class MilvusClient(object): def __init__(self, collection_name=None, host=None, port=None, timeout=180): self._collection_name = collection_name start_time = time.time() if not host: host = SERVER_HOST_DEFAULT if not port: port = SERVER_PORT_DEFAULT logger.debug(host) logger.debug(port) # retry connect remote server i = 0 while time.time() < start_time + timeout: try: self._milvus = Milvus(host=host, port=port, try_connect=False, pre_ping=False) break except Exception as e: logger.error(str(e)) logger.error("Milvus connect failed: %d times" % i) i = i + 1 time.sleep(i) if time.time() > start_time + timeout: raise Exception("Server connect timeout") # self._metric_type = None def __str__(self): return 'Milvus collection %s' % self._collection_name def check_status(self, status): if not status.OK(): logger.error(status.message) logger.error(self._milvus.server_status()) logger.error(self.count()) raise Exception("Status not ok") def check_result_ids(self, result): for index, item in enumerate(result): if item[0].distance >= epsilon: logger.error(index) logger.error(item[0].distance) raise Exception("Distance wrong") # only support the given field name def create_collection(self, dimension, data_type=DataType.FLOAT_VECTOR, auto_id=False, collection_name=None, other_fields=None): self._dimension = dimension if not collection_name: collection_name = self._collection_name vec_field_name = utils.get_default_field_name(data_type) fields = [{ "name": vec_field_name, "type": data_type, "params": { "dim": dimension } }] if other_fields: other_fields = other_fields.split(",") if "int" in other_fields: fields.append({ "name": utils.DEFAULT_INT_FIELD_NAME, "type": DataType.INT64 }) if "float" in other_fields: fields.append({ "name": utils.DEFAULT_FLOAT_FIELD_NAME, "type": DataType.FLOAT }) create_param = {"fields": fields, "auto_id": auto_id} try: self._milvus.create_collection(collection_name, create_param) logger.info("Create collection: <%s> successfully" % collection_name) except Exception as e: logger.error(str(e)) raise def create_partition(self, tag, collection_name=None): if not collection_name: collection_name = self._collection_name self._milvus.create_partition(collection_name, tag) def generate_values(self, data_type, vectors, ids): values = None if data_type in [DataType.INT32, DataType.INT64]: values = ids elif data_type in [DataType.FLOAT, DataType.DOUBLE]: values = [(i + 0.0) for i in ids] elif data_type in [DataType.FLOAT_VECTOR, DataType.BINARY_VECTOR]: values = vectors return values def generate_entities(self, vectors, ids=None, collection_name=None): entities = [] if collection_name is None: collection_name = self._collection_name info = self.get_info(collection_name) for field in info["fields"]: field_type = field["type"] entities.append({ "name": field["name"], "type": field_type, "values": self.generate_values(field_type, vectors, ids) }) return entities @time_wrapper def insert(self, entities, ids=None, collection_name=None): tmp_collection_name = self._collection_name if collection_name is None else collection_name try: insert_ids = self._milvus.insert(tmp_collection_name, entities, ids=ids) return insert_ids except Exception as e: logger.error(str(e)) def get_dimension(self): info = self.get_info() for field in info["fields"]: if field["type"] in [ DataType.FLOAT_VECTOR, DataType.BINARY_VECTOR ]: return field["params"]["dim"] def get_rand_ids(self, length): segment_ids = [] while True: stats = self.get_stats() segments = stats["partitions"][0]["segments"] # random choice one segment segment = random.choice(segments) try: segment_ids = self._milvus.list_id_in_segment( self._collection_name, segment["id"]) except Exception as e: logger.error(str(e)) if not len(segment_ids): continue elif len(segment_ids) > length: return random.sample(segment_ids, length) else: logger.debug("Reset length: %d" % len(segment_ids)) return segment_ids # def get_rand_ids_each_segment(self, length): # res = [] # status, stats = self._milvus.get_collection_stats(self._collection_name) # self.check_status(status) # segments = stats["partitions"][0]["segments"] # segments_num = len(segments) # # random choice from each segment # for segment in segments: # status, segment_ids = self._milvus.list_id_in_segment(self._collection_name, segment["name"]) # self.check_status(status) # res.extend(segment_ids[:length]) # return segments_num, res # def get_rand_entities(self, length): # ids = self.get_rand_ids(length) # status, get_res = self._milvus.get_entity_by_id(self._collection_name, ids) # self.check_status(status) # return ids, get_res def get(self): get_ids = random.randint(1, 1000000) self._milvus.get_entity_by_id(self._collection_name, [get_ids]) @time_wrapper def get_entities(self, get_ids): get_res = self._milvus.get_entity_by_id(self._collection_name, get_ids) return get_res @time_wrapper def delete(self, ids, collection_name=None): tmp_collection_name = self._collection_name if collection_name is None else collection_name self._milvus.delete_entity_by_id(tmp_collection_name, ids) def delete_rand(self): delete_id_length = random.randint(1, 100) count_before = self.count() logger.debug("%s: length to delete: %d" % (self._collection_name, delete_id_length)) delete_ids = self.get_rand_ids(delete_id_length) self.delete(delete_ids) self.flush() logger.info("%s: count after delete: %d" % (self._collection_name, self.count())) get_res = self._milvus.get_entity_by_id(self._collection_name, delete_ids) for item in get_res: assert not item # if count_before - len(delete_ids) < self.count(): # logger.error(delete_ids) # raise Exception("Error occured") @time_wrapper def flush(self, _async=False, collection_name=None): tmp_collection_name = self._collection_name if collection_name is None else collection_name self._milvus.flush([tmp_collection_name], _async=_async) @time_wrapper def compact(self, collection_name=None): tmp_collection_name = self._collection_name if collection_name is None else collection_name status = self._milvus.compact(tmp_collection_name) self.check_status(status) @time_wrapper def create_index(self, field_name, index_type, metric_type, _async=False, index_param=None): index_type = INDEX_MAP[index_type] metric_type = utils.metric_type_trans(metric_type) logger.info( "Building index start, collection_name: %s, index_type: %s, metric_type: %s" % (self._collection_name, index_type, metric_type)) if index_param: logger.info(index_param) index_params = { "index_type": index_type, "metric_type": metric_type, "params": index_param } self._milvus.create_index(self._collection_name, field_name, index_params, _async=_async) # TODO: need to check def describe_index(self, field_name): # stats = self.get_stats() info = self._milvus.describe_index(self._collection_name, field_name) index_info = {"index_type": "flat", "index_param": None} for field in info["fields"]: for index in field['indexes']: if not index or "index_type" not in index: continue else: for k, v in INDEX_MAP.items(): if index['index_type'] == v: index_info['index_type'] = k index_info['index_param'] = index['params'] return index_info return index_info def drop_index(self, field_name): logger.info("Drop index: %s" % self._collection_name) return self._milvus.drop_index(self._collection_name, field_name) @time_wrapper def query(self, vector_query, filter_query=None, collection_name=None): tmp_collection_name = self._collection_name if collection_name is None else collection_name must_params = [vector_query] if filter_query: must_params.extend(filter_query) query = {"bool": {"must": must_params}} result = self._milvus.search(tmp_collection_name, query) return result @time_wrapper def load_and_query(self, vector_query, filter_query=None, collection_name=None): tmp_collection_name = self._collection_name if collection_name is None else collection_name must_params = [vector_query] if filter_query: must_params.extend(filter_query) query = {"bool": {"must": must_params}} self.load_collection(tmp_collection_name) result = self._milvus.search(tmp_collection_name, query) return result def get_ids(self, result): idss = result._entities.ids ids = [] len_idss = len(idss) len_r = len(result) top_k = len_idss // len_r for offset in range(0, len_idss, top_k): ids.append(idss[offset:min(offset + top_k, len_idss)]) return ids def query_rand(self, nq_max=100): # for ivf search dimension = 128 top_k = random.randint(1, 100) nq = random.randint(1, nq_max) nprobe = random.randint(1, 100) search_param = {"nprobe": nprobe} query_vectors = [[random.random() for _ in range(dimension)] for _ in range(nq)] metric_type = random.choice(["l2", "ip"]) logger.info("%s, Search nq: %d, top_k: %d, nprobe: %d" % (self._collection_name, nq, top_k, nprobe)) vec_field_name = utils.get_default_field_name() vector_query = { "vector": { vec_field_name: { "topk": top_k, "query": query_vectors, "metric_type": utils.metric_type_trans(metric_type), "params": search_param } } } self.query(vector_query) def load_query_rand(self, nq_max=100): # for ivf search dimension = 128 top_k = random.randint(1, 100) nq = random.randint(1, nq_max) nprobe = random.randint(1, 100) search_param = {"nprobe": nprobe} query_vectors = [[random.random() for _ in range(dimension)] for _ in range(nq)] metric_type = random.choice(["l2", "ip"]) logger.info("%s, Search nq: %d, top_k: %d, nprobe: %d" % (self._collection_name, nq, top_k, nprobe)) vec_field_name = utils.get_default_field_name() vector_query = { "vector": { vec_field_name: { "topk": top_k, "query": query_vectors, "metric_type": utils.metric_type_trans(metric_type), "params": search_param } } } self.load_and_query(vector_query) # TODO: need to check def count(self, collection_name=None): if collection_name is None: collection_name = self._collection_name row_count = self._milvus.get_collection_stats( collection_name)["row_count"] logger.debug("Row count: %d in collection: <%s>" % (row_count, collection_name)) return row_count def drop(self, timeout=120, collection_name=None): timeout = int(timeout) if collection_name is None: collection_name = self._collection_name logger.info("Start delete collection: %s" % collection_name) self._milvus.drop_collection(collection_name) i = 0 while i < timeout: try: row_count = self.count(collection_name=collection_name) if row_count: time.sleep(1) i = i + 1 continue else: break except Exception as e: logger.debug(str(e)) break if i >= timeout: logger.error("Delete collection timeout") def get_stats(self): return self._milvus.get_collection_stats(self._collection_name) def get_info(self, collection_name=None): # pdb.set_trace() if collection_name is None: collection_name = self._collection_name return self._milvus.get_collection_info(collection_name) def show_collections(self): return self._milvus.list_collections() def exists_collection(self, collection_name=None): if collection_name is None: collection_name = self._collection_name res = self._milvus.has_collection(collection_name) return res def clean_db(self): collection_names = self.show_collections() for name in collection_names: self.drop(collection_name=name) @time_wrapper def load_collection(self, collection_name=None): if collection_name is None: collection_name = self._collection_name return self._milvus.load_collection(collection_name, timeout=3000) @time_wrapper def release_collection(self, collection_name=None): if collection_name is None: collection_name = self._collection_name return self._milvus.release_collection(collection_name, timeout=3000) @time_wrapper def load_partitions(self, tag_names, collection_name=None): if collection_name is None: collection_name = self._collection_name return self._milvus.load_partitions(collection_name, tag_names, timeout=3000) @time_wrapper def release_partitions(self, tag_names, collection_name=None): if collection_name is None: collection_name = self._collection_name return self._milvus.release_partitions(collection_name, tag_names, timeout=3000)
def main(): # Specify server addr when create milvus client instance # milvus client instance maintain a connection pool, param # `pool_size` specify the max connection num. milvus = Milvus(_HOST, _PORT) # Create collection demo_collection if it dosen't exist. collection_name = 'example_collection' ok = milvus.has_collection(collection_name) field_name = 'example_field' if not ok: fields = { "fields": [{ "name": field_name, "type": DataType.FLOAT_VECTOR, "metric_type": "L2", "params": { "dim": _DIM }, "indexes": [{ "metric_type": "L2" }] }] } milvus.create_collection(collection_name=collection_name, fields=fields) else: milvus.drop_collection(collection_name=collection_name) # Show collections in Milvus server collections = milvus.list_collections() print(collections) # Describe demo_collection stats = milvus.get_collection_stats(collection_name) print(stats) # 10000 vectors with 128 dimension # element per dimension is float32 type # vectors should be a 2-D array vectors = [[random.random() for _ in range(_DIM)] for _ in range(10)] print(vectors) # You can also use numpy to generate random vectors: # vectors = np.random.rand(10000, _DIM).astype(np.float32) # Insert vectors into demo_collection, return status and vectors id list entities = [{ "name": field_name, "type": DataType.FLOAT_VECTOR, "values": vectors }] res_ids = milvus.insert(collection_name=collection_name, entities=entities) print("ids:", res_ids) # Flush collection inserted data to disk. milvus.flush([collection_name]) # present collection statistics info stats = milvus.get_collection_stats(collection_name) print(stats) # create index of vectors, search more rapidly index_param = { "metric_type": "L2", "index_type": "IVF_FLAT", "params": { "nlist": 1024 } } # Create ivflat index in demo_collection # You can search vectors without creating index. however, Creating index help to # search faster print("Creating index: {}".format(index_param)) status = milvus.create_index(collection_name, field_name, index_param) # execute vector similarity search print("Searching ... ") dsl = { "bool": { "must": [{ "vector": { field_name: { "metric_type": "L2", "query": vectors, "topk": 10, "params": { "nprobe": 16 } } } }] } } milvus.load_collection(collection_name) results = milvus.search(collection_name, dsl) # indicate search result # also use by: # `results.distance_array[0][0] == 0.0 or results.id_array[0][0] == ids[0]` if results[0][0].distance == 0.0 or results[0][0].id == ids[0]: print('Query result is correct') else: print('Query result isn\'t correct') milvus.drop_index(collection_name, field_name) milvus.release_collection(collection_name) # Delete demo_collection status = milvus.drop_collection(collection_name)
class MilvusClient(object): def __init__(self, collection_name=None, host=None, port=None, timeout=60): """ Milvus client wrapper for python-sdk. Default timeout set 60s """ self._collection_name = collection_name try: start_time = time.time() if not host: host = SERVER_HOST_DEFAULT if not port: port = SERVER_PORT_DEFAULT logger.debug(host) logger.debug(port) # retry connect for remote server i = 0 while time.time() < start_time + timeout: try: self._milvus = Milvus(host=host, port=port, try_connect=False, pre_ping=False) if self._milvus.server_status(): logger.debug("Try connect times: %d, %s" % (i, round(time.time() - start_time, 2))) break except Exception as e: logger.debug("Milvus connect failed: %d times" % i) i = i + 1 if time.time() > start_time + timeout: raise Exception("Server connect timeout") except Exception as e: raise e self._metric_type = None if self._collection_name and self.exists_collection(): self._metric_type = metric_type_to_str(self.describe()[1].metric_type) self._dimension = self.describe()[1].dimension def __str__(self): return 'Milvus collection %s' % self._collection_name def set_collection(self, name): self._collection_name = name def check_status(self, status): if not status.OK(): logger.error(self._collection_name) logger.error(status.message) logger.error(self._milvus.server_status()) logger.error(self.count()) raise Exception("Status not ok") def check_result_ids(self, result): for index, item in enumerate(result): if item[0].distance >= epsilon: logger.error(index) logger.error(item[0].distance) raise Exception("Distance wrong") def create_collection(self, collection_name, dimension, index_file_size, metric_type): if not self._collection_name: self._collection_name = collection_name if metric_type not in METRIC_MAP.keys(): raise Exception("Not supported metric_type: %s" % metric_type) metric_type = METRIC_MAP[metric_type] create_param = {'collection_name': collection_name, 'dimension': dimension, 'index_file_size': index_file_size, "metric_type": metric_type} status = self._milvus.create_collection(create_param) self.check_status(status) def create_partition(self, tag_name): status = self._milvus.create_partition(self._collection_name, tag_name) self.check_status(status) def drop_partition(self, tag_name): status = self._milvus.drop_partition(self._collection_name, tag_name) self.check_status(status) def list_partitions(self): status, tags = self._milvus.list_partitions(self._collection_name) self.check_status(status) return tags @time_wrapper def insert(self, X, ids=None, collection_name=None): if collection_name is None: collection_name = self._collection_name status, result = self._milvus.insert(collection_name, X, ids) self.check_status(status) return status, result def insert_rand(self): insert_xb = random.randint(1, 100) X = [[random.random() for _ in range(self._dimension)] for _ in range(insert_xb)] X = utils.normalize(self._metric_type, X) count_before = self.count() status, _ = self.insert(X) self.check_status(status) self.flush() if count_before + insert_xb != self.count(): raise Exception("Assert failed after inserting") def get_rand_ids(self, length): while True: status, stats = self._milvus.get_collection_stats(self._collection_name) self.check_status(status) segments = stats["partitions"][0]["segments"] # random choice one segment segment = random.choice(segments) status, segment_ids = self._milvus.list_id_in_segment(self._collection_name, segment["name"]) if not status.OK(): logger.error(status.message) continue if len(segment_ids): break if length >= len(segment_ids): logger.debug("Reset length: %d" % len(segment_ids)) return segment_ids return random.sample(segment_ids, length) def get_rand_ids_each_segment(self, length): res = [] status, stats = self._milvus.get_collection_stats(self._collection_name) self.check_status(status) segments = stats["partitions"][0]["segments"] segments_num = len(segments) # random choice from each segment for segment in segments: status, segment_ids = self._milvus.list_id_in_segment(self._collection_name, segment["name"]) self.check_status(status) res.extend(segment_ids[:length]) return segments_num, res def get_rand_entities(self, length): ids = self.get_rand_ids(length) status, get_res = self._milvus.get_entity_by_id(self._collection_name, ids) self.check_status(status) return ids, get_res @time_wrapper def get_entities(self, get_ids): status, get_res = self._milvus.get_entity_by_id(self._collection_name, get_ids) self.check_status(status) return get_res @time_wrapper def delete(self, ids, collection_name=None): if collection_name is None: collection_name = self._collection_name status = self._milvus.delete_entity_by_id(collection_name, ids) self.check_status(status) def delete_rand(self): delete_id_length = random.randint(1, 100) count_before = self.count() logger.info("%s: length to delete: %d" % (self._collection_name, delete_id_length)) delete_ids = self.get_rand_ids(delete_id_length) self.delete(delete_ids) self.flush() logger.info("%s: count after delete: %d" % (self._collection_name, self.count())) status, get_res = self._milvus.get_entity_by_id(self._collection_name, delete_ids) self.check_status(status) for item in get_res: if item: raise Exception("Assert failed after delete") if count_before - len(delete_ids) != self.count(): raise Exception("Assert failed after delete") @time_wrapper def flush(self, collection_name=None): if collection_name is None: collection_name = self._collection_name status = self._milvus.flush([collection_name]) self.check_status(status) @time_wrapper def compact(self, collection_name=None): if collection_name is None: collection_name = self._collection_name status = self._milvus.compact(collection_name) self.check_status(status) @time_wrapper def create_index(self, index_type, index_param=None): index_type = INDEX_MAP[index_type] logger.info("Building index start, collection_name: %s, index_type: %s" % (self._collection_name, index_type)) if index_param: logger.info(index_param) status = self._milvus.create_index(self._collection_name, index_type, index_param) self.check_status(status) def describe_index(self): status, result = self._milvus.get_index_info(self._collection_name) self.check_status(status) index_type = None for k, v in INDEX_MAP.items(): if result._index_type == v: index_type = k break return {"index_type": index_type, "index_param": result._params} def drop_index(self): logger.info("Drop index: %s" % self._collection_name) return self._milvus.drop_index(self._collection_name) def query(self, X, top_k, search_param=None, collection_name=None): if collection_name is None: collection_name = self._collection_name status, result = self._milvus.search(collection_name, top_k, query_records=X, params=search_param) self.check_status(status) return result def query_rand(self): top_k = random.randint(1, 100) nq = random.randint(1, 100) nprobe = random.randint(1, 100) search_param = {"nprobe": nprobe} _, X = self.get_rand_entities(nq) logger.info("%s, Search nq: %d, top_k: %d, nprobe: %d" % (self._collection_name, nq, top_k, nprobe)) status, _ = self._milvus.search(self._collection_name, top_k, query_records=X, params=search_param) self.check_status(status) # for i, item in enumerate(search_res): # if item[0].id != ids[i]: # logger.warning("The index of search result: %d" % i) # raise Exception("Query failed") # @time_wrapper # def query_ids(self, top_k, ids, search_param=None): # status, result = self._milvus.search_by_id(self._collection_name, ids, top_k, params=search_param) # self.check_result_ids(result) # return result def count(self, name=None): if name is None: name = self._collection_name logger.debug(self._milvus.count_entities(name)) row_count = self._milvus.count_entities(name)[1] if not row_count: row_count = 0 logger.debug("Row count: %d in collection: <%s>" % (row_count, name)) return row_count def drop(self, timeout=120, name=None): timeout = int(timeout) if name is None: name = self._collection_name logger.info("Start delete collection: %s" % name) status = self._milvus.drop_collection(name) self.check_status(status) i = 0 while i < timeout: if self.count(name=name): time.sleep(1) i = i + 1 continue else: break if i >= timeout: logger.error("Delete collection timeout") def describe(self): # logger.info(self._milvus.get_collection_info(self._collection_name)) return self._milvus.get_collection_info(self._collection_name) def show_collections(self): return self._milvus.list_collections() def exists_collection(self, collection_name=None): if collection_name is None: collection_name = self._collection_name _, res = self._milvus.has_collection(collection_name) # self.check_status(status) return res def clean_db(self): collection_names = self.show_collections()[1] for name in collection_names: logger.debug(name) self.drop(name=name) @time_wrapper def preload_collection(self): status = self._milvus.load_collection(self._collection_name, timeout=3000) self.check_status(status) return status def get_server_version(self): _, res = self._milvus.server_version() return res def get_server_mode(self): return self.cmd("mode") def get_server_commit(self): return self.cmd("build_commit_id") def get_server_config(self): return json.loads(self.cmd("get_config *")) def get_mem_info(self): result = json.loads(self.cmd("get_system_info")) result_human = { # unit: Gb "memory_used": round(int(result["memory_used"]) / (1024*1024*1024), 2) } return result_human def cmd(self, command): status, res = self._milvus._cmd(command) logger.info("Server command: %s, result: %s" % (command, res)) self.check_status(status) return res
class Test: def __init__(self, nvec): self.cname = "benchmark" self.fname = "feature" self.dim = 128 self.client = Milvus("localhost", 19530) self.prefix = '/sift1b/binary_128d_' self.suffix = '.npy' self.vecs_per_file = 100000 self.maxfiles = 1000 self.insert_bulk_size = 5000 self.nvec = nvec self.insert_cost = 0 self.flush_cost = 0 self.create_index_cost = 0 self.search_cost = 0 assert self.nvec >= self.insert_bulk_size & self.nvec % self.insert_bulk_size == 0 def run(self, suite): report = dict() try: # step 1 create collection logging.info(f'step 1 create collection') self._create_collection() logging.info(f'step 1 complete') # step 2 fill data logging.info(f'step 2 insert') start = time.time() self._insert() self.insert_cost = time.time() - start report["insert-speed"] = { "value": format(self.nvec / self.insert_cost, ".4f"), "unit": "vec/sec" } logging.info(f'step 2 complete') # step 3 flush logging.info(f'step 3 flush') start = time.time() self._flush() self.flush_cost = time.time() - start report["flush-cost"] = { "value": format(self.flush_cost, ".4f"), "unit": "s" } logging.info(f'step 3 complete') # step 4 create index logging.info(f'step 4 create index') start = time.time() self._create_index() self.create_index_cost = time.time() - start report["create-index-cost"] = { "value": format(self.create_index_cost, ".4f"), "unit": "s" } logging.info(f'step 4 complete') # step 5 load logging.info(f'step 5 load') self._load_collection() logging.info(f'step 5 complete') # step 6 search logging.info(f'step 6 search') for nq in suite["nq"]: for topk in suite["topk"]: for nprobe in suite["nprobe"]: start = time.time() self._search(nq=nq, topk=topk, nprobe=nprobe) self.search_cost = time.time() - start report[f"search-q{nq}-k{topk}-p{nprobe}-cost"] = { "value": format(self.search_cost, ".4f"), "unit": "s" } logging.info(f'step 6 complete') except AssertionError as ae: logging.exception(ae) except Exception as e: logging.error(f'test failed: {e}') finally: return report def _create_collection(self): logging.debug(f'create_collection() start') if self.client.has_collection(self.cname): logging.debug(f'collection {self.cname} existed') self.client.drop_collection(self.cname) logging.info(f'drop collection {self.cname}') logging.debug(f'before create collection: {self.cname}') self.client.create_collection(self.cname, { "fields": [{ "name": self.fname, "type": DataType.FLOAT_VECTOR, "metric_type": "L2", "params": {"dim": self.dim}, "indexes": [{"metric_type": "L2"}] }] }) logging.info(f'created collection: {self.cname}') assert self.client.has_collection(self.cname) logging.debug(f'create_collection() finished') def _insert(self): logging.debug(f'insert() start') count = 0 for i in range(0, self.maxfiles): filename = self.prefix + str(i).zfill(5) + self.suffix logging.debug(f'filename: {filename}') array = np.load(filename) logging.debug(f'numpy array shape: {array.shape}') step = self.insert_bulk_size for p in range(0, self.vecs_per_file, step): entities = [ {"name": self.fname, "type": DataType.FLOAT_VECTOR, "values": array[p:p + step][:].tolist()}] logging.debug(f'before insert slice: {p}, {p + step}') self.client.insert(self.cname, entities) logging.info(f'after insert slice: {p}, {p + step}') count += step logging.debug(f'insert count: {count}') if count == self.nvec: logging.debug(f'inner break') break if count == self.nvec: logging.debug(f'outer break') break logging.debug(f'insert() finished') def _flush(self): logging.debug(f'flush() start') logging.debug(f'before flush: {self.cname}') self.client.flush([self.cname]) logging.info(f'after flush') stats = self.client.get_collection_stats(self.cname) logging.debug(stats) assert stats["row_count"] == self.nvec logging.debug(f'flush() finished') def _create_index(self): logging.debug(f'create_index() start') index_params = { "metric_type": "L2", "index_type": "IVF_FLAT", "params": {"nlist": 1024} } self.client.create_index(self.cname, self.fname, index_params) logging.debug(f'create index {self.cname} : {self.fname} : {index_params}') logging.debug(f'create_index() finished') def _load_collection(self): logging.debug(f'load_collection() start') logging.debug(f'before load collection: {self.cname}') self.client.load_collection(self.cname) logging.debug(f'load_collection() finished') def _search(self, nq, topk, nprobe): logging.debug(f'search() start') result = self.client.search(self.cname, {"bool": {"must": [{"vector": { self.fname: { "metric_type": "L2", "query": _gen_vectors(nq, self.dim), "topk": topk, "params": {"nprobe": nprobe} } }}]}} ) logging.debug(f'{result}') logging.debug(f'search() finished')