def estimate_S1AB_bias(mintpy_dir, dates, ts_dis): """Estimate the bias between Sentinel-1 A and B. Parameters: mintpy_dir - str, path of the mintpy working directory dates - list of datetime.datetime objects ts_dis - 2D np.ndarray in size of (num_date, num_pixel) in float32 Returns: bias - 1D np.ndarray in size of (num_pixel) in float32 flagA/B - 1D np.ndarray in size of (num_date) in bool dates_fit - list of datetime.datetime objects ts_fitA/B - 1D np.ndarray in size of (num_date_fit) in float32 """ num_date = len(dates) ts_dis = ts_dis.reshape(num_date, -1) # dates/flags for S1A/B date_listA = np.loadtxt(os.path.join(mintpy_dir, 'S1A_date.txt'), dtype=str).tolist() date_listB = np.loadtxt(os.path.join(mintpy_dir, 'S1B_date.txt'), dtype=str).tolist() date_list = sorted(date_listA + date_listB) min_date = date_listB[0] flagA = np.array([x in date_listA and x >= min_date for x in date_list], dtype=np.bool_) flagB = np.array([x in date_listB and x >= min_date for x in date_list], dtype=np.bool_) # update date_list to the shared time period only date_listA = np.array(date_list)[flagA].tolist() date_listB = np.array(date_list)[flagB].tolist() # fit model = dict(polynomial=1) mA = time_func.estimate_time_func(model, date_listA, ts_dis[flagA, :], ref_date=date_listA[0])[1] mB = time_func.estimate_time_func(model, date_listB, ts_dis[flagB, :], ref_date=date_listB[0])[1] # grab bias/offset from the fitting time-series date_list_fit = ptime.get_date_range(min_date, date_list[-1], dstep=1) dates_fit = ptime.date_list2vector(date_list_fit)[0] GA_fit = time_func.get_design_matrix4time_func(date_list_fit, model, ref_date=date_listA[0]) GB_fit = time_func.get_design_matrix4time_func(date_list_fit, model, ref_date=date_listB[0]) ts_fitA = np.matmul(GA_fit, mA) ts_fitB = np.matmul(GB_fit, mB) bias = np.median(ts_fitB - ts_fitA, axis=0) return bias, flagA, flagB, dates_fit, ts_fitA, ts_fitB
def read_init_info(inps): # Time Series Info atr = readfile.read_attribute(inps.file[0]) inps.key = atr['FILE_TYPE'] if inps.key == 'timeseries': obj = timeseries(inps.file[0]) elif inps.key == 'giantTimeseries': obj = giantTimeseries(inps.file[0]) elif inps.key == 'HDFEOS': obj = HDFEOS(inps.file[0]) else: raise ValueError('input file is {}, not timeseries.'.format(inps.key)) obj.open(print_msg=inps.print_msg) inps.seconds = atr.get('CENTER_LINE_UTC', 0) if not inps.file_label: inps.file_label = [] for fname in inps.file: fbase = os.path.splitext(os.path.basename(fname))[0] fbase = fbase.replace('timeseries', '') inps.file_label.append(fbase) # default mask file if not inps.mask_file and 'msk' not in inps.file[0]: dir_name = os.path.dirname(inps.file[0]) if 'Y_FIRST' in atr.keys(): inps.mask_file = os.path.join(dir_name, 'geo_maskTempCoh.h5') else: inps.mask_file = os.path.join(dir_name, 'maskTempCoh.h5') if not os.path.isfile(inps.mask_file): inps.mask_file = None ## date info inps.date_list = obj.dateList inps.num_date = len(inps.date_list) if inps.start_date: inps.date_list = [i for i in inps.date_list if int(i) >= int(inps.start_date)] if inps.end_date: inps.date_list = [i for i in inps.date_list if int(i) <= int(inps.end_date)] inps.num_date = len(inps.date_list) inps.dates, inps.yearList = ptime.date_list2vector(inps.date_list) (inps.ex_date_list, inps.ex_dates, inps.ex_flag) = read_exclude_date(inps.ex_date_list, inps.date_list) # reference date/index if not inps.ref_date: inps.ref_date = atr.get('REF_DATE', None) if inps.ref_date: inps.ref_idx = inps.date_list.index(inps.ref_date) else: inps.ref_idx = None # date/index of interest for initial display if not inps.idx: if (not inps.ref_idx) or (inps.ref_idx < inps.num_date / 2.): inps.idx = inps.num_date - 2 else: inps.idx = 2 # Display Unit (inps.disp_unit, inps.unit_fac) = pp.scale_data2disp_unit(metadata=atr, disp_unit=inps.disp_unit)[1:3] # Map info - coordinate unit inps.coord_unit = atr.get('Y_UNIT', 'degrees').lower() # Read Error List inps.ts_plot_func = plot_ts_scatter inps.error_ts = None inps.ex_error_ts = None if inps.error_file: # assign plot function inps.ts_plot_func = plot_ts_errorbar # read error file error_fc = np.loadtxt(inps.error_file, dtype=bytes).astype(str) inps.error_ts = error_fc[:, 1].astype(np.float)*inps.unit_fac # update error file with exlcude date if inps.ex_date_list: e_ts = inps.error_ts[:] inps.ex_error_ts = e_ts[inps.ex_flag == 0] inps.error_ts = e_ts[inps.ex_flag == 1] # Zero displacement for 1st acquisition if inps.zero_first: inps.zero_idx = min(0, np.min(np.where(inps.ex_flag)[0])) # default lookup table file and coordinate object if not inps.lookup_file: inps.lookup_file = ut.get_lookup_file('./inputs/geometryRadar.h5') inps.coord = ut.coordinate(atr, inps.lookup_file) ## size and lalo info inps.pix_box, inps.geo_box = subset.subset_input_dict2box(vars(inps), atr) inps.pix_box = inps.coord.check_box_within_data_coverage(inps.pix_box) inps.geo_box = inps.coord.box_pixel2geo(inps.pix_box) data_box = (0, 0, int(atr['WIDTH']), int(atr['LENGTH'])) vprint('data coverage in y/x: '+str(data_box)) vprint('subset coverage in y/x: '+str(inps.pix_box)) vprint('data coverage in lat/lon: '+str(inps.coord.box_pixel2geo(data_box))) vprint('subset coverage in lat/lon: '+str(inps.geo_box)) vprint('------------------------------------------------------------------------') # calculate multilook_num # ONLY IF: # inps.multilook is True (no --nomultilook input) AND # inps.multilook_num ==1 (no --multilook-num input) # Note: inps.multilook is used for this check ONLY # Note: multilooking is only applied to the 3D data cubes and their related operations: # e.g. spatial indexing, referencing, etc. All the other variables are in the original grid # so that users get the same result as the non-multilooked version. if inps.multilook and inps.multilook_num == 1: inps.multilook_num = pp.auto_multilook_num(inps.pix_box, inps.num_date, max_memory=inps.maxMemory, print_msg=inps.print_msg) ## reference pixel if not inps.ref_lalo and 'REF_LAT' in atr.keys(): inps.ref_lalo = (float(atr['REF_LAT']), float(atr['REF_LON'])) if inps.ref_lalo: # set longitude to [-180, 180) if inps.coord_unit.lower().startswith('deg') and inps.ref_lalo[1] >= 180.: inps.ref_lalo[1] -= 360. # ref_lalo --> ref_yx if not set in cmd if not inps.ref_yx: inps.ref_yx = inps.coord.geo2radar(inps.ref_lalo[0], inps.ref_lalo[1], print_msg=False)[0:2] # use REF_Y/X if ref_yx not set in cmd if not inps.ref_yx and 'REF_Y' in atr.keys(): inps.ref_yx = (int(atr['REF_Y']), int(atr['REF_X'])) # ref_yx --> ref_lalo if in geo-coord # for plotting purpose only if inps.ref_yx and 'Y_FIRST' in atr.keys(): inps.ref_lalo = inps.coord.radar2geo(inps.ref_yx[0], inps.ref_yx[1], print_msg=False)[0:2] # do not plot native reference point if it's out of the coverage due to subset if (inps.ref_yx and 'Y_FIRST' in atr.keys() and inps.ref_yx == (int(atr.get('REF_Y',-999)), int(atr.get('REF_X',-999))) and not ( inps.pix_box[0] <= inps.ref_yx[1] < inps.pix_box[2] and inps.pix_box[1] <= inps.ref_yx[0] < inps.pix_box[3])): inps.disp_ref_pixel = False print('the native REF_Y/X is out of subset box, thus do not display') ## initial pixel coord if inps.lalo: inps.yx = inps.coord.geo2radar(inps.lalo[0], inps.lalo[1], print_msg=False)[0:2] try: inps.lalo = inps.coord.radar2geo(inps.yx[0], inps.yx[1], print_msg=False)[0:2] except: inps.lalo = None ## figure settings # Flip up-down / left-right if inps.auto_flip: inps.flip_lr, inps.flip_ud = pp.auto_flip_direction(atr, print_msg=inps.print_msg) # Transparency - Alpha if not inps.transparency: # Auto adjust transparency value when showing shaded relief DEM if inps.dem_file and inps.disp_dem_shade: inps.transparency = 0.7 else: inps.transparency = 1.0 ## display unit ans wrap # if wrap_step == 2*np.pi (default value), set disp_unit_img = radian; # otherwise set disp_unit_img = disp_unit inps.disp_unit_img = inps.disp_unit if inps.wrap: inps.range2phase = -4. * np.pi / float(atr['WAVELENGTH']) if 'cm' == inps.disp_unit.split('/')[0]: inps.range2phase /= 100. elif 'mm' == inps.disp_unit.split('/')[0]: inps.range2phase /= 1000. elif 'm' == inps.disp_unit.split('/')[0]: inps.range2phase /= 1. else: raise ValueError('un-recognized display unit: {}'.format(inps.disp_unit)) if (inps.wrap_range[1] - inps.wrap_range[0]) == 2*np.pi: inps.disp_unit_img = 'radian' inps.vlim = inps.wrap_range inps.cbar_label = 'Displacement [{}]'.format(inps.disp_unit_img) ## fit a suite of time func to the time series inps.model, inps.num_param = ts2vel.read_inps2model(inps, date_list=inps.date_list) # dense TS for plotting inps.date_list_fit = ptime.get_date_range(inps.date_list[0], inps.date_list[-1]) inps.dates_fit = ptime.date_list2vector(inps.date_list_fit)[0] inps.G_fit = time_func.get_design_matrix4time_func( date_list=inps.date_list_fit, model=inps.model, seconds=inps.seconds) return inps, atr