def function_to_minimize(chi_params_scalars, chi_params_init, params, weights_SS, rho_vec, lambdas, tau_bq, e): ''' Parameters: chi_params_scalars = guesses for multipliers for chi parameters Returns: The max absolute deviation between the actual and simulated wealth moments ''' J, S, T, beta, sigma, alpha, Z, delta, ltilde, nu, g_y, tau_payroll, retire, mean_income_data, a_tax_income, b_tax_income, c_tax_income, d_tax_income, h_wealth, p_wealth, m_wealth, b_ellipse, upsilon = params chi_params_init *= chi_params_scalars # print 'Print Chi_b: ', chi_params_init[:J] # print 'Scaling vals:', chi_params_scalars[:J] solutions_dict = pickle.load(open("OUTPUT/Saved_moments/SS_init_solutions.pkl", "r")) solutions = solutions_dict['solutions'] b_guess = solutions[:S*J] n_guess = solutions[S*J:2*S*J] wguess, rguess, factorguess, T_Hguess = solutions[2*S*J:] solutions = SS_solver(b_guess.reshape(S, J), n_guess.reshape(S, J), wguess, rguess, T_Hguess, factorguess, chi_params_init[J:], chi_params_init[:J], params, iterative_params, tau_bq, rho, lambdas, weights_SS, e) b_new = solutions[:S*J] n_new = solutions[S*J:2*S*J] w_new, r_new, factor_new, T_H_new = solutions[2*S*J:] # Wealth Calibration Euler error5 = list(misc_funcs.check_wealth_calibration(b_new.reshape(S, J)[:-1, :], factor_new, params)) # labor calibration euler lab_data_dict = pickle.load(open("OUTPUT/Saved_moments/labor_data_moments.pkl", "r")) labor_sim = (n_new.reshape(S, J)*lambdas.reshape(1, J)).sum(axis=1) error6 = list(misc_funcs.perc_dif_func(labor_sim, lab_data_dict['labor_dist_data'])) # combine eulers output = np.array(error5 + error6) # Constraints eul_error = np.ones(J) for j in xrange(J): eul_error[j] = np.abs(Euler_equation_solver(np.append(b_new.reshape(S, J)[:, j], n_new.reshape(S, J)[:, j]), r_new, w_new, T_H_new, factor_new, j, params, chi_params_init[:J], chi_params_init[J:], tau_bq, rho, lambdas, weights_SS, e)).max() fsolve_no_converg = eul_error.max() if np.isnan(fsolve_no_converg): fsolve_no_converg = 1e6 if fsolve_no_converg > 1e-4: output += 1e14 else: var_names = ['solutions'] dictionary = {} for key in var_names: dictionary[key] = locals()[key] pickle.dump(dictionary, open("OUTPUT/Saved_moments/SS_init_solutions.pkl", "w")) if (chi_params_init <= 0.0).any(): output += 1e14 weighting_mat = np.eye(2*J + S) scaling_val = 100.0 value = np.dot(scaling_val * np.dot(output.reshape(1, 2*J+S), weighting_mat), scaling_val * output.reshape(2*J+S, 1)) print 'Value of criterion function: ', value.sum() return value.sum()
def function_to_minimize(chi_guesses_init, params, weights_SS, rho_vec, lambdas, theta, tau_bq, e, wealth_data_array): ''' Parameters: chi_guesses_init = guesses for chi_b other_guesses_init = guesses for the distribution of capital and labor stock, and factor value Returns: The max absolute deviation between the actual and simulated wealth moments ''' J, S, T, beta, sigma, alpha, Z, delta, ltilde, nu, g_y, tau_payroll, retire, mean_income_data, a_tax_income, b_tax_income, c_tax_income, d_tax_income, h_wealth, p_wealth, m_wealth, b_ellipse, upsilon = params print chi_guesses_init Steady_State_SS_X = lambda x: Steady_State_SS(x, chi_guesses_init, params, weights_SS, rho_vec, lambdas, theta, tau_bq, e) variables = pickle.load(open("OUTPUT/Saved_moments/minimization_solutions.pkl", "r")) for key in variables: globals()[key+'_pre'] = variables[key] solutions = opt.fsolve(Steady_State_SS_X, solutions_pre, xtol=1e-13) b_guess = solutions[0: S * J].reshape((S, J)) # Wealth Calibration Euler error5 = list(misc_funcs.check_wealth_calibration(b_guess[:-1, :], solutions[-1], wealth_data_array, params)) print error5 # labor calibration euler labor_sim = ((solutions[S*J:2*S*J]).reshape(S, J)*lambdas.reshape(1, J)).sum(axis=1) error6 = list(misc_funcs.perc_dif_func(labor_sim, labor_dist_data)) # combine eulers output = np.array(error5 + error6) # Constraints fsolve_no_converg = np.abs(Steady_State_SS_X(solutions)).max() if np.isnan(fsolve_no_converg): fsolve_no_converg = 1e6 if fsolve_no_converg > 1e-4: output += 1e9 else: var_names = ['solutions'] dictionary = {} for key in var_names: dictionary[key] = locals()[key] pickle.dump(dictionary, open("OUTPUT/Saved_moments/minimization_solutions.pkl", "w")) if (chi_guesses_init <= 0.0).any(): output += 1e9 weighting_mat = np.eye(2*J + S) scaling_val = 100.0 value = np.dot(scaling_val * np.dot(output.reshape(1, 2*J+S), weighting_mat), scaling_val * output.reshape(2*J+S, 1)) print value.sum() return value.sum()
BQnew = (1+rnew.reshape(T, 1))*(b_mat[:T] * omega_stationary[:T] * rho.reshape(1, S, 1)).sum(1) bmat_s = np.zeros((T, S, J)) bmat_s[:, 1:, :] = b_mat[:T, :-1, :] T_H_new = np.array(list(tax.get_lump_sum(rnew.reshape(T, 1, 1), bmat_s, wnew.reshape( T, 1, 1), e.reshape(1, S, J), n_mat[:T], BQnew.reshape(T, 1, J), lambdas.reshape( 1, 1, J), factor_ss, omega_stationary[:T], 'TPI', parameters, theta, tau_bq)) + [T_Hss]*S) winit[:T] = misc_funcs.convex_combo(wnew, winit[:T], parameters) rinit[:T] = misc_funcs.convex_combo(rnew, rinit[:T], parameters) BQinit[:T] = misc_funcs.convex_combo(BQnew, BQinit[:T], parameters) T_H_init[:T] = misc_funcs.convex_combo(T_H_new[:T], T_H_init[:T], parameters) guesses_b = misc_funcs.convex_combo(b_mat, guesses_b, parameters) guesses_n = misc_funcs.convex_combo(n_mat, guesses_n, parameters) TPIdist = np.array(list(misc_funcs.perc_dif_func(rnew, rinit[:T]))+list(misc_funcs.perc_dif_func(BQnew, BQinit[:T]).flatten())+list( misc_funcs.perc_dif_func(wnew, winit[:T]))+list(misc_funcs.perc_dif_func(T_H_new, T_H_init))).max() TPIdist_vec[TPIiter] = TPIdist # After T=10, if cycling occurs, drop the value of nu # wait til after T=10 or so, because sometimes there is a jump up # in the first couple iterations if TPIiter > 10: if TPIdist_vec[TPIiter] - TPIdist_vec[TPIiter-1] > 0: nu /= 2 print 'New Value of nu:', nu TPIiter += 1 print '\tIteration:', TPIiter print '\t\tDistance:', TPIdist print 'Computing final solutions'
def function_to_minimize(chi_params_scalars, chi_params_init, params, weights_SS, rho_vec, lambdas, tau_bq, e): ''' Inputs: chi_params_scalars = guesses for multipliers for chi parameters ((S+J)x1 array) chi_params_init = chi parameters that will be multiplied ((S+J)x1 array) params = list of parameters (list) weights_SS = steady state population weights (Sx1 array) rho_vec = mortality rates (Sx1 array) lambdas = ability weights (Jx1 array) tau_bq = bequest tax rates (Jx1 array) e = ability levels (Jx1 array) Output: The sum of absolute percent deviations between the actual and simulated wealth moments ''' J, S, T, beta, sigma, alpha, Z, delta, ltilde, nu, g_y, g_n_ss, tau_payroll, retire, mean_income_data, a_tax_income, b_tax_income, c_tax_income, d_tax_income, h_wealth, p_wealth, m_wealth, b_ellipse, upsilon = params chi_params_init *= chi_params_scalars # print 'Print Chi_b: ', chi_params_init[:J] # print 'Scaling vals:', chi_params_scalars[:J] solutions_dict = pickle.load(open("OUTPUT/Saved_moments/SS_init_solutions.pkl", "r")) solutions = solutions_dict['solutions'] b_guess = solutions[:S*J] n_guess = solutions[S*J:2*S*J] wguess, rguess, factorguess, T_Hguess = solutions[2*S*J:] solutions = SS_solver(b_guess.reshape(S, J), n_guess.reshape(S, J), wguess, rguess, T_Hguess, factorguess, chi_params_init[J:], chi_params_init[:J], params, iterative_params, tau_bq, rho, lambdas, weights_SS, e) b_new = solutions[:S*J] n_new = solutions[S*J:2*S*J] w_new, r_new, factor_new, T_H_new = solutions[2*S*J:] # Wealth Calibration Euler error5 = list(misc_funcs.check_wealth_calibration(b_new.reshape(S, J)[:-1, :], factor_new, params)) # labor calibration euler lab_data_dict = pickle.load(open("OUTPUT/Saved_moments/labor_data_moments.pkl", "r")) labor_sim = (n_new.reshape(S, J)*lambdas.reshape(1, J)).sum(axis=1) error6 = list(misc_funcs.perc_dif_func(labor_sim, lab_data_dict['labor_dist_data'])) # combine eulers output = np.array(error5 + error6) # Constraints eul_error = np.ones(J) for j in xrange(J): eul_error[j] = np.abs(Euler_equation_solver(np.append(b_new.reshape(S, J)[:, j], n_new.reshape(S, J)[:, j]), r_new, w_new, T_H_new, factor_new, j, params, chi_params_init[:J], chi_params_init[J:], tau_bq, rho, lambdas, weights_SS, e)).max() fsolve_no_converg = eul_error.max() if np.isnan(fsolve_no_converg): fsolve_no_converg = 1e6 if fsolve_no_converg > 1e-4: # If the fsovle didn't converge (was NaN or above the tolerance), then tell the minimizer that this is a bad place to be # and don't save the solutions as initial guesses (since they might be gibberish) output += 1e14 else: var_names = ['solutions'] dictionary = {} for key in var_names: dictionary[key] = locals()[key] pickle.dump(dictionary, open("OUTPUT/Saved_moments/SS_init_solutions.pkl", "w")) if (chi_params_init <= 0.0).any(): # In case the minimizer doesn't respect the bounds given output += 1e14 # Use generalized method of moments to fit the chi's weighting_mat = np.eye(2*J + S) scaling_val = 100.0 value = np.dot(scaling_val * np.dot(output.reshape(1, 2*J+S), weighting_mat), scaling_val * output.reshape(2*J+S, 1)) print 'Value of criterion function: ', value.sum() return value.sum()
def SS_solver(b_guess_init, n_guess_init, wguess, rguess, T_Hguess, factorguess, chi_n, chi_b, params, iterative_params, tau_bq, rho, lambdas, weights, e): ''' Solves for the steady state distribution of capital, labor, as well as w, r, T_H and the scaling factor, using an iterative method similar to TPI. Inputs: b_guess_init = guesses for b (SxJ array) n_guess_init = guesses for n (SxJ array) wguess = guess for wage rate (scalar) rguess = guess for rental rate (scalar) T_Hguess = guess for lump sum tax (scalar) factorguess = guess for scaling factor to dollars (scalar) chi_n = chi^n_s (Sx1 array) chi_b = chi^b_j (Jx1 array) params = list of parameters (list) iterative_params = list of parameters that determine the convergence of the while loop (list) tau_bq = bequest tax rate (Jx1 array) rho = mortality rates (Sx1 array) lambdas = ability weights (Jx1 array) weights = population weights (Sx1 array) e = ability levels (SxJ array) Outputs: solutions = steady state values of b, n, w, r, factor, T_H ((2*S*J+4)x1 array) ''' J, S, T, beta, sigma, alpha, Z, delta, ltilde, nu, g_y, g_n_ss, tau_payroll, retire, mean_income_data, a_tax_income, b_tax_income, c_tax_income, d_tax_income, h_wealth, p_wealth, m_wealth, b_ellipse, upsilon = params maxiter, mindist_SS = iterative_params # Rename the inputs w = wguess r = rguess T_H = T_Hguess factor = factorguess bssmat = b_guess_init nssmat = n_guess_init dist = 10 iteration = 0 dist_vec = np.zeros(maxiter) while (dist > mindist_SS) and (iteration < maxiter): # Solve for the steady state levels of b and n, given w, r, T_H and factor for j in xrange(J): # Solve the euler equations guesses = np.append(bssmat[:, j], nssmat[:, j]) solutions = opt.fsolve(Euler_equation_solver, guesses * .9, args=(r, w, T_H, factor, j, params, chi_b, chi_n, tau_bq, rho, lambdas, weights, e), xtol=1e-13) bssmat[:,j] = solutions[:S] nssmat[:,j] = solutions[S:] # print np.array(Euler_equation_solver(np.append(bssmat[:, j], nssmat[:, j]), r, w, T_H, factor, j, params, chi_b, chi_n, theta, tau_bq, rho, lambdas, e)).max() K = house.get_K(bssmat, weights.reshape(S, 1), lambdas.reshape(1, J), g_n_ss) L = firm.get_L(e, nssmat, weights.reshape(S, 1), lambdas.reshape(1, J)) Y = firm.get_Y(K, L, params) new_r = firm.get_r(Y, K, params) new_w = firm.get_w(Y, L, params) b_s = np.array(list(np.zeros(J).reshape(1, J)) + list(bssmat[:-1, :])) average_income_model = ((new_r * b_s + new_w * e * nssmat) * weights.reshape(S, 1) * lambdas.reshape(1, J)).sum() new_factor = mean_income_data / average_income_model new_BQ = house.get_BQ(new_r, bssmat, weights.reshape(S, 1), lambdas.reshape(1, J), rho.reshape(S, 1), g_n_ss) theta = tax.replacement_rate_vals(nssmat, new_w, new_factor, e, J, weights.reshape(S, 1), lambdas) new_T_H = tax.get_lump_sum(new_r, b_s, new_w, e, nssmat, new_BQ, lambdas.reshape(1, J), factor, weights.reshape(S, 1), 'SS', params, theta, tau_bq) r = misc_funcs.convex_combo(new_r, r, params) w = misc_funcs.convex_combo(new_w, w, params) factor = misc_funcs.convex_combo(new_factor, factor, params) T_H = misc_funcs.convex_combo(new_T_H, T_H, params) if T_H != 0: dist = np.array([misc_funcs.perc_dif_func(new_r, r)] + [misc_funcs.perc_dif_func(new_w, w)] + [misc_funcs.perc_dif_func(new_T_H, T_H)] + [misc_funcs.perc_dif_func(new_factor, factor)]).max() else: # If T_H is zero (if there are no taxes), a percent difference will throw NaN's, so we use an absoluate difference dist = np.array([misc_funcs.perc_dif_func(new_r, r)] + [misc_funcs.perc_dif_func(new_w, w)] + [abs(new_T_H - T_H)] + [misc_funcs.perc_dif_func(new_factor, factor)]).max() dist_vec[iteration] = dist # Similar to TPI: if the distance between iterations increases, then decrease the value of nu to prevent cycling if iteration > 10: if dist_vec[iteration] - dist_vec[iteration-1] > 0: nu /= 2.0 print 'New value of nu:', nu iteration += 1 print "Iteration: %02d" % iteration, " Distance: ", dist eul_errors = np.ones(J) b_mat = np.zeros((S, J)) n_mat = np.zeros((S, J)) # Given the final w, r, T_H and factor, solve for the SS b and n (if you don't do a final fsolve, there will be a slight mismatch, with high euler errors) for j in xrange(J): solutions1 = opt.fsolve(Euler_equation_solver, np.append(bssmat[:, j], nssmat[:, j])* .9, args=(r, w, T_H, factor, j, params, chi_b, chi_n, tau_bq, rho, lambdas, weights, e), xtol=1e-13) eul_errors[j] = np.array(Euler_equation_solver(solutions1, r, w, T_H, factor, j, params, chi_b, chi_n, tau_bq, rho, lambdas, weights, e)).max() b_mat[:, j] = solutions1[:S] n_mat[:, j] = solutions1[S:] print 'SS fsolve euler error:', eul_errors.max() solutions = np.append(b_mat.flatten(), n_mat.flatten()) other_vars = np.array([w, r, factor, T_H]) solutions = np.append(solutions, other_vars) return solutions
def SS_solver(b_guess_init, n_guess_init, wguess, rguess, T_Hguess, factorguess, chi_n, chi_b, params, iterative_params, tau_bq, rho, lambdas, weights, e): J, S, T, beta, sigma, alpha, Z, delta, ltilde, nu, g_y, tau_payroll, retire, mean_income_data, a_tax_income, b_tax_income, c_tax_income, d_tax_income, h_wealth, p_wealth, m_wealth, b_ellipse, upsilon = params maxiter, mindist_SS = iterative_params w = wguess r = rguess T_H = T_Hguess factor = factorguess bssmat = b_guess_init nssmat = n_guess_init dist = 10 iteration = 0 dist_vec = np.zeros(maxiter) w_step = .1 r_step = .01 w_down = True r_down = True while (dist > mindist_SS) and (iteration < maxiter): for j in xrange(J): # Solve the euler equations guesses = np.append(bssmat[:, j], nssmat[:, j]) solutions = opt.fsolve(Euler_equation_solver, guesses * .9, args=(r, w, T_H, factor, j, params, chi_b, chi_n, tau_bq, rho, lambdas, weights, e), xtol=1e-13) bssmat[:,j] = solutions[:S] nssmat[:,j] = solutions[S:] # print np.array(Euler_equation_solver(np.append(bssmat[:, j], nssmat[:, j]), r, w, T_H, factor, j, params, chi_b, chi_n, theta, tau_bq, rho, lambdas, e)).max() # Update factor, T_H b_s = np.array(list(np.zeros(J).reshape(1, J)) + list(bssmat[:-1, :])) average_income_model = ((r * b_s + w * e * nssmat) * weights).sum() new_factor = mean_income_data / average_income_model BQ = (1+r)*(bssmat * weights * rho.reshape(S, 1)).sum(0) theta = tax.replacement_rate_vals(nssmat, w, factor, e, J, weights) new_T_H = tax.get_lump_sum(r, b_s, w, e, nssmat, BQ, lambdas, new_factor, weights, 'SS', params, theta, tau_bq) # Update w, r B_supply = house.get_K(bssmat, weights) L_supply = firm.get_L(e, nssmat, weights) total_tax = tax.total_taxes(r, b_s, w, e, nssmat, BQ, lambdas, new_factor, new_T_H, None, 'SS', False, params, theta, tau_bq) c_mat = house.get_cons(r, b_s, w, e, nssmat, BQ, lambdas, bssmat, params, total_tax) C = (c_mat*weights).sum() Y = C / (1-(delta*alpha/(r+delta))) B_demand = alpha * Y / (r + delta) L_demand = (1-alpha) * Y / w if B_demand - B_supply > mindist_SS: if r_down: r_step /= 2.0 r_down = False r += r_step else: if not(r_down): r_step /= 2.0 r_down = True r -= r_step if L_demand - L_supply > mindist_SS: if w_down: w_step /=2.0 w_down = False w += w_step else: if not(w_down): w_step /= 2.0 w_down = True w -= w_step factor = misc_funcs.convex_combo(new_factor, factor, params) T_H = misc_funcs.convex_combo(new_T_H, T_H, params) dist = np.array([misc_funcs.perc_dif_func(new_T_H, T_H)] + [misc_funcs.perc_dif_func(new_factor, factor)] + [misc_funcs.perc_dif_func(B_demand, B_supply)] + [misc_funcs.perc_dif_func(L_demand, L_supply)]).max() dist_vec[iteration] = dist if iteration > 10: if dist_vec[iteration] - dist_vec[iteration-1] > 0: nu /= 2.0 print 'New value of nu:', nu iteration += 1 print "Iteration: %02d" % iteration, " Distance: ", dist eul_errors = np.ones(J) b_mat = np.zeros((S, J)) n_mat = np.zeros((S, J)) for j in xrange(J): solutions1 = opt.fsolve(Euler_equation_solver, np.append(bssmat[:, j], nssmat[:, j])* .9, args=(r, w, T_H, factor, j, params, chi_b, chi_n, tau_bq, rho, lambdas, weights, e), xtol=1e-13) eul_errors[j] = np.array(Euler_equation_solver(solutions1, r, w, T_H, factor, j, params, chi_b, chi_n, tau_bq, rho, lambdas, weights, e)).max() b_mat[:, j] = solutions1[:S] n_mat[:, j] = solutions1[S:] print 'SS fsolve euler error:', eul_errors.max() solutions = np.append(b_mat.flatten(), n_mat.flatten()) other_vars = np.array([w, r, factor, T_H]) solutions = np.append(solutions, other_vars) return solutions
rnew.reshape(T, 1, 1), bmat_s, wnew.reshape(T, 1, 1), e.reshape(1, S, J), n_mat[:T], BQnew.reshape(T, 1, J), lambdas.reshape(1, 1, J), factor_ss, omega_stationary[:T]. reshape(T, S, 1), 'TPI', parameters, theta, tau_bq)) + [T_Hss] * S) winit[:T] = misc_funcs.convex_combo(wnew, winit[:T], parameters) rinit[:T] = misc_funcs.convex_combo(rnew, rinit[:T], parameters) BQinit[:T] = misc_funcs.convex_combo(BQnew, BQinit[:T], parameters) T_H_init[:T] = misc_funcs.convex_combo(T_H_new[:T], T_H_init[:T], parameters) guesses_b = misc_funcs.convex_combo(b_mat, guesses_b, parameters) guesses_n = misc_funcs.convex_combo(n_mat, guesses_n, parameters) if T_H_init.all() != 0: TPIdist = np.array( list(misc_funcs.perc_dif_func(rnew, rinit[:T])) + list(misc_funcs.perc_dif_func(BQnew, BQinit[:T]).flatten()) + list(misc_funcs.perc_dif_func(wnew, winit[:T])) + list(misc_funcs.perc_dif_func(T_H_new, T_H_init))).max() else: TPIdist = np.array( list(misc_funcs.perc_dif_func(rnew, rinit[:T])) + list(misc_funcs.perc_dif_func(BQnew, BQinit[:T]).flatten()) + list(misc_funcs.perc_dif_func(wnew, winit[:T])) + list(np.abs(T_H_new, T_H_init))).max() TPIdist_vec[TPIiter] = TPIdist # After T=10, if cycling occurs, drop the value of nu # wait til after T=10 or so, because sometimes there is a jump up # in the first couple iterations if TPIiter > 10: if TPIdist_vec[TPIiter] - TPIdist_vec[TPIiter - 1] > 0:
# b_mat[1, -1, j], n_mat[0, -1, j] = np.array(opt.fsolve(SS_TPI_firstdoughnutring, [b_mat[1, -2, j], n_mat[0, -2, j]], # args=(winit[1], rinit[1], BQinit[1, j], T_H_init[1]))) b_mat[0, :, :] = initial_b b_mat[1, -1, :]= b_mat[1, -2, :] n_mat[0, -1, :] = n_mat[0, -2, :] Knew = (omega_stationary[:T, :, :] * b_mat[:T, :, :]).sum(2).sum(1) Lnew = (omega_stationary[1:T+1, :, :] * e.reshape( 1, S, J) * n_mat[:T, :, :]).sum(2).sum(1) BQnew = (1+rinit[:T].reshape(T, 1))*(b_mat[:T, :, :] * omega_stationary[:T, :, :] * rho.reshape(1, S, 1)).sum(1) Kinit = misc_funcs.convex_combo(Knew, Kinit[:T], parameters) Linit = misc_funcs.convex_combo(Lnew, Linit[:T], parameters) BQinit[:T] = misc_funcs.convex_combo(BQnew, BQinit[:T], parameters) guesses_b = misc_funcs.convex_combo(b_mat, guesses_b, parameters) guesses_n = misc_funcs.convex_combo(n_mat, guesses_n, parameters) TPIdist = np.array(list(misc_funcs.perc_dif_func(Knew, Kinit))+list(misc_funcs.perc_dif_func(BQnew, BQinit[:T]).flatten())+list(misc_funcs.perc_dif_func(Lnew, Linit))).max() TPIdist = np.array(list(np.abs(Knew - Kinit)) + list(np.abs(BQnew - BQinit[:T]).flatten()) + list(np.abs(Lnew - Linit))).max() TPIdist_vec[TPIiter] = TPIdist # After T=10, if cycling occurs, drop the value of nu # wait til after T=10 or so, because sometimes there is a jump up # in the first couple iterations if TPIiter > 10: if TPIdist_vec[TPIiter] - TPIdist_vec[TPIiter-1] > 0: nu /= 2 print 'New Value of nu:', nu TPIiter += 1 print '\tIteration:', TPIiter print '\t\tDistance:', TPIdist if (TPIiter < maxiter) and (TPIdist >= mindist_TPI): bmat_plus1 = np.zeros((T, S, J)) bmat_plus1[:, 1:, :] = b_mat[:T, :-1, :]
def SS_solver(b_guess_init, n_guess_init, wguess, rguess, T_Hguess, factorguess, chi_n, chi_b, params, iterative_params, tau_bq, rho, lambdas, weights, e): J, S, T, beta, sigma, alpha, Z, delta, ltilde, nu, g_y, tau_payroll, retire, mean_income_data, a_tax_income, b_tax_income, c_tax_income, d_tax_income, h_wealth, p_wealth, m_wealth, b_ellipse, upsilon = params maxiter, mindist_SS = iterative_params w = wguess r = rguess T_H = T_Hguess factor = factorguess bssmat = b_guess_init nssmat = n_guess_init dist = 10 iteration = 0 dist_vec = np.zeros(maxiter) while (dist > mindist_SS) and (iteration < maxiter): for j in xrange(J): # Solve the euler equations guesses = np.append(bssmat[:, j], nssmat[:, j]) solutions = opt.fsolve(Euler_equation_solver, guesses * .9, args=(r, w, T_H, factor, j, params, chi_b, chi_n, tau_bq, rho, lambdas, weights, e), xtol=1e-13) bssmat[:,j] = solutions[:S] nssmat[:,j] = solutions[S:] # print np.array(Euler_equation_solver(np.append(bssmat[:, j], nssmat[:, j]), r, w, T_H, factor, j, params, chi_b, chi_n, theta, tau_bq, rho, lambdas, e)).max() K = house.get_K(bssmat, weights) L = firm.get_L(e, nssmat, weights) Y = firm.get_Y(K, L, params) new_r = firm.get_r(Y, K, params) new_w = firm.get_w(Y, L, params) b_s = np.array(list(np.zeros(J).reshape(1, J)) + list(bssmat[:-1, :])) average_income_model = ((new_r * b_s + new_w * e * nssmat) * weights).sum() new_factor = mean_income_data / average_income_model new_BQ = (1+new_r)*(bssmat * weights * rho.reshape(S, 1)).sum(0) theta = tax.replacement_rate_vals(nssmat, new_w, new_factor, e, J, weights) new_T_H = tax.get_lump_sum(new_r, b_s, new_w, e, nssmat, new_BQ, lambdas, factor, weights, 'SS', params, theta, tau_bq) r = misc_funcs.convex_combo(new_r, r, params) w = misc_funcs.convex_combo(new_w, w, params) factor = misc_funcs.convex_combo(new_factor, factor, params) T_H = misc_funcs.convex_combo(new_T_H, T_H, params) dist = np.array([misc_funcs.perc_dif_func(new_r, r)] + [misc_funcs.perc_dif_func(new_w, w)] + [misc_funcs.perc_dif_func(new_T_H, T_H)] + [misc_funcs.perc_dif_func(new_factor, factor)]).max() dist_vec[iteration] = dist if iteration > 10: if dist_vec[iteration] - dist_vec[iteration-1] > 0: nu /= 2.0 print 'New value of nu:', nu iteration += 1 print "Iteration: %02d" % iteration, " Distance: ", dist eul_errors = np.ones(J) b_mat = np.zeros((S, J)) n_mat = np.zeros((S, J)) for j in xrange(J): solutions1 = opt.fsolve(Euler_equation_solver, np.append(bssmat[:, j], nssmat[:, j])* .9, args=(r, w, T_H, factor, j, params, chi_b, chi_n, tau_bq, rho, lambdas, weights, e), xtol=1e-13) eul_errors[j] = np.array(Euler_equation_solver(solutions1, r, w, T_H, factor, j, params, chi_b, chi_n, tau_bq, rho, lambdas, weights, e)).max() b_mat[:, j] = solutions1[:S] n_mat[:, j] = solutions1[S:] print 'SS fsolve euler error:', eul_errors.max() solutions = np.append(b_mat.flatten(), n_mat.flatten()) other_vars = np.array([w, r, factor, T_H]) solutions = np.append(solutions, other_vars) return solutions