Пример #1
0
class RightHand(VMobject):
    def __init__(self, **kwargs):
        hand = SVGMobject("RightHandOutline")
        self.inlines = VMobject(*hand.split()[:-4])
        self.outline = VMobject(*hand.split()[-4:])
        self.outline.set_stroke(color=WHITE, width=5)
        self.inlines.set_stroke(color=DARK_GREY, width=3)
        VMobject.__init__(self, self.outline, self.inlines)
        self.center().scale_to_fit_height(3)
Пример #2
0
class RightHand(VMobject):
    def __init__(self, **kwargs):
        hand = SVGMobject("RightHandOutline")
        self.inlines = VMobject(*hand.split()[:-4])
        self.outline = VMobject(*hand.split()[-4:])
        self.outline.set_stroke(color = WHITE, width = 5)
        self.inlines.set_stroke(color = DARK_GREY, width = 3)
        VMobject.__init__(self, self.outline, self.inlines)
        self.center().scale_to_fit_height(3)
Пример #3
0
class NumberPlane(VMobject):
    CONFIG = {
        "color" : BLUE_D,
        "secondary_color" : BLUE_E,
        "axes_color" : WHITE,
        "secondary_stroke_width" : 1,
        "x_radius": None,
        "y_radius": None,
        "x_unit_size" : 1,
        "y_unit_size" : 1,
        "center_point" : ORIGIN,
        "x_line_frequency" : 1,
        "y_line_frequency" : 1,
        "secondary_line_ratio" : 1,
        "written_coordinate_height" : 0.2,
        "propagate_style_to_family" : False,
    }
    def generate_points(self):
        if self.x_radius is None:
            center_to_edge = (SPACE_WIDTH + abs(self.center_point[0])) 
            self.x_radius = center_to_edge / self.x_unit_size
        if self.y_radius is None:
            center_to_edge = (SPACE_HEIGHT + abs(self.center_point[1])) 
            self.y_radius = center_to_edge / self.y_unit_size
        self.axes = VMobject()
        self.main_lines = VMobject()
        self.secondary_lines = VMobject()
        tuples = [
            (
                self.x_radius, 
                self.x_line_frequency, 
                self.y_radius*DOWN, 
                self.y_radius*UP,
                RIGHT
            ),
            (
                self.y_radius, 
                self.y_line_frequency, 
                self.x_radius*LEFT, 
                self.x_radius*RIGHT,
                UP,
            ),
        ]
        for radius, freq, start, end, unit in tuples:
            main_range = np.arange(0, radius, freq)
            step = freq/float(freq + self.secondary_line_ratio)
            for v in np.arange(0, radius, step):
                line1 = Line(start+v*unit, end+v*unit)
                line2 = Line(start-v*unit, end-v*unit)                
                if v == 0:
                    self.axes.add(line1)
                elif v in main_range:
                    self.main_lines.add(line1, line2)
                else:
                    self.secondary_lines.add(line1, line2)
        self.add(self.secondary_lines, self.main_lines, self.axes)
        self.stretch(self.x_unit_size, 0)
        self.stretch(self.y_unit_size, 1)
        self.shift(self.center_point)
        #Put x_axis before y_axis
        y_axis, x_axis = self.axes.split()
        self.axes = VMobject(x_axis, y_axis)

    def init_colors(self):
        VMobject.init_colors(self)
        self.axes.set_stroke(self.axes_color, self.stroke_width)
        self.main_lines.set_stroke(self.color, self.stroke_width)
        self.secondary_lines.set_stroke(
            self.secondary_color, self.secondary_stroke_width
        )
        return self

    def get_center_point(self):
        return self.coords_to_point(0, 0)

    def coords_to_point(self, x, y):
        x, y = np.array([x, y])
        result = self.axes.get_center()
        result += x*self.get_x_unit_size()*RIGHT
        result += y*self.get_y_unit_size()*UP
        return result

    def point_to_coords(self, point):
        new_point = point - self.axes.get_center()
        x = new_point[0]/self.get_x_unit_size()
        y = new_point[1]/self.get_y_unit_size()
        return x, y

    def get_x_unit_size(self):
        return self.axes.get_width() / (2.0*self.x_radius)

    def get_y_unit_size(self):
        return self.axes.get_height() / (2.0*self.y_radius)

    def get_coordinate_labels(self, x_vals = None, y_vals = None):
        coordinate_labels = VGroup()
        if x_vals == None:
            x_vals = range(-int(self.x_radius), int(self.x_radius)+1)
        if y_vals == None:
            y_vals = range(-int(self.y_radius), int(self.y_radius)+1)
        for index, vals in enumerate([x_vals, y_vals]):
            num_pair = [0, 0]
            for val in vals:
                if val == 0:
                    continue
                num_pair[index] = val
                point = self.coords_to_point(*num_pair)
                num = TexMobject(str(val))
                num.add_background_rectangle()
                num.scale_to_fit_height(
                    self.written_coordinate_height
                )
                num.next_to(point, DOWN+LEFT, buff = SMALL_BUFF)
                coordinate_labels.add(num)
        self.coordinate_labels = coordinate_labels
        return coordinate_labels

    def get_axes(self):
        return self.axes

    def get_axis_labels(self, x_label = "x", y_label = "y"):
        x_axis, y_axis = self.get_axes().split()
        quads = [
            (x_axis, x_label, UP, RIGHT),
            (y_axis, y_label, RIGHT, UP),
        ]
        labels = VGroup()
        for axis, tex, vect, edge in quads:
            label = TexMobject(tex)
            label.add_background_rectangle()
            label.next_to(axis, vect)
            label.to_edge(edge)
            labels.add(label)
        self.axis_labels = labels
        return labels

    def add_coordinates(self, x_vals = None, y_vals = None):
        self.add(*self.get_coordinate_labels(x_vals, y_vals))
        return self

    def get_vector(self, coords, **kwargs):
        point = coords[0]*RIGHT + coords[1]*UP
        arrow = Arrow(ORIGIN, coords, **kwargs)
        return arrow

    def prepare_for_nonlinear_transform(self, num_inserted_anchor_points = 50):
        for mob in self.family_members_with_points():
            num_anchors = mob.get_num_anchor_points()
            if num_inserted_anchor_points > num_anchors:
                mob.insert_n_anchor_points(num_inserted_anchor_points-num_anchors)
                mob.make_smooth()
        return self

    def apply_function(self, function, maintain_smoothness = True):
        VMobject.apply_function(self, function, maintain_smoothness = maintain_smoothness)
Пример #4
0
class NumberPlane(VMobject):
    CONFIG = {
        "color": BLUE_D,
        "secondary_color": BLUE_E,
        "axes_color": WHITE,
        "secondary_stroke_width": 1,
        "x_radius": SPACE_WIDTH,
        "y_radius": SPACE_HEIGHT,
        "space_unit_to_x_unit": 1,
        "space_unit_to_y_unit": 1,
        "x_line_frequency": 1,
        "y_line_frequency": 1,
        "secondary_line_ratio": 1,
        "written_coordinate_height": 0.2,
        "written_coordinate_nudge": 0.1 * (DOWN + RIGHT),
        "num_pair_at_center": (0, 0),
        "propogate_style_to_family": False,
    }

    def generate_points(self):
        self.axes = VMobject()
        self.main_lines = VMobject()
        self.secondary_lines = VMobject()
        tuples = [
            (self.x_radius, self.x_line_frequency, self.y_radius * DOWN,
             self.y_radius * UP, RIGHT),
            (
                self.y_radius,
                self.y_line_frequency,
                self.x_radius * LEFT,
                self.x_radius * RIGHT,
                UP,
            ),
        ]
        for radius, freq, start, end, unit in tuples:
            main_range = np.arange(0, radius, freq)
            step = freq / float(freq + self.secondary_line_ratio)
            for v in np.arange(0, radius, step):
                line1 = Line(start + v * unit, end + v * unit)
                line2 = Line(start - v * unit, end - v * unit)
                if v == 0:
                    self.axes.add(line1)
                elif v in main_range:
                    self.main_lines.add(line1, line2)
                else:
                    self.secondary_lines.add(line1, line2)
        self.add(self.secondary_lines, self.main_lines, self.axes)
        self.stretch(self.space_unit_to_x_unit, 0)
        self.stretch(self.space_unit_to_y_unit, 1)
        #Put x_axis before y_axis
        y_axis, x_axis = self.axes.split()
        self.axes = VMobject(x_axis, y_axis)

    def init_colors(self):
        VMobject.init_colors(self)
        self.axes.set_stroke(self.axes_color, self.stroke_width)
        self.main_lines.set_stroke(self.color, self.stroke_width)
        self.secondary_lines.set_stroke(self.secondary_color,
                                        self.secondary_stroke_width)
        return self

    def get_center_point(self):
        return self.num_pair_to_point(self.num_pair_at_center)

    def num_pair_to_point(self, pair):
        pair = np.array(pair) + self.num_pair_at_center
        result = self.axes.get_center()
        result[0] += pair[0] * self.space_unit_to_x_unit
        result[1] += pair[1] * self.space_unit_to_y_unit
        return result

    def point_to_num_pair(self, point):
        new_point = point - self.get_center()
        center_x, center_y = self.num_pair_at_center
        x = center_x + point[0] / self.space_unit_to_x_unit
        y = center_y + point[1] / self.space_unit_to_y_unit
        return x, y

    def get_coordinate_labels(self, x_vals=None, y_vals=None):
        result = []
        if x_vals == None and y_vals == None:
            x_vals = range(-int(self.x_radius), int(self.x_radius))
            y_vals = range(-int(self.y_radius), int(self.y_radius))
        for index, vals in enumerate([x_vals, y_vals]):
            num_pair = [0, 0]
            for val in vals:
                num_pair[index] = val
                point = self.num_pair_to_point(num_pair)
                num = TexMobject(str(val))
                num.scale_to_fit_height(self.written_coordinate_height)
                num.shift(point - num.get_corner(UP + LEFT),
                          self.written_coordinate_nudge)
                result.append(num)
        return result

    def get_axes(self):
        return self.axes

    def get_axis_labels(self, x_label="x", y_label="y"):
        x_axis, y_axis = self.get_axes().split()
        x_label_mob = TexMobject(x_label)
        y_label_mob = TexMobject(y_label)
        x_label_mob.next_to(x_axis, DOWN)
        x_label_mob.to_edge(RIGHT)
        y_label_mob.next_to(y_axis, RIGHT)
        y_label_mob.to_edge(UP)
        return VMobject(x_label_mob, y_label_mob)

    def add_coordinates(self, x_vals=None, y_vals=None):
        self.add(*self.get_coordinate_labels(x_vals, y_vals))
        return self

    def get_vector(self, coords, **kwargs):
        point = coords[0] * RIGHT + coords[1] * UP
        arrow = Arrow(ORIGIN, coords, **kwargs)
        return arrow

    def prepare_for_nonlinear_transform(self, num_inserted_anchor_points=50):
        for mob in self.family_members_with_points():
            num_anchors = mob.get_num_anchor_points()
            if num_inserted_anchor_points > num_anchors:
                mob.insert_n_anchor_points(num_inserted_anchor_points -
                                           num_anchors)
                mob.make_smooth()
        return self
Пример #5
0
class NumberPlane(VMobject):
    CONFIG = {
        "color" : BLUE_D,
        "secondary_color" : BLUE_E,
        "axes_color" : WHITE,
        "secondary_stroke_width" : 1,
        "x_radius": None,
        "y_radius": None,
        "x_unit_size" : 1,
        "y_unit_size" : 1,
        "center_point" : ORIGIN,
        "x_line_frequency" : 1,
        "y_line_frequency" : 1,
        "secondary_line_ratio" : 1,
        "written_coordinate_height" : 0.2,
        "propogate_style_to_family" : False,
    }
    
    def generate_points(self):
        if self.x_radius is None:
            center_to_edge = (SPACE_WIDTH + abs(self.center_point[0])) 
            self.x_radius = center_to_edge / self.x_unit_size
        if self.y_radius is None:
            center_to_edge = (SPACE_HEIGHT + abs(self.center_point[1])) 
            self.y_radius = center_to_edge / self.y_unit_size
        self.axes = VMobject()
        self.main_lines = VMobject()
        self.secondary_lines = VMobject()
        tuples = [
            (
                self.x_radius, 
                self.x_line_frequency, 
                self.y_radius*DOWN, 
                self.y_radius*UP,
                RIGHT
            ),
            (
                self.y_radius, 
                self.y_line_frequency, 
                self.x_radius*LEFT, 
                self.x_radius*RIGHT,
                UP,
            ),
        ]
        for radius, freq, start, end, unit in tuples:
            main_range = np.arange(0, radius, freq)
            step = freq/float(freq + self.secondary_line_ratio)
            for v in np.arange(0, radius, step):
                line1 = Line(start+v*unit, end+v*unit)
                line2 = Line(start-v*unit, end-v*unit)                
                if v == 0:
                    self.axes.add(line1)
                elif v in main_range:
                    self.main_lines.add(line1, line2)
                else:
                    self.secondary_lines.add(line1, line2)
        self.add(self.secondary_lines, self.main_lines, self.axes)
        self.stretch(self.x_unit_size, 0)
        self.stretch(self.y_unit_size, 1)
        self.shift(self.center_point)
        #Put x_axis before y_axis
        y_axis, x_axis = self.axes.split()
        self.axes = VMobject(x_axis, y_axis)

    def init_colors(self):
        VMobject.init_colors(self)
        self.axes.set_stroke(self.axes_color, self.stroke_width)
        self.main_lines.set_stroke(self.color, self.stroke_width)
        self.secondary_lines.set_stroke(
            self.secondary_color, self.secondary_stroke_width
        )
        return self

    def get_center_point(self):
        return self.coords_to_point(0, 0)

    def coords_to_point(self, x, y):
        x, y = np.array([x, y])
        result = self.axes.get_center()
        result += x*self.get_x_unit_size()*RIGHT
        result += y*self.get_y_unit_size()*UP
        return result

    def point_to_coords(self, point):
        new_point = point - self.axes.get_center()
        x = new_point[0]/self.get_x_unit_size()
        y = new_point[1]/self.get_y_unit_size()
        return x, y

    def get_x_unit_size(self):
        return self.axes.get_width() / (2.0*self.x_radius)

    def get_y_unit_size(self):
        return self.axes.get_height() / (2.0*self.y_radius)

    def get_coordinate_labels(self, x_vals = None, y_vals = None):
        result = []
        if x_vals == None and y_vals == None:
            x_vals = range(-int(self.x_radius), int(self.x_radius))
            y_vals = range(-int(self.y_radius), int(self.y_radius))
        for index, vals in enumerate([x_vals, y_vals]):
            num_pair = [0, 0]
            for val in vals:
                if val == 0:
                    continue
                num_pair[index] = val
                point = self.coords_to_point(*num_pair)
                num = TexMobject(str(val))
                num.add_background_rectangle()
                num.scale_to_fit_height(
                    self.written_coordinate_height
                )
                vect = DOWN if index == 0 else LEFT
                num.next_to(point, vect, buff = SMALL_BUFF)
                result.append(num)
        return result

    def get_axes(self):
        return self.axes

    def get_axis_labels(self, x_label = "x", y_label = "y"):
        x_axis, y_axis = self.get_axes().split()
        quads = [
            (x_axis, x_label, UP, RIGHT),
            (y_axis, y_label, RIGHT, UP),
        ]
        labels = VGroup()
        for axis, tex, vect, edge in quads:
            label = TexMobject(tex)
            label.add_background_rectangle()
            label.next_to(axis, vect)
            label.to_edge(edge)
            labels.add(label)
        self.axis_labels = labels
        return labels

    def add_coordinates(self, x_vals = None, y_vals = None):
        self.add(*self.get_coordinate_labels(x_vals, y_vals))
        return self

    def get_vector(self, coords, **kwargs):
        point = coords[0]*RIGHT + coords[1]*UP
        arrow = Arrow(ORIGIN, coords, **kwargs)
        return arrow

    def prepare_for_nonlinear_transform(self, num_inserted_anchor_points = 50):
        for mob in self.family_members_with_points():
            num_anchors = mob.get_num_anchor_points()
            if num_inserted_anchor_points > num_anchors:
                mob.insert_n_anchor_points(num_inserted_anchor_points-num_anchors)
                mob.make_smooth()
        return self
Пример #6
0
class NumberPlane(VMobject):
    CONFIG = {
        "color" : BLUE_D,
        "secondary_color" : BLUE_E,
        "axes_color" : WHITE,
        "secondary_stroke_width" : 1,
        "x_radius": SPACE_WIDTH,
        "y_radius": SPACE_HEIGHT,
        "space_unit_to_x_unit" : 1,
        "space_unit_to_y_unit" : 1,
        "x_line_frequency" : 1,
        "y_line_frequency" : 1,
        "secondary_line_ratio" : 1,
        "written_coordinate_height" : 0.2,
        "written_coordinate_nudge" : 0.1*(DOWN+RIGHT),
        "num_pair_at_center" : (0, 0),
        "propogate_style_to_family" : False,
        "submobject_partial_creation_mode" : "smoothed_lagged_start",
    }
    
    def generate_points(self):
        self.axes = VMobject()
        self.main_lines = VMobject()
        self.secondary_lines = VMobject()
        tuples = [
            (
                self.x_radius, 
                self.x_line_frequency, 
                self.y_radius*DOWN, 
                self.y_radius*UP,
                RIGHT
            ),
            (
                self.y_radius, 
                self.y_line_frequency, 
                self.x_radius*LEFT, 
                self.x_radius*RIGHT,
                UP,
            ),
        ]
        for radius, freq, start, end, unit in tuples:
            main_range = np.arange(0, radius, freq)
            step = freq/float(freq + self.secondary_line_ratio)
            for v in np.arange(0, radius, step):
                line1 = Line(start+v*unit, end+v*unit)
                line2 = Line(start-v*unit, end-v*unit)                
                if v == 0:
                    self.axes.add(line1)
                elif v in main_range:
                    self.main_lines.add(line1, line2)
                else:
                    self.secondary_lines.add(line1, line2)
        self.add(self.axes, self.main_lines, self.secondary_lines)
        self.stretch(self.space_unit_to_x_unit, 0)
        self.stretch(self.space_unit_to_y_unit, 1)
        #Put x_axis before y_axis
        y_axis, x_axis = self.axes.split()
        self.axes = VMobject(x_axis, y_axis)

    def init_colors(self):
        VMobject.init_colors(self)
        self.axes.set_stroke(self.axes_color, self.stroke_width)
        self.main_lines.set_stroke(self.color, self.stroke_width)
        self.secondary_lines.set_stroke(
            self.secondary_color, self.secondary_stroke_width
        )
        return self

    def get_center_point(self):
        return self.num_pair_to_point(self.num_pair_at_center)

    def num_pair_to_point(self, pair):
        pair = np.array(pair) + self.num_pair_at_center
        result = self.get_center()
        result[0] += pair[0]*self.space_unit_to_x_unit
        result[1] += pair[1]*self.space_unit_to_y_unit
        return result

    def point_to_num_pair(self, point):
        new_point = point-self.get_center()
        center_x, center_y = self.num_pair_at_center
        x = center_x + point[0]/self.space_unit_to_x_unit
        y = center_y + point[1]/self.space_unit_to_y_unit
        return x, y

    def get_coordinate_labels(self, x_vals = None, y_vals = None):
        result = []
        if x_vals == None and y_vals == None:
            x_vals = range(-int(self.x_radius), int(self.x_radius))
            y_vals = range(-int(self.y_radius), int(self.y_radius))
        for index, vals in enumerate([x_vals, y_vals]):
            num_pair = [0, 0]
            for val in vals:
                num_pair[index] = val
                point = self.num_pair_to_point(num_pair)
                num = TexMobject(str(val))
                num.scale_to_fit_height(
                    self.written_coordinate_height
                )
                num.shift(
                    point-num.get_corner(UP+LEFT),
                    self.written_coordinate_nudge
                )
                result.append(num)
        return result

    def get_axes(self):
        return self.axes

    def get_axis_labels(self, x_label = "x", y_label = "y"):
        x_axis, y_axis = self.get_axes().split()
        x_label_mob = TexMobject(x_label)
        y_label_mob = TexMobject(y_label)
        x_label_mob.next_to(x_axis, DOWN)
        x_label_mob.to_edge(RIGHT)
        y_label_mob.next_to(y_axis, RIGHT)
        y_label_mob.to_edge(UP)
        return VMobject(x_label_mob, y_label_mob)


    def add_coordinates(self, x_vals = None, y_vals = None):
        self.add(*self.get_coordinate_labels(x_vals, y_vals))
        return self

    def get_vector(self, coords, **kwargs):
        point = coords[0]*RIGHT + coords[1]*UP
        arrow = Arrow(ORIGIN, coords, **kwargs)
        return arrow

    def prepare_for_nonlinear_transform(self, num_inserted_anchor_points = 50):
        for mob in self.family_members_with_points():
            mob.insert_n_anchor_points(num_inserted_anchor_points)
            mob.make_smooth()
        return self