metavar='TD', help='name of saved model (default: ' ')') args = parser.parse_args() batch_loader = BatchLoader('', custom_index=True, train_data_name=args.sample_data) parameters = Parameters(batch_loader.max_word_len, batch_loader.max_seq_len, batch_loader.words_vocab_size, batch_loader.chars_vocab_size) rvae = RVAE(parameters) rvae.load_state_dict(t.load('./trained_model/{}'.format(args.model_name))) if args.use_cuda: rvae = rvae.cuda() sampler = rvae.latent_sampler(batch_loader) zs = {} for i in range( 0, int(batch_loader.total_lines('train') / args.batch_size) + 1): indexes = np.array( range( i * args.batch_size, min((i + 1) * args.batch_size, batch_loader.total_lines('train')))) if len(indexes) > 0:
type=bool, default=True, metavar='CUDA', help='use cuda (default: True)') parser.add_argument('--num-sample', type=int, default=100, metavar='NS', help='num samplings (default: 10)') args = parser.parse_args() batch_loader = BatchLoader('') parameters = Parameters(batch_loader.max_word_len, batch_loader.max_seq_len, batch_loader.words_vocab_size, batch_loader.chars_vocab_size) rvae = RVAE(parameters) rvae.load_state_dict(t.load('trained_RVAE_code')) if args.use_cuda: rvae = rvae.cuda() with open("code_sampling_100.txt", 'w') as cs: for iteration in range(args.num_sample): seed = np.random.normal(size=[1, parameters.latent_variable_size]) result = rvae.sample(batch_loader, 50, seed, args.use_cuda) # print(result) # print() cs.write(result + '\n')
tensor_files = [['data/super/train_word_tensor_2.npy'], ['data/super/train_character_tensor_2.npy']] batch_loader_2 = BatchLoader(data_files, idx_files, tensor_files) parameters_2 = Parameters(batch_loader_2.max_word_len, batch_loader_2.max_seq_len, batch_loader_2.words_vocab_size, batch_loader_2.chars_vocab_size) '''======================================== RVAE loading ================================================== ''' print ('Started loading') start_time = time.time() rvae = RVAE(parameters,parameters_2) rvae.load_state_dict(t.load(args.save_model)) if args.use_cuda: rvae = rvae.cuda() loading_time=time.time() - start_time print ('Time elapsed in loading model =' , loading_time) print ('Finished loading') ''' ==================================== Parameters Initialising =========================================== ''' n_best = args.beam_top beam_size =args.beam_size assert n_best <= beam_size use_cuda = args.use_cuda if args.use_file:
batch_loader = BatchLoader(path='', custom_index=False, train_data_name=args.train_data) parameters = Parameters(batch_loader.max_word_len, batch_loader.max_seq_len, batch_loader.words_vocab_size, batch_loader.chars_vocab_size) rvae = RVAE(parameters) optimizer = Adam(rvae.learnable_parameters(), args.learning_rate) if args.use_trained: rvae.load_state_dict( t.load('./trained_model/{}_trained_{}'.format( args.train_data.split('.')[0], args.start_epoch))) optimizer.load_state_dict( t.load('./trained_model/{}_trained_optimizer_{}'.format( args.train_data.split('.')[0], args.start_epoch))) if args.use_cuda: rvae = rvae.cuda() train_step = rvae.trainer(optimizer, batch_loader) validate = rvae.validater(batch_loader) ce_result = [] kld_result = [] for iteration in range(args.start_epoch, args.num_iterations):
help='name of model to save (default: ' ')') args = parser.parse_args() batch_loader = BatchLoader('') parameters = Parameters(batch_loader.max_word_len, batch_loader.max_seq_len, batch_loader.words_vocab_size, batch_loader.chars_vocab_size) rvae = RVAE(parameters) ce_result = [] kld_result = [] if args.use_trained: rvae.load_state_dict( t.load('saved_models/trained_RVAE_' + args.model_name)) ce_result = list( np.load('saved_models/ce_result_{}.npy'.format(args.model_name))) kld_result = list( np.load('saved_models/kld_result_npy_{}.npy'.format( args.model_name))) if args.use_cuda: rvae = rvae.cuda() optimizer = Adam(rvae.learnable_parameters(), args.learning_rate) train_step = rvae.trainer(optimizer, batch_loader) validate, validation_sample = rvae.validater(batch_loader) for iteration in range(args.num_iterations):
path + 'super/train_character_tensor_2.npy', path + 'super/valid_character_tensor_2.npy' ]] batch_loader_2 = BatchLoader(data_files, idx_files, tensor_files, path) parameters_2 = Parameters(batch_loader_2.max_word_len, batch_loader_2.max_seq_len, batch_loader_2.words_vocab_size, batch_loader_2.chars_vocab_size, path) '''================================================================================================= ''' rvae = RVAE(parameters, parameters_2) if args.use_trained != '': trainedModelName = os.path.join( os.path.join(args.use_trained, 'trained_RVAE')) rvae.load_state_dict(t.load(trainedModelName)) if args.use_cuda: print("Using cuda") rvae = rvae.cuda() optimizer = Adam(rvae.learnable_parameters(), args.learning_rate) train_step = rvae.trainer(optimizer, batch_loader, batch_loader_2) validate = rvae.validater(batch_loader, batch_loader_2) loss_tr_result = ["loss_train"] ce_result = ["cross_entropy_train"] kld_result = ["kld_train"] coef_result = ["coef_train"] it = ["iteration"] loss_val_result = ["loss_val"]
default=True, metavar='CUDA', help='use cuda (default: True)') # parser.add_argument('--num-sample', type=int, default=10, metavar='NS', # help='num samplings (default: 10)') args = parser.parse_args() batch_loader = BatchLoader('') parameters = Parameters(batch_loader.max_word_len, batch_loader.max_seq_len, batch_loader.words_vocab_size, batch_loader.chars_vocab_size) rvae = RVAE(parameters) rvae.load_state_dict(torch.load('trained_RVAE')) if args.use_cuda: rvae = rvae.cuda() seq_len = 50 seed = np.random.normal(size=[1, parameters.latent_variable_size]) data = [["how are you ?"], ["how are you doing"]] data_words = [[line.split() for line in target] for target in data] word_tensor = np.array( [[list(map(batch_loader.word_to_idx.get, line)) for line in target] for target in data_words]) character_tensor = np.array( [[list(map(batch_loader.encode_characters, line)) for line in target] for target in data_words])