 0], (1/(6*city_to_country_area*(math.sqrt(count+1)))) * self.grid.width, round(int(city_to_country * self.num_agents) / (count + 2)))) new_y = np.around(np.random.normal(centers[count, 1], (1/(6*city_to_country_area*(math.sqrt(count+1)))) * self.grid.height, round(int(city_to_country * self.num_agents) / (count + 2)))) while len(new_x) < round(int(city_to_country * self.num_agents)): new_x = np.append(new_x, -1) new_y = np.append(new_y, -1) x = np.vstack((x, new_x)) y = np.vstack((y, new_y)) count += 1 new_x = np.delete(x.flatten(), np.where(x.flatten() == -1)) new_y = np.delete(y.flatten(), np.where(y.flatten() == -1)) x_countryside = np.around(np.random.uniform(0, self.grid.width-1, int(self.num_agents - len(new_x)))) y_countryside = np.around(np.random.uniform(0, self.grid.height-1, int(self.num_agents - len(new_y)))) all_x = np.concatenate((new_x, x_countryside)) all_y = np.concatenate((new_y, y_countryside)) for i in range(self.num_agents): a = Agent(i, self) self.schedule.add(a) self.grid.place_agent(a, (int(all_x[i]), int(all_y[i]))) if i == 1: a.infected = 1 self.datacollector = DataCollector( model_reporters={"Tot informed": compute_informed}, agent_reporters={"Infected": "infected"})
def __init__(self, pos, model, init_state=DEAD): ''' Create a cell, in the given state, at the given x, y position. ''' Agent.__init__(self, pos, model) self.x, self.y = pos self.state = init_state self._nextState = None
def __init__(self, unique_id, model, fsm_size, num_tokens): Agent.__init__(self, unique_id, model) self.state = 0 self.unique_id = unique_id self.scores = [] self.decision = NO_ACTION self.gen_automata(fsm_size, num_tokens)
def __init__(self, pos, model, initial_state): ''' Create a cell, in the given state, at the given row, col position. ''' Agent.__init__(self, pos, model) self._row = pos[1] self._col = pos[0] self._state = initial_state self._next_state = None
def __init__(self, pos, model, init_state): ''' Create a cell, in the given state, at the given x, y position. ''' Agent.__init__(self, pos, model) self._x = pos[0] self._y = pos[1] self._state = init_state self._nextState = None
def __init__(self, intersection, model): unique_id = uuid4() Agent.__init__(self, unique_id, model) Intersection.__init__( self, intersection.name, intersection.geometry, intersection.input_links, intersection.output_links, )
def __init__(self, unique_id, model, homeLoc, workLoc): Agent.__init__(self, unique_id, model) self.age = random.randint(18, 87) degredation_age = 37 max_age = 100 # self.ability = random.random()**4 * (((min(abs((max_age+degredation_age)-self.age)),max_age))/max_age) #based on formula A_b on pg. 354 self.ability = 1 self.attitude = random.random()**3 # based on A_t on pg. 354 self.home = homeLoc self.work = workLoc
def __init__(self, id, model, params): Agent.__init__(self, id, model) student_params= { 'join_chat_prob': 0.15, 'join_board_prob': 0.15, 'post_prob': 0.3, 'reduced_post_prob': 0.1, 'chat_social_prob': 0.5, 'post_social_prob': 0.1, 'discount': 0.95 } student_params.update(params) self.in_chat = False self.in_board = False self.engaged = False self.chats_read = 0 self.chats_social_read = 0 self.overload_chats_read = 0 self.overload_chats_social_read = 0 self.contrib_chat = 0 self.contrib_social_chat = 0 self.at_post = 0 self.at_social_post = 0 self.posts_read = 0 self.posts_social_read = 0 self.overload_posts_read = 0 self.overload_posts_social_read = 0 self.contrib_post = 0 self.contrib_social_post = 0 self.join_chat_prob = student_params['join_chat_prob'] self.join_board_prob = student_params['join_board_prob'] self.post_prob = student_params['post_prob'] self.reduced_post_prob = student_params['reduced_post_prob'] self.chat_social_prob = student_params['chat_social_prob'] self.post_social_prob = student_params['post_social_prob'] self.discount = student_params['discount'] self.post_overload_lim = 50 self.chat_overload_lim = 50 self.post_overloaded = False self.chat_overloaded = False
def __init__(self, no_agents, width, height, init_infected, perc_masked, prob_trans_masked, prob_trans_unmasked, infection_period, immunity_period): self.no_agents = no_agents self.grid = MultiGrid(width, height, True) self.init_infected = init_infected self.perc_masked = perc_masked self.prob_trans_masked = prob_trans_masked self.prob_trans_unmasked = prob_trans_unmasked self.infection_period = infection_period self.immunity_period = immunity_period self.schedule = RandomActivation(self) self.running = True # Create agents for i in range(self.no_agents): a = Agent(i, self) self.schedule.add(a) # Add the agent to a random grid cell x = self.random.randrange(self.grid.width) y = self.random.randrange(self.grid.height) self.grid.place_agent(a, (x, y)) # Collect count of susceptible, infected, and recovered agents self.datacollector = DataCollector({ 'Susceptible': 'susceptible', 'Infected': 'infected', 'Recovered & Immune': 'immune' })
def __init__(self, unique_id, model, belief, age=18): Agent.__init__(self, unique_id, model) self.unique_id = unique_id self.belief = belief self.age = age self.pro_friend = 0 self.anti_friend = 0 self.none = 0 self.num_rounds = 0 if self.age <= 19: self.prob_ref = 0 elif self.age <= 24: self.prob_ref = 1 elif self.age <= 29: self.prob_ref = 2 else: self.prob_ref = 3
def __init__(self, mobility): self.num_agents = 1000 self.grid = MultiGrid(100, 100, True) self.schedule = RandomActivation(self) self.running = True for i in range(self.num_agents): a = Agent(i, mobility, self) self.schedule.add(a) x = self.random.randrange(self.grid.width) y = self.random.randrange(self.grid.height) self.grid.place_agent(a, (x, y)) if i < 1: a.infected = 1 self.datacollector = DataCollector( model_reporters={"Tot informed": compute_informed}, agent_reporters={"Infected": "infected"})
def __init__(self, id, model=None): Agent.__init__( self, id, model) #_configure_logging() self.l = logging.getLogger(self.__class__.__name__) self._xd = XMLObject('Agent') self._meta = self._xd.add("metadata") self._meta.el.set("id", str(id)) self._events = self._xd.add("events") self._envdata = self._xd.add("environments") self._body = self._xd.add("body") self._behaviours = [] self._sensors = [Sensor()] self._next_reward = 0.0 self._last_reward = 0.0 self.avStates = [] self.avActions = [] self.exists = False self._brain = BaseBrain(self) self.pos = (0,0)
def testGraphMovement3D(self): ms, _grid = MeshSpace.read("test/meshes/sphere.msh") nodes = ms.G.nodes starting_node = 0 a = Agent(0, None) ms.place_agent(a, starting_node) possible_steps = ms.get_neighbors(a.pos, include_center=False) self.assertEqual(possible_steps, [31, 43, 6]) new_position = random.choice(possible_steps) ms.move_agent(a, new_position) self.assertTrue(a.pos == new_position)
def __init__(self, N, width, height): self.agents = N self.grid = MultiGrid(width, height, True) self.schedule = RandomActivation(self) self.running = True self.steps = 0 self.encounters = 0 self.mean_encounters = 0 # creating agents by iterating through n_agents for i in range(self.agents): # specify an agent as an object of class 'Agent' with unique_ID 'i' agent = Agent(i, self) # specify pitch measures for the agent as type 'float' agent.iqr = float(iqr.iloc[i]) agent.speechrate = float(speechrate.iloc[i]) agent.mad = float(mad.iloc[i]) agent.pause = float(pause.iloc[i]) agent.diagnosis = float(diagnosis.iloc[i]) agent.symptom_severity = (agent.iqr + agent.mad + (1 - agent.speechrate) + agent.pause) / 4 # add the agent to the model schedule self.schedule.add(agent) # adding the agent to a random grid cell x = self.random.randrange(self.grid.width) y = self.random.randrange(self.grid.height) self.grid.place_agent(agent, (x, y)) # add data-collector to the agent self.datacollector = DataCollector( agent_reporters={ "interactions": "unique_interactions", "interaction_time": "interaction_time", "conversation_time": "conversation_time", "change_IQR": "change_iqr", "change_MAD": "change_mad", "change_Speechrate": "change_speechrate", "change_PauseFreq": "change_pause", "abs_change_IQR": "abs_change_iqr", "abs_change_MAD": "abs_change_mad", "abs_change_Speechrate": "abs_change_speechrate", "abs_change_PauseFreq": "abs_change_pause", "activity": "activity", "diagnosis": "diagnosis" }, model_reporters={"Encounters": "encounters"})
def __init__(self, seed, collect_stepwise_data, N, x, y, z): from mesa import Agent as Agent self.N, self.x, self.y, self.z = N, x, y, z self.schedule = RandomActivation(self) self.schedule.add(Agent(2, self)) self.schedule.add(Agent(9, self)) from mesa.datacollection import DataCollector self.datacollector = DataCollector(model_reporters={ 'N': lambda m: m.N, 'X_1': lambda m: m.x, 'Y_2': lambda m: m.y, 'X_3': lambda m: m.z, }, agent_reporters={ 'id': lambda a: a.unique_id, }) self.datacollector.collect(self) self.step() self.datacollector.collect(self) self.step() self.datacollector.collect(self) self.running = True
def __init__(self, attributesFile, connectionsFile, xmax, ymax, roleOrder): # coords of map edge attributesDB = pd.read_csv(attributesFile, header=None) connectionsDB = pd.read_csv(connectionsFile, header=None) self.running = True self.grid = MultiGrid(xmax, ymax, True) # bool = toroidal self.schedule = Activation(self, roleOrder) self.agents = [] # WALTHER DATA # Create agents for index, row in attributesDB.iterrows(): # From attributesDB: agent id, role, gender, current $, current rice, x coord and y coord newAgent = Agent( row[0], self, row[1], row[2], row[3], row[4] ) # Gotta assume the IDs correspond to the row number because the OECD book says it's matrix-based self.schedule.add(newAgent) self.grid.place_agent(newAgent, (row[5], row[6])) self.agents.append(newAgent) # Add links for index, row in connectionsDB.iterrows(): agent = next( (x for x in self.agents if x.unique_id == row[0]), None ) # I'm gonna say for now you can't assume this list is ordered the way the agents are added even though that's pretty paranoid print(agent) for i in range(1, len(row)): # for column index aka other agent id if row[i] == 1: agent.pointsTo.append( next( (x for x in self.agents if x.unique_id == (i - 1)), None)) agent.pointsToIDs.append(i - 1) self.datacollector = DataCollector( agent_reporters={ "unique_id": "unique_id", "gender": "gender", "role": "role", "rice": "rice", "capital": "capital", "pointsTo": "pointsToIDs", "soldTo": "soldTo" })
def __init__(self, height, width, a_density=0.1, r_=0.1, k_=0.1): self.height = height self.width = width self.a_density = a_density self.r_ = r_ self.k_ = k_ self.schedule = RandomActivation(self) self.grid = SingleGrid(width, height, torus=False) self.datacollector = DataCollector( {"happy": "happy"}, # Model-level count of happy agents # For testing purposes, agent's individual x and y { "x": lambda a: a.pos[0], "y": lambda a: a.pos[1] }, ) # Set up agents # We use a grid iterator that returns # the coordinates of a cell as well as # its contents. (coord_iter) #seed to always start agents in the same place random.seed(9001) #create food matrix n = self.height m = self.width self.food_matrix = [[100] * m for i in range(n)] #randomly place agents for cell in self.grid.coord_iter(): x = cell[1] y = cell[2] a = random.random() if a < self.a_density: agent = Agent((x, y), self) self.grid.place_agent(agent, (x, y)) self.schedule.add(agent) self.running = True self.datacollector.collect(self)
def testGraphMovement2D(self): ms, _grid = MeshSpace.read("test/meshes/plane.msh") nodes = ms.G.nodes starting_node = 0 ending_node = 10 a = Agent(0, None) short_path = (nx.shortest_path(ms.G, starting_node, ending_node)) # check short path self.assertEqual(short_path, [0, 19, 10]) ms.place_agent(a, starting_node) track_move = 0 while a.pos != ending_node: possible_steps = ms.get_neighbors(a.pos, include_center=False) #check neighbors for pos 0 pos 1 and pos 2 if a.pos == short_path[0]: self.assertEqual(possible_steps, [4, 19, 2]) elif a.pos == short_path[1]: self.assertEqual(possible_steps, [14, 10, 0]) for neighbor in possible_steps: if neighbor == short_path[track_move + 1]: new_position = neighbor break #check we have found the new path self.assertNotEqual(a.pos, new_position) #new_position = random.choice(possible_steps) ms.move_agent(a, new_position) self.assertTrue(a.pos == new_position) track_move += 1 #Check that we have arrived to our destination self.assertTrue(a.pos == ending_node)
def __init__(self, width=5, height=5, threshold=0.5, population_density=0.8, population_breakdown=0.5): ''' Initialize the model Args: width: Width of the grid containing agents. height: Height of the grid containing agents. threshold: Homophily threshold, the number, from 0-8, of nearest neighbours at which I am so unhappy that I move. population_density: Proportion of cells occupied, from 0-1. population_breakdown: Proportion of agents of type 1, from 0-1. ''' self.running = True self.height = height self.width = width self.threshold = threshold self.population_density = population_density self.population_breakdown = population_breakdown self.no_happy_this_timestep = 0 self.schedule = RandomActivation(self) self.grid = SingleGrid(width, height, torus=True) self.datacollector = DataCollector( {"happy": lambda m: m.no_happy_this_timestep}, {"x": lambda a: a.pos[0], "y": lambda a: a.pos[1]}) for cell in self.grid.coord_iter(): x = cell[1] y = cell[2] if random.random() < self.population_density: if random.random() < self.population_breakdown: agent_type = 1 else: agent_type = 0 agent = Agent(self,(x, y), agent_type) self.grid.position_agent(agent, (x, y)) self.schedule.add(agent)
def __init__(self, city_to_country, no_people, total_area, city_to_country_area, countryside, no_agents, Nc_N, n): self.num_agents = no_agents grid_size = round(math.sqrt((self.num_agents / no_people) * total_area) * 100) self.grid = MultiGrid(grid_size, grid_size, False) self.schedule = RandomActivation(self) self.running = True centers = np.zeros((1, 2)) centers[0, :] = random.randrange(10, self.grid.width - 10), random.randrange(10, self.grid.height - 10) x = np.zeros((1, round(int(city_to_country * self.num_agents)))) y = np.zeros((1, round(int(city_to_country * self.num_agents)))) x[0, :] = np.around(np.random.normal(centers[0, 0], 3, round(int(city_to_country * self.num_agents)))) y[0, :] = np.around(np.random.normal(centers[0, 1], 3, round(int(city_to_country * self.num_agents)))) count = 0 countryside_count = 0 while countryside_count < (countryside * self.num_agents): countryside_count += counter(x) runner = True while runner: new_center = (random.randrange(10, self.grid.width - 10), random.randrange(10, self.grid.height - 10)) if dist_check(new_center, centers): centers = np.vstack((centers, new_center)) runner = False new_x = np.around( np.random.normal(centers[count, 0], (1 / (6 * city_to_country_area * (math.sqrt(count + 1)))) * self.grid.width, round(int(city_to_country * self.num_agents) / (count + 2)))) new_y = np.around( np.random.normal(centers[count, 1], (1 / (6 * city_to_country_area * (math.sqrt(count + 1)))) * self.grid.height, round(int(city_to_country * self.num_agents) / (count + 2)))) while len(new_x) < round(int(city_to_country * self.num_agents)): new_x = np.append(new_x, -1) new_y = np.append(new_y, -1) x = np.vstack((x, new_x)) y = np.vstack((y, new_y)) count += 1 label = city_labeler(x) for i in range(len(label)): city_label[i] = label[i] new_x = np.delete(x.flatten(), np.where(x.flatten() == -1)) new_y = np.delete(y.flatten(), np.where(y.flatten() == -1)) x_countryside = np.around(np.random.uniform(0, self.grid.width - 1, int(self.num_agents - len(new_x)))) y_countryside = np.around(np.random.uniform(0, self.grid.height - 1, int(self.num_agents - len(new_y)))) all_x = np.concatenate((new_x, x_countryside)) all_y = np.concatenate((new_y, y_countryside)) for i in range(self.num_agents): a = Agent(i, self) self.schedule.add(a) self.grid.place_agent(a, (int(all_x[i]), int(all_y[i]))) home_store1[i, :] = int(all_x[i]), int(all_y[i]) if i == 1: a.infected = 1 #a.working = 1 flux_store = np.zeros((1, 3)) for i in range(round(len(centers) / 2)): print(i) #print(round(len(centers))/2) n_cities = random.sample(range(1, round(len(centers) / 2)), n) for j in range(len(n_cities)): mi = np.count_nonzero(city_label == i+1) nj = np.count_nonzero(city_label == n_cities[j]) radius = math.sqrt((centers[i, 0] - centers[n_cities[j], 0]) ** 2 + (centers[i, 1] - centers[n_cities[j], 1]) ** 2) sij = 0 for k in range(len(all_x)): if (all_x[k] - centers[i, 0]) ** 2 + (all_y[k] - centers[i, 1]) ** 2 < radius ** 2: sij += 1 sij = sij - mi - nj if sij < 0: sij = 0 try: Tij = (mi * Nc_N * mi * nj) / ((mi + sij) * (mi + nj + sij))*10 except ZeroDivisionError: Tij = 0 if Tij > 75: Tij = 75 if Tij > 1 and (i != n_cities[j]): flux_store = np.vstack((flux_store, (Tij, i+1, n_cities[j]))) work_place = np.zeros(self.num_agents) work_store1 = np.zeros((num, 2)) flux_store = np.delete(flux_store, 0, 0) for i in np.unique(flux_store[:, 1]): place = np.where(flux_store[:, 1] == i)[0] place1 = np.where(city_label == i)[0] for j in place1: for k in place: if random.uniform(0, 100) < flux_store[k, 0]: work_place[j] = flux_store[k, 2] for i in range(len(work_store1)): if work_place[i] != 0: n = int(work_place[i]) work_store1[i, :] = centers[n, 0], centers[n, 1] global work_store, home_store work_store = np.int64(work_store1) home_store = np.int64(home_store1) self.datacollector = DataCollector( model_reporters={"Tot informed": compute_informed}, agent_reporters={"Infected": "infected"})
model using Mesa in Python. ''' ''' Import libraries and packages ''' from mesa import Model, Agent from mesa.time import RandomActivation from mesa.space import SingleGrid from mesa.datacollection import DataCollector import pandas as pd import numpy as np import matplotlib.pyplot as plt ''' Agent (human) class with attributes and a step function defining what actions to perform during each step ''' class Human(Agent): def __init__(self, unique_id, model, sex, attract, relationship_status, current_dating_partners, focal): ''' Create a new agent. Args: sex: agent's sex (female or male) attract: agent's attractiveness (between 1 and 10) relationship_status: agent's marital status (single or union) current_dating_partners: list of id's of agent's current dating current_dating_partners focal: agent's probability to start a union '''
def __init__(self, no_people, total_area, no_agents, Nc_N, n, all_x, all_y, centers, infection_rate, city_label, first_infected, mobility_data): self.num_agents = no_agents grid_size = round( math.sqrt((self.num_agents / no_people) * total_area) * 100) self.grid = MultiGrid(grid_size, grid_size, False) self.schedule = RandomActivation(self) self.running = True flux_store = np.zeros((1, 3)) home_store1 = np.zeros((self.num_agents, 2)) for i in range(round(len(centers) / 2)): print(i, datetime.datetime.now() - begin_time) n_cities = random.sample(range(1, round(len(centers) / 2)), n) for j in range(len(n_cities)): mi = np.count_nonzero(city_label == i + 1) nj = np.count_nonzero(city_label == n_cities[j]) radius = math.sqrt( (centers[i, 0] - centers[n_cities[j], 0])**2 + (centers[i, 1] - centers[n_cities[j], 1])**2) sij = 0 for k in range(len(all_x)): if (all_x[k] - centers[i, 0])**2 + ( all_y[k] - centers[i, 1])**2 < radius**2: sij += 1 sij = sij - mi - nj if sij < 0: sij = 0 try: Tij = (mi * Nc_N * mi * nj) / ((mi + sij) * (mi + nj + sij)) * 10 except ZeroDivisionError: Tij = 0 if Tij > 75: Tij = 75 if Tij > 1 and (i != n_cities[j]): flux_store = np.vstack( (flux_store, (Tij, i + 1, n_cities[j]))) work_place = np.zeros(self.num_agents) work_store1 = np.zeros((num, 2)) flux_store = np.delete(flux_store, 0, 0) for i in np.unique(flux_store[:, 1]): place = np.where(flux_store[:, 1] == i)[0] place1 = np.where(city_label == i)[0] for j in place1: for k in place: if random.uniform(0, 100) < flux_store[k, 0]: work_place[j] = flux_store[k, 2] for i in range(len(work_store1)): if work_place[i] != 0: n = int(work_place[i]) work_store1[i, :] = centers[n, 0], centers[n, 1] for i in range(self.num_agents): home_store1[i, :] = int(all_x[i]), int(all_y[i]) work_store = np.int64(work_store1) home_store = np.int64(home_store1) for i in range(self.num_agents): if mobility_data: a = Agent(i, self, infection_rate, work_store, home_store) self.schedule.add(a) self.grid.place_agent(a, (int(all_x[i]), int(all_y[i]))) else: a = Agent1(i, self, infection_rate, work_store, home_store) self.schedule.add(a) self.grid.place_agent(a, (int(all_x[i]), int(all_y[i]))) if i == first_infected: a.infected = 1 self.datacollector = DataCollector( model_reporters={"Tot infections": compute_informed}, agent_reporters={ "Infected": "infected", "R-Number": "rnumber" })
def __init__(self, pos, model, age=0): Agent.__init__(self, pos, model) AgingEntity.__init__(self, age)
def __init__(self, unique_id, model): Agent.__init__(self, unique_id, model) self.wealth = 1
def __init__(self, pos, model, energy): Agent.__init__(self, pos, model) EnergyConsumingEntity.__init__(self, energy)
def __init__(self, unique_id, model, intitial_state): Agent.__init__(self, unique_id, model) self.belief = intitial_state