Пример #1
0
 def del_vectors(collection_name, ids):
     try:
         milvus = Milvus(host=MILVUS_ADDR, port=MILVUS_PORT)
         milvus.delete_entity_by_id(collection_name=collection_name, id_array=ids)
     except Exception as e:
         err_msg = "There was some error when delete vectors"
         logger.error(f"{err_msg} : {str(e)}", exc_info=True)
         raise MilvusError(err_msg, e)
Пример #2
0
class MilvusClient(object):
    def __init__(self,
                 collection_name=None,
                 host=None,
                 port=None,
                 timeout=180):
        self._collection_name = collection_name
        start_time = time.time()
        if not host:
            host = SERVER_HOST_DEFAULT
        if not port:
            port = SERVER_PORT_DEFAULT
        logger.debug(host)
        logger.debug(port)
        # retry connect remote server
        i = 0
        while time.time() < start_time + timeout:
            try:
                self._milvus = Milvus(host=host,
                                      port=port,
                                      try_connect=False,
                                      pre_ping=False)
                break
            except Exception as e:
                logger.error(str(e))
                logger.error("Milvus connect failed: %d times" % i)
                i = i + 1
                time.sleep(i)

        if time.time() > start_time + timeout:
            raise Exception("Server connect timeout")
        # self._metric_type = None

    def __str__(self):
        return 'Milvus collection %s' % self._collection_name

    def check_status(self, status):
        if not status.OK():
            logger.error(status.message)
            logger.error(self._milvus.server_status())
            logger.error(self.count())
            raise Exception("Status not ok")

    def check_result_ids(self, result):
        for index, item in enumerate(result):
            if item[0].distance >= epsilon:
                logger.error(index)
                logger.error(item[0].distance)
                raise Exception("Distance wrong")

    # only support the given field name
    def create_collection(self,
                          dimension,
                          data_type=DataType.FLOAT_VECTOR,
                          auto_id=False,
                          collection_name=None,
                          other_fields=None):
        self._dimension = dimension
        if not collection_name:
            collection_name = self._collection_name
        vec_field_name = utils.get_default_field_name(data_type)
        fields = [{
            "name": vec_field_name,
            "type": data_type,
            "params": {
                "dim": dimension
            }
        }]
        if other_fields:
            other_fields = other_fields.split(",")
            if "int" in other_fields:
                fields.append({
                    "name": utils.DEFAULT_INT_FIELD_NAME,
                    "type": DataType.INT64
                })
            if "float" in other_fields:
                fields.append({
                    "name": utils.DEFAULT_FLOAT_FIELD_NAME,
                    "type": DataType.FLOAT
                })
        create_param = {"fields": fields, "auto_id": auto_id}
        try:
            self._milvus.create_collection(collection_name, create_param)
            logger.info("Create collection: <%s> successfully" %
                        collection_name)
        except Exception as e:
            logger.error(str(e))
            raise

    def create_partition(self, tag, collection_name=None):
        if not collection_name:
            collection_name = self._collection_name
        self._milvus.create_partition(collection_name, tag)

    def generate_values(self, data_type, vectors, ids):
        values = None
        if data_type in [DataType.INT32, DataType.INT64]:
            values = ids
        elif data_type in [DataType.FLOAT, DataType.DOUBLE]:
            values = [(i + 0.0) for i in ids]
        elif data_type in [DataType.FLOAT_VECTOR, DataType.BINARY_VECTOR]:
            values = vectors
        return values

    def generate_entities(self, vectors, ids=None, collection_name=None):
        entities = []
        if collection_name is None:
            collection_name = self._collection_name
        info = self.get_info(collection_name)
        for field in info["fields"]:
            field_type = field["type"]
            entities.append({
                "name":
                field["name"],
                "type":
                field_type,
                "values":
                self.generate_values(field_type, vectors, ids)
            })
        return entities

    @time_wrapper
    def insert(self, entities, ids=None, collection_name=None):
        tmp_collection_name = self._collection_name if collection_name is None else collection_name
        try:
            insert_ids = self._milvus.insert(tmp_collection_name,
                                             entities,
                                             ids=ids)
            return insert_ids
        except Exception as e:
            logger.error(str(e))

    def get_dimension(self):
        info = self.get_info()
        for field in info["fields"]:
            if field["type"] in [
                    DataType.FLOAT_VECTOR, DataType.BINARY_VECTOR
            ]:
                return field["params"]["dim"]

    def get_rand_ids(self, length):
        segment_ids = []
        while True:
            stats = self.get_stats()
            segments = stats["partitions"][0]["segments"]
            # random choice one segment
            segment = random.choice(segments)
            try:
                segment_ids = self._milvus.list_id_in_segment(
                    self._collection_name, segment["id"])
            except Exception as e:
                logger.error(str(e))
            if not len(segment_ids):
                continue
            elif len(segment_ids) > length:
                return random.sample(segment_ids, length)
            else:
                logger.debug("Reset length: %d" % len(segment_ids))
                return segment_ids

    # def get_rand_ids_each_segment(self, length):
    #     res = []
    #     status, stats = self._milvus.get_collection_stats(self._collection_name)
    #     self.check_status(status)
    #     segments = stats["partitions"][0]["segments"]
    #     segments_num = len(segments)
    #     # random choice from each segment
    #     for segment in segments:
    #         status, segment_ids = self._milvus.list_id_in_segment(self._collection_name, segment["name"])
    #         self.check_status(status)
    #         res.extend(segment_ids[:length])
    #     return segments_num, res

    # def get_rand_entities(self, length):
    #     ids = self.get_rand_ids(length)
    #     status, get_res = self._milvus.get_entity_by_id(self._collection_name, ids)
    #     self.check_status(status)
    #     return ids, get_res

    def get(self):
        get_ids = random.randint(1, 1000000)
        self._milvus.get_entity_by_id(self._collection_name, [get_ids])

    @time_wrapper
    def get_entities(self, get_ids):
        get_res = self._milvus.get_entity_by_id(self._collection_name, get_ids)
        return get_res

    @time_wrapper
    def delete(self, ids, collection_name=None):
        tmp_collection_name = self._collection_name if collection_name is None else collection_name
        self._milvus.delete_entity_by_id(tmp_collection_name, ids)

    def delete_rand(self):
        delete_id_length = random.randint(1, 100)
        count_before = self.count()
        logger.debug("%s: length to delete: %d" %
                     (self._collection_name, delete_id_length))
        delete_ids = self.get_rand_ids(delete_id_length)
        self.delete(delete_ids)
        self.flush()
        logger.info("%s: count after delete: %d" %
                    (self._collection_name, self.count()))
        get_res = self._milvus.get_entity_by_id(self._collection_name,
                                                delete_ids)
        for item in get_res:
            assert not item
        # if count_before - len(delete_ids) < self.count():
        #     logger.error(delete_ids)
        #     raise Exception("Error occured")

    @time_wrapper
    def flush(self, _async=False, collection_name=None):
        tmp_collection_name = self._collection_name if collection_name is None else collection_name
        self._milvus.flush([tmp_collection_name], _async=_async)

    @time_wrapper
    def compact(self, collection_name=None):
        tmp_collection_name = self._collection_name if collection_name is None else collection_name
        status = self._milvus.compact(tmp_collection_name)
        self.check_status(status)

    @time_wrapper
    def create_index(self,
                     field_name,
                     index_type,
                     metric_type,
                     _async=False,
                     index_param=None):
        index_type = INDEX_MAP[index_type]
        metric_type = utils.metric_type_trans(metric_type)
        logger.info(
            "Building index start, collection_name: %s, index_type: %s, metric_type: %s"
            % (self._collection_name, index_type, metric_type))
        if index_param:
            logger.info(index_param)
        index_params = {
            "index_type": index_type,
            "metric_type": metric_type,
            "params": index_param
        }
        self._milvus.create_index(self._collection_name,
                                  field_name,
                                  index_params,
                                  _async=_async)

    # TODO: need to check
    def describe_index(self, field_name):
        # stats = self.get_stats()
        info = self._milvus.describe_index(self._collection_name, field_name)
        index_info = {"index_type": "flat", "index_param": None}
        for field in info["fields"]:
            for index in field['indexes']:
                if not index or "index_type" not in index:
                    continue
                else:
                    for k, v in INDEX_MAP.items():
                        if index['index_type'] == v:
                            index_info['index_type'] = k
                            index_info['index_param'] = index['params']
                            return index_info
        return index_info

    def drop_index(self, field_name):
        logger.info("Drop index: %s" % self._collection_name)
        return self._milvus.drop_index(self._collection_name, field_name)

    @time_wrapper
    def query(self, vector_query, filter_query=None, collection_name=None):
        tmp_collection_name = self._collection_name if collection_name is None else collection_name
        must_params = [vector_query]
        if filter_query:
            must_params.extend(filter_query)
        query = {"bool": {"must": must_params}}
        result = self._milvus.search(tmp_collection_name, query)
        return result

    @time_wrapper
    def load_and_query(self,
                       vector_query,
                       filter_query=None,
                       collection_name=None):
        tmp_collection_name = self._collection_name if collection_name is None else collection_name
        must_params = [vector_query]
        if filter_query:
            must_params.extend(filter_query)
        query = {"bool": {"must": must_params}}
        self.load_collection(tmp_collection_name)
        result = self._milvus.search(tmp_collection_name, query)
        return result

    def get_ids(self, result):
        idss = result._entities.ids
        ids = []
        len_idss = len(idss)
        len_r = len(result)
        top_k = len_idss // len_r
        for offset in range(0, len_idss, top_k):
            ids.append(idss[offset:min(offset + top_k, len_idss)])
        return ids

    def query_rand(self, nq_max=100):
        # for ivf search
        dimension = 128
        top_k = random.randint(1, 100)
        nq = random.randint(1, nq_max)
        nprobe = random.randint(1, 100)
        search_param = {"nprobe": nprobe}
        query_vectors = [[random.random() for _ in range(dimension)]
                         for _ in range(nq)]
        metric_type = random.choice(["l2", "ip"])
        logger.info("%s, Search nq: %d, top_k: %d, nprobe: %d" %
                    (self._collection_name, nq, top_k, nprobe))
        vec_field_name = utils.get_default_field_name()
        vector_query = {
            "vector": {
                vec_field_name: {
                    "topk": top_k,
                    "query": query_vectors,
                    "metric_type": utils.metric_type_trans(metric_type),
                    "params": search_param
                }
            }
        }
        self.query(vector_query)

    def load_query_rand(self, nq_max=100):
        # for ivf search
        dimension = 128
        top_k = random.randint(1, 100)
        nq = random.randint(1, nq_max)
        nprobe = random.randint(1, 100)
        search_param = {"nprobe": nprobe}
        query_vectors = [[random.random() for _ in range(dimension)]
                         for _ in range(nq)]
        metric_type = random.choice(["l2", "ip"])
        logger.info("%s, Search nq: %d, top_k: %d, nprobe: %d" %
                    (self._collection_name, nq, top_k, nprobe))
        vec_field_name = utils.get_default_field_name()
        vector_query = {
            "vector": {
                vec_field_name: {
                    "topk": top_k,
                    "query": query_vectors,
                    "metric_type": utils.metric_type_trans(metric_type),
                    "params": search_param
                }
            }
        }
        self.load_and_query(vector_query)

    # TODO: need to check
    def count(self, collection_name=None):
        if collection_name is None:
            collection_name = self._collection_name
        row_count = self._milvus.get_collection_stats(
            collection_name)["row_count"]
        logger.debug("Row count: %d in collection: <%s>" %
                     (row_count, collection_name))
        return row_count

    def drop(self, timeout=120, collection_name=None):
        timeout = int(timeout)
        if collection_name is None:
            collection_name = self._collection_name
        logger.info("Start delete collection: %s" % collection_name)
        self._milvus.drop_collection(collection_name)
        i = 0
        while i < timeout:
            try:
                row_count = self.count(collection_name=collection_name)
                if row_count:
                    time.sleep(1)
                    i = i + 1
                    continue
                else:
                    break
            except Exception as e:
                logger.debug(str(e))
                break
        if i >= timeout:
            logger.error("Delete collection timeout")

    def get_stats(self):
        return self._milvus.get_collection_stats(self._collection_name)

    def get_info(self, collection_name=None):
        # pdb.set_trace()
        if collection_name is None:
            collection_name = self._collection_name
        return self._milvus.get_collection_info(collection_name)

    def show_collections(self):
        return self._milvus.list_collections()

    def exists_collection(self, collection_name=None):
        if collection_name is None:
            collection_name = self._collection_name
        res = self._milvus.has_collection(collection_name)
        return res

    def clean_db(self):
        collection_names = self.show_collections()
        for name in collection_names:
            self.drop(collection_name=name)

    @time_wrapper
    def load_collection(self, collection_name=None):
        if collection_name is None:
            collection_name = self._collection_name
        return self._milvus.load_collection(collection_name, timeout=3000)

    @time_wrapper
    def release_collection(self, collection_name=None):
        if collection_name is None:
            collection_name = self._collection_name
        return self._milvus.release_collection(collection_name, timeout=3000)

    @time_wrapper
    def load_partitions(self, tag_names, collection_name=None):
        if collection_name is None:
            collection_name = self._collection_name
        return self._milvus.load_partitions(collection_name,
                                            tag_names,
                                            timeout=3000)

    @time_wrapper
    def release_partitions(self, tag_names, collection_name=None):
        if collection_name is None:
            collection_name = self._collection_name
        return self._milvus.release_partitions(collection_name,
                                               tag_names,
                                               timeout=3000)
Пример #3
0
def main():
    milvus = Milvus(_HOST, _PORT)

    # num = random.randint(1, 100000)
    num = 100000
    # Create collection demo_collection if it dosen't exist.
    collection_name = 'example_hybrid_collections_{}'.format(num)
    if milvus.has_collection(collection_name):
        milvus.drop_collection(collection_name)

    collection_param = {
        "fields": [{
            "field": "A",
            "type": DataType.INT32
        }, {
            "field": "B",
            "type": DataType.INT32
        }, {
            "field": "C",
            "type": DataType.INT64
        }, {
            "field": "Vec",
            "type": DataType.FLOAT_VECTOR,
            "params": {
                "dim": 128,
                "metric_type": "L2"
            }
        }],
        "segment_size":
        100
    }
    milvus.create_collection(collection_name, collection_param)

    milvus.compact(collection_name)

    # milvus.create_partition(collection_name, "p_01", timeout=1800)
    # pars = milvus.list_partitions(collection_name)
    # ok = milvus.has_partition(collection_name, "p_01", timeout=1800)
    # assert ok
    # ok = milvus.has_partition(collection_name, "p_02")
    # assert not ok
    # for p in pars:
    #     if p == "_default":
    #         continue
    #     milvus.drop_partition(collection_name, p)

    # milvus.drop_collection(collection_name)
    # sys.exit(0)

    A_list = [random.randint(0, 255) for _ in range(num)]
    vec = [[random.random() for _ in range(128)] for _ in range(num)]
    hybrid_entities = [{
        "field": "A",
        "values": A_list,
        "type": DataType.INT32
    }, {
        "field": "B",
        "values": A_list,
        "type": DataType.INT32
    }, {
        "field": "C",
        "values": A_list,
        "type": DataType.INT64
    }, {
        "field": "Vec",
        "values": vec,
        "type": DataType.FLOAT_VECTOR,
        "params": {
            "dim": 128
        }
    }]

    for slice_e in utils.entities_slice(hybrid_entities):
        ids = milvus.insert(collection_name, slice_e)
    milvus.flush([collection_name])
    print("Flush ... ")
    # time.sleep(3)
    count = milvus.count_entities(collection_name)

    milvus.delete_entity_by_id(collection_name, ids[:1])
    milvus.flush([collection_name])
    print("Get entity be id start ...... ")
    entities = milvus.get_entity_by_id(collection_name, ids[:1])
    et = entities.dict()
    milvus.delete_entity_by_id(collection_name, ids[1:2])
    milvus.flush([collection_name])

    print("Create index ......")
    milvus.create_index(collection_name, "Vec", {
        "index_type": "IVF_FLAT",
        "metric_type": "L2",
        "params": {
            "nlist": 100
        }
    })
    print("Create index done.")

    info = milvus.get_collection_info(collection_name)
    print(info)
    stats = milvus.get_collection_stats(collection_name)
    print("\nstats\n")
    print(stats)
    query_hybrid = \
    {
        "bool": {
            "must": [
                {
                    "term": {
                        "A": [1, 2, 5]
                    }
                },
                {
                    "range": {
                        "B": {"GT": 1, "LT": 100}
                    }
                },
                {
                    "vector": {
                        "Vec": {
                            "topk": 10, "query": vec[: 10000], "params": {"nprobe": 10}
                        }
                    }
                }
            ],
        },
    }

    # print("Start searach ..", flush=True)
    # results = milvus.search(collection_name, query_hybrid)
    # print(results)
    #
    # for r in list(results):
    #     print("ids", r.ids)
    #     print("distances", r.distances)

    t0 = time.time()
    count = 0
    results = milvus.search(collection_name, query_hybrid, fields=["B"])
    for r in list(results):
        # print("ids", r.ids)
        # print("distances", r.distances)
        for rr in r:
            count += 1
            # print(rr.entity.get("B"))

    print("Search cost {} s".format(time.time() - t0))

    # for result in results:
    #     for r in result:
    #         print(f"{r}")

    # itertor entity id
    # for result in results:
    #     for r in result:
    #         # get distance
    #         dis = r.distance
    #         id_ = r.id
    #         # obtain all field name
    #         fields = r.entity.fields
    #         for f in fields:
    #             # get field value by field name
    #             # fv = r.entity.
    #             fv = r.entity.value_of_field(f)
    #             print(fv)

    milvus.drop_collection(collection_name)
Пример #4
0
for entities in results:
    for topk_film in entities:
        current_entity = topk_film.entity
        print("- id: {}".format(topk_film.id))
        print("- distance: {}".format(topk_film.distance))

        print("- release_year: {}".format(current_entity.release_year))
        print("- duration: {}".format(current_entity.duration))
        print("- embedding: {}".format(current_entity.embedding))

# ------
# Basic delete:
#     Now let's see how to delete things in Milvus.
#     You can simply delete entities by their ids.
# ------
client.delete_entity_by_id(collection_name, ids=[1, 4])
client.flush()  # flush is important
result = client.get_entity_by_id(collection_name, ids=[1, 4])

counts_delete = sum([1 for entity in result if entity is not None])
counts_in_collection = client.count_entities(collection_name)
print("\n----------delete id = 1, id = 4----------")
print("Get {} entities by id 1, 4".format(counts_delete))
print("There are {} entities after delete films with 1, 4".format(counts_in_collection))

# ------
# Basic delete:
#     You can drop partitions we create, and drop the collection we create.
# ------
client.drop_partition(collection_name, partition_tag='American')
if collection_name in client.list_collections():
Пример #5
0
class MilvusHelper(BaseVectorSimilarityHelper):
    def __init__(self, _server_url, _server_port, _timeout=10):
        super().__init__()
        self.server_url = _server_url
        self.server_port = _server_port
        self.timeout = _timeout
        self.client = None
        self.metric_type_mapper = {
            VectorMetricType.L2: MetricType.L2,
            VectorMetricType.IP: MetricType.IP,
            VectorMetricType.JACCARD: MetricType.JACCARD,
            VectorMetricType.HAMMING: MetricType.HAMMING,
        }

        self.index_type_mapper = {
            VectorIndexType.FLAT: IndexType.FLAT,
            VectorIndexType.IVFLAT: IndexType.IVFLAT,
            VectorIndexType.IVF_SQ8: IndexType.IVF_SQ8,
            VectorIndexType.RNSG: IndexType.RNSG,
            VectorIndexType.IVF_SQ8H: IndexType.IVF_SQ8H,
            VectorIndexType.IVF_PQ: IndexType.IVF_PQ,
            VectorIndexType.HNSW: IndexType.HNSW,
            VectorIndexType.ANNOY: IndexType.ANNOY,
        }

    def init(self):
        if self.client is None:
            if not (self.server_url is None or self.server_url is None):
                try:
                    self.client = Milvus(host=self.server_url, port=self.server_port)
                except:
                    raise MilvusRuntimeException(f'cannot connect to {self.server_url}:{self.server_port}')
            else:
                raise MilvusRuntimeException('Milvus config is not correct')

    def insert(self, _database_name, _to_insert_vector, _partition_tag=None, _params=None):
        """
        向数据库中插入一系列的特征向量

        notes:如果用户有自己的id,建议使用insert_with_id函数

        ATTENTION!!!

        一个库中不能既调用insert_with_id还调用insert,只能调用一种,否则会报错

        Args:
            _database_name:     数据库名称
            _to_insert_vector:  待插入的特征向量的列表
            _partition_tag:     分区标签
            _params:    插入参数

        Returns:    插入后的id

        """
        self.init()
        status, ids = self.client.insert(_database_name, _to_insert_vector, partition_tag=_partition_tag,
                                         params=_params,
                                         timeout=self.timeout)
        self.flush(_database_name)
        if status.OK():
            return ids
        else:
            raise MilvusRuntimeException(status.message)

    def insert_with_id(self, _database_name, _to_insert_vector, _to_insert_ids, _partition_tag=None, _params=None):
        """
        向数据库中插入一系列的有固定id的特征向量

        ATTENTION!!!

        一个库中不能既调用insert_with_id还调用insert,只能调用一种,否则会报错

        Args:
            _database_name:     数据库名称
            _to_insert_vector:  待插入的特征向量的列表
            _to_insert_ids:  待插入的特征向量的id的列表,每个元素必须为正整数,且不越界
            _partition_tag:     分区标签
            _params:    插入参数

        Returns:    插入后的id

        """
        self.init()
        status, ids = self.client.insert(_database_name, _to_insert_vector,
                                         ids=_to_insert_ids, partition_tag=_partition_tag,
                                         params=_params,
                                         timeout=self.timeout)
        self.flush(_database_name)
        if status.OK():
            return ids
        else:
            raise MilvusRuntimeException(status.message)

    def delete(self, _database_name, _to_delete_ids):
        """
        删除特定id

        Args:
            _database_name:     数据库名称
            _to_delete_ids:     待删除的id

        Returns:    是否删除成功

        """
        self.init()
        status = self.client.delete_entity_by_id(_database_name, _to_delete_ids, self.timeout)
        self.flush(_database_name)
        if status.OK():
            return True
        else:
            raise MilvusRuntimeException(status.message)

    def database_exist(self, _database_name):
        """
        数据库是否存在

        Args:
            _database_name:     数据库名称

        Returns:    是否存在

        """
        self.init()
        status, is_exist = self.client.has_collection(_database_name, self.timeout)
        if status.OK():
            return is_exist
        else:
            raise MilvusRuntimeException(status.message)

    def create_database(self, _database_name, _dimension, _index_file_size, _metric_type):
        """
        创建数据库

        Args:
            _database_name:     数据库名称
            _dimension:     特征向量维度
            _index_file_size:   index的文件大小
            _metric_type:   度量类型

        Returns:    是否创建成功

        """
        self.init()
        if not self.database_exist(_database_name):
            assert _metric_type in self.metric_type_mapper, f'{_metric_type} not support in milvus'
            status = self.client.create_collection({
                'collection_name': _database_name,
                'dimension': _dimension,
                'index_file_size': _index_file_size,
                'metric_type': self.metric_type_mapper[_metric_type]
            })
            if status.OK():
                return True
            else:
                raise MilvusRuntimeException(status.message)
        else:
            return True

    def create_index(self, _database_name, _index_type):
        """
        创建index(索引)

        Args:
            _database_name:     数据库名称
            _index_type:    index类型

        Returns:    是否创建成功

        """
        self.init()
        if self.database_exist(_database_name):
            assert _index_type in self.index_type_mapper, f'{_index_type} not support in milvus'
            status = self.client.create_index(_database_name, self.index_type_mapper[_index_type], timeout=self.timeout)
            if status.OK():
                return True
            else:
                raise MilvusRuntimeException(status.message)

    def search(self, _database_name, _query_vector_list, _top_k, _partition_tag=None, _params=None):
        """
        检索用参数

        Args:
            _database_name:     数据库名称
            _query_vector_list:      检索用的特征向量列表
            _top_k:     top k
            _partition_tag:     分区标签
            _params:    检索参数

        Returns:    检索的结果,包含id和distance

        """
        self.init()
        if self.database_exist(_database_name):
            status, search_result = self.client.search(_database_name, _top_k, _query_vector_list,
                                                       partition_tags=_partition_tag,
                                                       params=_params,
                                                       timeout=self.timeout)
            if status.OK():
                return search_result
            else:
                raise MilvusRuntimeException(status.message)
        else:
            raise DatabaseNotExist(f'{_database_name} not exist')

    def flush(self, _database_name):
        """
        sink数据库

        Args:
            _database_name:     数据库名称

        Returns:    是否flush成功

        """
        self.init()
        status = self.client.flush([_database_name, ], self.timeout)
        if status.OK():
            return True
        else:
            raise MilvusRuntimeException(status.message)

    def __del__(self):
        if self.client is not None:
            self.client.close()
Пример #6
0
class Indexer:
    '''
    索引器。
    '''
    def __init__(self, name, host='127.0.0.1', port='19531'):
        '''
        初始化。
        '''
        self.client = Milvus(host=host, port=port)
        self.collection = name

    def init(self, lenient=False):
        '''
        创建集合。
        '''
        if lenient:
            status, result = self.client.has_collection(
                collection_name=self.collection)
            if status.code != 0:
                raise ExertMilvusException(status)
            if result:
                return

        status = self.client.create_collection({
            'collection_name': self.collection,
            'dimension': 512,
            'index_file_size': 1024,
            'metric_type': MetricType.L2
        })
        if status.code != 0 and not (lenient and status.code == 9):
            raise ExertMilvusException(status)

        # 创建索引。
        status = self.client.create_index(collection_name=self.collection,
                                          index_type=IndexType.IVF_FLAT,
                                          params={'nlist': 16384})
        if status.code != 0:
            raise ExertMilvusException(status)

        return status

    def drop(self):
        '''
        删除集合。
        '''
        status = self.client.drop_collection(collection_name=self.collection)
        if status.code != 0:
            raise ExertMilvusException(status)

    def flush(self):
        '''
        写入到硬盘。
        '''
        status = self.client.flush([self.collection])
        if status.code != 0:
            raise ExertMilvusException(status)

    def compact(self):
        '''
        压缩集合。
        '''
        status = self.client.compact(collection_name=self.collection)
        if status.code != 0:
            raise ExertMilvusException(status)

    def close(self):
        '''
        关闭链接。
        '''
        self.client.close()

    def new_tag(self, tag):
        '''
        建分块标签。
        '''
        status = self.client.create_partition(collection_name=self.collection,
                                              partition_tag=tag)
        if status.code != 0:
            raise ExertMilvusException(status)

    def list_tag(self):
        '''
        列举分块标签。
        '''
        status, result = self.client.list_partitions(
            collection_name=self.collection)
        if status.code != 0:
            raise ExertMilvusException(status)
        return result

    def drop_tag(self, tag):
        '''
        删除分块标签。
        '''
        status = self.client.drop_partition(collection_name=self.collection,
                                            partition_tag=tag)
        if status.code != 0:
            raise ExertMilvusException(status)

    def index(self, vectors, tag=None, ids=None):
        '''
        添加索引
        '''
        params = {}
        if tag != None:
            params['tag'] = tag
        if ids != None:
            params['ids'] = ids
        status, result = self.client.insert(collection_name=self.collection,
                                            records=vectors,
                                            **params)
        if status.code != 0:
            raise ExertMilvusException(status)

        return result

    def listing(self, ids):
        '''
        列举信息。
        '''
        status, result = self.client.get_entity_by_id(
            collection_name=self.collection, ids=ids)
        if status.code != 0:
            raise ExertMilvusException(status)
        return result

    def counting(self):
        '''
        计算索引数。
        '''
        status, result = self.client.count_entities(
            collection_name=self.collection)
        if status.code != 0:
            raise ExertMilvusException(status)
        return result

    def unindex(self, ids):
        '''
        去掉索引。
        '''
        status = self.client.delete_entity_by_id(
            collection_name=self.collection, id_array=ids)
        if status.code != 0:
            raise ExertMilvusException(status)

    def search(self, vectors, top_count=100, tags=None):
        '''
        搜索。
        '''
        params = {'params': {'nprobe': 16}}
        if tags != None:
            params['partition_tags'] = tags
        status, results = self.client.search(collection_name=self.collection,
                                             query_records=vectors,
                                             top_k=top_count,
                                             **params)
        if status.code != 0:
            raise ExertMilvusException(status)
        return results
Пример #7
0
class MilvusClient(object):
    def __init__(self, collection_name=None, host=None, port=None, timeout=60):
        """
        Milvus client wrapper for python-sdk.

        Default timeout set 60s
        """
        self._collection_name = collection_name
        try:
            start_time = time.time()
            if not host:
                host = SERVER_HOST_DEFAULT
            if not port:
                port = SERVER_PORT_DEFAULT
            logger.debug(host)
            logger.debug(port)
            # retry connect for remote server
            i = 0
            while time.time() < start_time + timeout:
                try:
                    self._milvus = Milvus(host=host, port=port, try_connect=False, pre_ping=False)
                    if self._milvus.server_status():
                        logger.debug("Try connect times: %d, %s" % (i, round(time.time() - start_time, 2)))
                        break
                except Exception as e:
                    logger.debug("Milvus connect failed: %d times" % i)
                    i = i + 1

            if time.time() > start_time + timeout:
                raise Exception("Server connect timeout")

        except Exception as e:
            raise e
        self._metric_type = None
        if self._collection_name and self.exists_collection():
            self._metric_type = metric_type_to_str(self.describe()[1].metric_type)
            self._dimension = self.describe()[1].dimension

    def __str__(self):
        return 'Milvus collection %s' % self._collection_name

    def set_collection(self, name):
        self._collection_name = name

    def check_status(self, status):
        if not status.OK():
            logger.error(self._collection_name)
            logger.error(status.message)
            logger.error(self._milvus.server_status())
            logger.error(self.count())
            raise Exception("Status not ok")

    def check_result_ids(self, result):
        for index, item in enumerate(result):
            if item[0].distance >= epsilon:
                logger.error(index)
                logger.error(item[0].distance)
                raise Exception("Distance wrong")

    def create_collection(self, collection_name, dimension, index_file_size, metric_type):
        if not self._collection_name:
            self._collection_name = collection_name
        if metric_type not in METRIC_MAP.keys():
            raise Exception("Not supported metric_type: %s" % metric_type)
        metric_type = METRIC_MAP[metric_type]
        create_param = {'collection_name': collection_name,
                 'dimension': dimension,
                 'index_file_size': index_file_size, 
                 "metric_type": metric_type}
        status = self._milvus.create_collection(create_param)
        self.check_status(status)

    def create_partition(self, tag_name):
        status = self._milvus.create_partition(self._collection_name, tag_name)
        self.check_status(status)

    def drop_partition(self, tag_name):
        status = self._milvus.drop_partition(self._collection_name, tag_name)
        self.check_status(status)

    def list_partitions(self):
        status, tags = self._milvus.list_partitions(self._collection_name)
        self.check_status(status)
        return tags

    @time_wrapper
    def insert(self, X, ids=None, collection_name=None):
        if collection_name is None:
            collection_name = self._collection_name
        status, result = self._milvus.insert(collection_name, X, ids)
        self.check_status(status)
        return status, result

    def insert_rand(self):
        insert_xb = random.randint(1, 100)
        X = [[random.random() for _ in range(self._dimension)] for _ in range(insert_xb)]
        X = utils.normalize(self._metric_type, X)
        count_before = self.count()
        status, _ = self.insert(X)
        self.check_status(status)
        self.flush()
        if count_before + insert_xb != self.count():
            raise Exception("Assert failed after inserting")

    def get_rand_ids(self, length):
        while True:
            status, stats = self._milvus.get_collection_stats(self._collection_name)
            self.check_status(status)
            segments = stats["partitions"][0]["segments"]
            # random choice one segment
            segment = random.choice(segments)
            status, segment_ids = self._milvus.list_id_in_segment(self._collection_name, segment["name"])
            if not status.OK():
                logger.error(status.message)
                continue
            if len(segment_ids):
                break
        if length >= len(segment_ids):
            logger.debug("Reset length: %d" % len(segment_ids))
            return segment_ids
        return random.sample(segment_ids, length)

    def get_rand_ids_each_segment(self, length):
        res = []
        status, stats = self._milvus.get_collection_stats(self._collection_name)
        self.check_status(status)
        segments = stats["partitions"][0]["segments"]
        segments_num = len(segments)
        # random choice from each segment
        for segment in segments:
            status, segment_ids = self._milvus.list_id_in_segment(self._collection_name, segment["name"])
            self.check_status(status)
            res.extend(segment_ids[:length])
        return segments_num, res

    def get_rand_entities(self, length):
        ids = self.get_rand_ids(length)
        status, get_res = self._milvus.get_entity_by_id(self._collection_name, ids)
        self.check_status(status)
        return ids, get_res

    @time_wrapper
    def get_entities(self, get_ids):
        status, get_res = self._milvus.get_entity_by_id(self._collection_name, get_ids)
        self.check_status(status)
        return get_res

    @time_wrapper
    def delete(self, ids, collection_name=None):
        if collection_name is None:
            collection_name = self._collection_name
        status = self._milvus.delete_entity_by_id(collection_name, ids)
        self.check_status(status)

    def delete_rand(self):
        delete_id_length = random.randint(1, 100)
        count_before = self.count()
        logger.info("%s: length to delete: %d" % (self._collection_name, delete_id_length))
        delete_ids = self.get_rand_ids(delete_id_length)
        self.delete(delete_ids)
        self.flush()
        logger.info("%s: count after delete: %d" % (self._collection_name, self.count()))
        status, get_res = self._milvus.get_entity_by_id(self._collection_name, delete_ids)
        self.check_status(status)
        for item in get_res:
            if item:
                raise Exception("Assert failed after delete")
        if count_before - len(delete_ids) != self.count():
            raise Exception("Assert failed after delete")

    @time_wrapper
    def flush(self, collection_name=None):
        if collection_name is None:
            collection_name = self._collection_name
        status = self._milvus.flush([collection_name])
        self.check_status(status)

    @time_wrapper
    def compact(self, collection_name=None):
        if collection_name is None:
            collection_name = self._collection_name
        status = self._milvus.compact(collection_name)
        self.check_status(status)

    @time_wrapper
    def create_index(self, index_type, index_param=None):
        index_type = INDEX_MAP[index_type]
        logger.info("Building index start, collection_name: %s, index_type: %s" % (self._collection_name, index_type))
        if index_param:
            logger.info(index_param)
        status = self._milvus.create_index(self._collection_name, index_type, index_param)
        self.check_status(status)

    def describe_index(self):
        status, result = self._milvus.get_index_info(self._collection_name)
        self.check_status(status)
        index_type = None
        for k, v in INDEX_MAP.items():
            if result._index_type == v:
                index_type = k
                break
        return {"index_type": index_type, "index_param": result._params}

    def drop_index(self):
        logger.info("Drop index: %s" % self._collection_name)
        return self._milvus.drop_index(self._collection_name)

    def query(self, X, top_k, search_param=None, collection_name=None):
        if collection_name is None:
            collection_name = self._collection_name
        status, result = self._milvus.search(collection_name, top_k, query_records=X, params=search_param)
        self.check_status(status)
        return result

    def query_rand(self):
        top_k = random.randint(1, 100)
        nq = random.randint(1, 100)
        nprobe = random.randint(1, 100)
        search_param = {"nprobe": nprobe}
        _, X = self.get_rand_entities(nq)
        logger.info("%s, Search nq: %d, top_k: %d, nprobe: %d" % (self._collection_name, nq, top_k, nprobe))
        status, _ = self._milvus.search(self._collection_name, top_k, query_records=X, params=search_param)
        self.check_status(status)
        # for i, item in enumerate(search_res):
        #     if item[0].id != ids[i]:
        #         logger.warning("The index of search result: %d" % i)
        #         raise Exception("Query failed")

    # @time_wrapper
    # def query_ids(self, top_k, ids, search_param=None):
    #     status, result = self._milvus.search_by_id(self._collection_name, ids, top_k, params=search_param)
    #     self.check_result_ids(result)
    #     return result

    def count(self, name=None):
        if name is None:
            name = self._collection_name
        logger.debug(self._milvus.count_entities(name))
        row_count = self._milvus.count_entities(name)[1]
        if not row_count:
            row_count = 0
        logger.debug("Row count: %d in collection: <%s>" % (row_count, name))
        return row_count

    def drop(self, timeout=120, name=None):
        timeout = int(timeout)
        if name is None:
            name = self._collection_name
        logger.info("Start delete collection: %s" % name)
        status = self._milvus.drop_collection(name)
        self.check_status(status)
        i = 0
        while i < timeout:
            if self.count(name=name):
                time.sleep(1)
                i = i + 1
                continue
            else:
                break
        if i >= timeout:
            logger.error("Delete collection timeout")

    def describe(self):
        # logger.info(self._milvus.get_collection_info(self._collection_name))
        return self._milvus.get_collection_info(self._collection_name)

    def show_collections(self):
        return self._milvus.list_collections()

    def exists_collection(self, collection_name=None):
        if collection_name is None:
            collection_name = self._collection_name
        _, res = self._milvus.has_collection(collection_name)
        # self.check_status(status)
        return res

    def clean_db(self):
        collection_names = self.show_collections()[1]
        for name in collection_names:
            logger.debug(name)
            self.drop(name=name)

    @time_wrapper
    def preload_collection(self):
        status = self._milvus.load_collection(self._collection_name, timeout=3000)
        self.check_status(status)
        return status

    def get_server_version(self):
        _, res = self._milvus.server_version()
        return res

    def get_server_mode(self):
        return self.cmd("mode")

    def get_server_commit(self):
        return self.cmd("build_commit_id")

    def get_server_config(self):
        return json.loads(self.cmd("get_config *"))

    def get_mem_info(self):
        result = json.loads(self.cmd("get_system_info"))
        result_human = {
            # unit: Gb
            "memory_used": round(int(result["memory_used"]) / (1024*1024*1024), 2)
        }
        return result_human

    def cmd(self, command):
        status, res = self._milvus._cmd(command)
        logger.info("Server command: %s, result: %s" % (command, res))
        self.check_status(status)
        return res
Пример #8
0
class SearchEngine:
    def __init__(self, host, port):
        self.host = os.environ.get('MILVUS_HOST', host)
        self.port = os.environ.get('MILVUS_PORT', str(port))
        self.engine = Milvus(host=self.host, port=self.port)
        self.collection_name = None

#################################################
# HANDLE COLLECTION
#################################################

    def create_collection(self, collection_name, dimension):
        # collection 생성

        param = {
            'collection_name': collection_name,
            'dimension': dimension,
            'index_file_size': 1000,
            'metric_type': MetricType.IP
        }

        self.engine.create_collection(param)

        print('[INFO] collection {}을 생성했습니다.'.format(collection_name))

    def drop_collection(self, collection_name):
        # collection 삭제

        self.engine.drop_collection(collection_name=collection_name)

        print('[INFO] collection {}을 삭제했습니다.'.format(collection_name))

    def get_collection_stats(self, collection_name):
        # collection 정보 출력

        print(self.engine.get_collection_info(collection_name))
        print(self.engine.get_collection_stats(collection_name))

    def set_collection(self, collection_name):
        # 쿼리 조작을 하기 위한 collection 지정

        self.collection_name = collection_name
        print('[INFO] setting collection {}'.format(self.collection_name))

#################################################
# UTILS
#################################################

    def check_set_collection(self):
        # 쿼리 조작을 위한 collection 지정이 되어있는 지 체크

        assert self.collection_name is not None, '[ERROR] collection을 setting해 주십시오!!'

    def check_exist_data_by_key(self, key):
        # collection에 정해진 key가 존재하는 지 확인

        self.check_set_collection()

        _, vector = self.engine.get_entity_by_id(
            collection_name=self.collection_name, ids=key)

        vector = vector if vector else [vector]

        return True if vector[0] else False

    def convert_key_format(self, key):
        return [key] if isinstance(key, int) else key

    def convert_value_format(self, value):
        rank = len(value.shape)

        assert rank < 2, '[ERROR] value의 dim을 2 미만으로 입력해 주세요!!'
        return value.reshape(1, -1) if rank == 1 else value

#################################################
# INSERT
#################################################

    def insert_data(self, key, value):
        # 데이터를 collection에 입력

        key = self.convert_key_format(key)
        value = self.convert_value_format(value)

        if self.check_exist_data_by_key(key):
            print("[ERROR] 이미 collection에 데이터가 존재합니다.")
            return

        self.engine.insert(collection_name=self.collection_name,
                           records=value,
                           ids=key)
        self.engine.flush([self.collection_name])

        print('[INFO] insert key {}'.format(key))

#################################################
# DELELTE
#################################################

    def delete_data(self, key):
        # 데이터를 collection에서 제거

        key = self.convert_key_format(key)

        if not self.check_exist_data_by_key(key):
            print("[ERROR] collection에 데이터가 존재하지 않습니다.")
            return

        self.engine.delete_entity_by_id(self.collection_name, key)
        self.engine.flush([self.collection_name])

        print('[INFO] delete key {}'.format(key))

#################################################
# UPDATE
#################################################

    def update_data(self, key, value):
        # 데이터를 업데이트

        key = self.convert_key_format(key)
        value = self.convert_value_format(value)

        if not self.check_exist_data_by_key(key):
            print("[ERROR] collection에 데이터가 존재하지 않습니다.")
            return

        self.engine.delete_entity_by_id(self.collection_name, key)
        self.engine.flush([self.collection_name])

        self.engine.insert(collection_name=self.collection_name,
                           records=value,
                           ids=key)
        self.engine.flush([self.collection_name])

        print('[INFO] update key {}'.format(key))

#################################################
# SEARCH
#################################################

    def search_by_feature(self, feature, top_k):
        # feature를 이용해서 데이터를 검색

        self.check_set_collection()

        feature = self.convert_value_format(feature)

        _, result = self.engine.search(collection_name=self.collection_name,
                                       query_records=feature,
                                       top_k=top_k)

        li_id = [
            list(map(lambda x: x.id, result[0])) for i in range(len(result))
        ]
        li_dist = [
            list(map(lambda x: x.distance, result[0]))
            for i in range(len(result))
        ]

        return li_id, li_dist

    def search_by_key(self, key, top_k):
        # key를 이용해서 데이터를 검색

        self.check_set_collection()
        key = self.convert_key_format(key)

        if not self.check_exist_data_by_key(key):
            print("[ERROR] collection에 데이터가 존재하지 않습니다.")
            return

        _, vector = self.engine.get_entity_by_id(
            collection_name=self.collection_name, ids=key)
        _, result = self.engine.search(collection_name=self.collection_name,
                                       query_records=vector,
                                       top_k=top_k + 1)

        li_id = [
            list(map(lambda x: x.id, result[0][1:]))
            for i in range(len(result))
        ]
        li_dist = [
            list(map(lambda x: x.distance, result[0][1:]))
            for i in range(len(result))
        ]

        return li_id, li_dist
Пример #9
0
def main():
    milvus = Milvus(uri=uri)
    param = {
        'collection_name': collection_name,
        'dimension': _DIM,
        'index_file_size': 32,
        #'metric_type': MetricType.IP
        'metric_type': MetricType.L2
    }
    # show collections in Milvus server
    _, collections = milvus.list_collections()

    # 创建 collection
    milvus.create_collection(param)
    # 创建 collection partion
    milvus.create_partition(collection_name, partition_tag)

    print(f'collections in Milvus: {collections}')
    # Describe demo_collection
    _, collection = milvus.get_collection_info(collection_name)
    print(f'descript demo_collection: {collection}')

    # build fake vectors
    vectors = [[random.random() for _ in range(_DIM)] for _ in range(10)]
    vectors1 = [[random.random() for _ in range(_DIM)] for _ in range(10)]

    status, id = milvus.insert(collection_name=collection_name,
                               records=vectors,
                               ids=list(range(10)),
                               partition_tag=partition_tag)
    print(f'status: {status} | id: {id}')
    if not status.OK():
        print(f"insert failded: {status}")

    status1, id1 = milvus.insert(collection_name=collection_name,
                                 records=vectors1,
                                 ids=list(range(10, 20)),
                                 partition_tag=partition_tag)
    print(f'status1: {status1} | id1: {id1}')

    ids_deleted = list(range(10))

    status_delete = milvus.delete_entity_by_id(collection_name=collection_name,
                                               id_array=ids_deleted)
    if status_delete.OK():
        print(f'delete successful')

    # Flush collection insered data to disk
    milvus.flush([collection_name])
    # Get demo_collection row count
    status, result = milvus.count_entities(collection_name)
    print(f"demo_collection row count: {result}")

    # Obtain raw vectors by providing vector ids
    status, result_vectors = milvus.get_entity_by_id(collection_name,
                                                     list(range(10, 20)))

    # create index of vectors, search more repidly
    index_param = {'nlist': 2}

    # create ivflat index in demo_collection
    status = milvus.create_index(collection_name, IndexType.IVF_FLAT,
                                 index_param)
    if status.OK():
        print(f"create index ivf_flat succeeed")

    # use the top 10 vectors for similarity search
    query_vectors = vectors1[0:2]

    # execute vector similariy search
    search_param = {"nprobe": 16}

    param = {
        'collection_name': collection_name,
        'query_records': query_vectors,
        'top_k': 1,
        'params': search_param
    }

    status, results = milvus.search(**param)
    if status.OK():
        if results[0][0].distance == 0.0:
            print('query result is correct')
        else:
            print('not correct')
        print(results)
    else:
        print(f'search failed: {status}')

    # 清除已经存在的collection
    milvus.drop_collection(collection_name=collection_name)

    milvus.close()
Пример #10
0
        for seg in par["segments"]:
            print(
                "\t\tsegment name: {}, vector count: {}, index: {}, storage size {:.3f} MB"
                .format(seg["name"], seg["row_count"], seg["index_name"],
                        seg["data_size"] / 1024 / 1024))

    # obtain vector ids from segment, then
    # get vector by specifying vector id
    segment0 = info["partitions"][0]["segments"][0]
    status, ids = client.list_id_in_segment(collection_name, segment0["name"])
    if not status.OK():
        print("Cannot obtain vector ids from segment {}. exiting ....".format(
            segment0["name"]))
        sys.exit(1)

    # obtain top 5 vector
    status, vectors = client.get_entity_by_id(collection_name, ids[:5])
    if not status.OK():
        print("Cannot obtain vector. exiting ....")
        sys.exit(1)

    # delete top 10 vectors
    status = client.delete_entity_by_id(collection_name, ids[:10])
    if status.OK():
        print("Delete top 10 vectors successfully")
    else:
        print("Error occurred when try to delete top 10 vectors. Reason: ",
              status.message)

    client.drop_collection(collection_name)