print('dropout = ', args.dropout) for i in range(3): target_sentence, predicted_sentence = validation_sample( args.use_cuda) print(' target : ', target_sentence) print('sample : ', predicted_sentence) print('------------------------------') ce_result += [cross_entropy] kld_result += [kld] # generate sample if iteration % 300 == 0: source = 'she should control the speed of her car' result = rvae.conditioned_sample(source, batch_loader, args) print('\n') print('------------SAMPLE------------') print('------------------------------') print('source : ', source) print('sample : ', result) print('------------------------------') # save model if iteration % 1000 == 0 or iteration == (args.num_iterations - 1): t.save(rvae.state_dict(), 'saved_models/trained_RVAE_' + args.model_name) np.save('saved_models/ce_result_{}.npy'.format(args.model_name), np.array(ce_result)) np.save('saved_models/kld_result_npy_{}'.format(args.model_name), np.array(kld_result))
metavar='MN', help='name of model to save (default: ' ')') args = parser.parse_args() assert os.path.exists('saved_models/trained_RVAE_' + args.model_name), \ 'trained model not found' batch_loader = BatchLoader('') parameters = Parameters(batch_loader.max_word_len, batch_loader.max_seq_len, batch_loader.words_vocab_size, batch_loader.chars_vocab_size) rvae = RVAE(parameters) rvae.load_state_dict(t.load('saved_models/trained_RVAE_' + args.model_name)) if args.use_cuda: rvae = rvae.cuda() with open(args.input_file) as f: source_phrases = f.readlines() source_phrases = [x.strip() for x in source_phrases] for input_phrase in source_phrases: # embed print('input: ', input_phrase) print('sampled: ') for iteration in range(args.num_sample): print(rvae.conditioned_sample(input_phrase, batch_loader, args)) print()