Пример #1
0
class Agent():
    """Interacts with and learns from the environment."""
    def __init__(self, state_size, action_size, seed):
        """Initialize an Agent object.
        
        Params
        ======
            state_size (int): dimension of each state
            action_size (int): dimension of each action
            seed (int): random seed
        """
        self.state_size = state_size
        self.action_size = action_size
        self.seed = random.seed(seed)

        # Q-Network
        self.qnetwork_local = DuelingDQN(state_size, action_size,
                                         seed).to(device)
        self.qnetwork_target = DuelingDQN(state_size, action_size,
                                          seed).to(device)
        self.optimizer = optim.Adam(self.qnetwork_local.parameters(), lr=LR)

        self.priority_alpha = 0.0  #current best: 03
        self.priority_beta_start = 0.4
        self.priority_beta_frames = BUFFER_SIZE

        # Replay memory
        self.memory = PrioritizedReplayMemory(BUFFER_SIZE, self.priority_alpha,
                                              self.priority_beta_start,
                                              self.priority_beta_frames)
        # Initialize time step (for updating every UPDATE_EVERY steps)
        self.t_step = 0

    def step(self, state, action, reward, next_state, done):
        # Save experience in replay memory
        self.memory.push((state, action, reward, next_state, done))

        # Learn every UPDATE_EVERY time steps.
        self.t_step = (self.t_step + 1) % UPDATE_EVERY
        if self.t_step == 0:
            # If enough samples are available in memory, get random subset and learn
            if self.memory.storage_size() > BATCH_SIZE:
                #print("storage == ", self.memory.storage_size())
                experiences, idxes, weights = self.memory.sample(BATCH_SIZE)
                self.learn(experiences, idxes, weights, GAMMA)

    def act(self, state, eps=0.):
        """Returns actions for given state as per current policy.
        
        Params
        ======
            state (array_like): current state
            eps (float): epsilon, for epsilon-greedy action selection
        """
        state = torch.from_numpy(state).float().unsqueeze(0).to(device)
        self.qnetwork_local.eval()
        with torch.no_grad():
            action_values = self.qnetwork_local(state)
        self.qnetwork_local.train()

        # Epsilon-greedy action selection
        if random.random() > eps:
            return np.argmax(action_values.cpu().data.numpy())
        else:
            return random.choice(np.arange(self.action_size))

    def learn(self, experiences, idxes, weights, gamma):
        """Update value parameters using given batch of experience tuples.

        Params
        ======
            experiences (Tuple[torch.Tensor]): tuple of (s, a, r, s', done) tuples 
            gamma (float): discount factor
        """
        states, actions, rewards, next_states, dones = zip(*experiences)

        states = torch.from_numpy(
            np.vstack([state for state in states
                       if state is not None])).float().to(device)
        actions = torch.from_numpy(
            np.vstack([action for action in actions
                       if action is not None])).long().to(device)
        rewards = torch.from_numpy(
            np.vstack([reward for reward in rewards
                       if reward is not None])).float().to(device)
        next_states = torch.from_numpy(
            np.vstack([
                next_state for next_state in next_states
                if next_state is not None
            ])).float().to(device)
        dones = torch.from_numpy(
            np.vstack([done for done in dones if done is not None
                       ]).astype(np.uint8)).float().to(device)

        # Get max predicted Q values (for next states) from target model
        #print("state-action values:")
        #print(self.qnetwork_target(next_states).detach())
        #print(next_states)
        next_target_Q = self.qnetwork_target.forward(next_states)
        #print("next_target_Q == ", next_target_Q)

        _, next_local_Q_index = torch.max(
            self.qnetwork_local.forward(next_states), axis=1)

        #Q_targets_next = self.qnetwork_target(next_states).detach().max(1)[0].unsqueeze(1)

        Q_targets_next = next_target_Q[range(next_target_Q.shape[0]),
                                       next_local_Q_index]

        Q_targets_next1 = Q_targets_next.reshape((len(Q_targets_next), 1))

        # Compute Q targets for current states
        Q_targets = rewards + (gamma * Q_targets_next1 * (1 - dones))

        # Get expected Q values from local model
        Q_expected = self.qnetwork_local(states).gather(1, actions)

        #print(Q_expected)
        #print(Q_targets)

        diff = Q_expected - Q_targets
        #print(diff)
        #diff = diff.mean()
        #print(idxes)
        #print(diff.detach().squeeze().abs().cpu().numpy().tolist())
        #update the priority of the replay buffer

        self.memory.update_priorities(
            idxes,
            diff.detach().squeeze().abs().cpu().numpy().tolist())

        # Compute loss
        loss = F.mse_loss(Q_expected, Q_targets) * weights
        loss = loss.mean()

        # Minimize the loss
        self.optimizer.zero_grad()
        loss.backward()
        self.optimizer.step()

        # ------------------- update target network ------------------- #
        self.soft_update(self.qnetwork_local, self.qnetwork_target, TAU)

    def soft_update(self, local_model, target_model, tau):
        """Soft update model parameters.
        θ_target = τ*θ_local + (1 - τ)*θ_target

        Params
        ======
            local_model (PyTorch model): weights will be copied from
            target_model (PyTorch model): weights will be copied to
            tau (float): interpolation parameter 
        """
        for target_param, local_param in zip(target_model.parameters(),
                                             local_model.parameters()):
            target_param.data.copy_(tau * local_param.data +
                                    (1.0 - tau) * target_param.data)
class Agent():
    """Interacts with and learns from the environment."""

    def __init__(self,
                 state_size,
                 action_size,
                 seed,
                 gamma=GAMMA,
                 buffer_size=BUFFER_SIZE,
                 batch_size=BATCH_SIZE,
                 update_every=UPDATE_EVERY,
                 lr=LR,
                 tau=TAU
    ):
        """Initialize an Agent object.
        
        Params
        ======
            state_size (int): dimension of each state
            action_size (int): dimension of each action
            seed (int): random seed
        """
        self.state_size = state_size
        self.action_size = action_size
        self.seed = random.seed(seed)
        self.gamma = gamma
        self.batch_size = batch_size

        # Q-Network
        self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
        self.model_local = DuelingDQN(state_size, action_size, seed).to(self.device)
        self.model_target = DuelingDQN(state_size, action_size, seed).to(self.device)
        self.optimizer = optim.Adam(self.model_local.parameters(), lr=LR)
    
        # Replay memory
        self.memory = ReplayBuffer(
            action_size=action_size,
            buffer_size=BUFFER_SIZE,
            batch_size=BATCH_SIZE,
            seed=seed,
            device=self.device
        )
        # Initialize time step (for updating every UPDATE_EVERY steps)
        self.t_step = 0
    
    def step(self, state, action, reward, next_state, done):
        # Save experience in replay memory
        self.memory.add(state, action, reward, next_state, done)
        
        # Learn every UPDATE_EVERY time steps.
        self.t_step = (self.t_step + 1) % UPDATE_EVERY
        if self.t_step == 0:
            # If enough samples are available in memory, get random subset and learn
            if len(self.memory) > self.batch_size:
                experiences = self.memory.sample()
                self.update(experiences)

    def act(self, state, eps=0.):
        """Returns actions for given state as per current policy.
        
        Params
        ======
            state (array_like): current state
            eps (float): epsilon, for epsilon-greedy action selection
        """
        state = torch.FloatTensor(state).float().unsqueeze(0).to(self.device)
        
        self.model_local.eval()
        with torch.no_grad():
            qvals = self.model_local.forward(state)
        self.model_local.train()
        
        # Epsilon-greedy action selection
        if random.random() > eps:
            action = np.argmax(qvals.cpu().detach().numpy())
            return action
        else:
            return random.choice(np.arange(self.action_size))
    

    def update(self, batch):
        """Update value parameters using given batch of experience tuples.

        Params
        ======
            batch (Tuple[torch.Tensor]): tuple of (s, a, r, s', done) tuples 
            gamma (float): discount factor
        """
        states, actions, rewards, next_states, dones = batch
        
        # Get expected Q values from local model
        curr_Q = self.model_local.forward(states).gather(1, actions)
#         curr_Q = curr_Q.squeeze(1)
        
        # Get max predicted Q values (for next states) from target model
        max_next_Q = self.model_target.forward(next_states).detach().max(1)[0].unsqueeze(1)
        expected_Q = rewards + (self.gamma * max_next_Q * (1 - dones))

        loss = F.mse_loss(curr_Q, expected_Q)

        self.optimizer.zero_grad()
        loss.backward()
        self.optimizer.step()
        
        # update target model
        self.update_target(self.model_local, self.model_target, TAU)     
    def update_target(self, local_model, target_model, tau):
        """Soft update model parameters.
        θ_target = τ*θ_local + (1 - τ)*θ_target

        Params
        ======
            local_model (PyTorch model): weights will be copied from
            target_model (PyTorch model): weights will be copied to
            tau (float): interpolation parameter 
        """
        for target_param, local_param in zip(target_model.parameters(), local_model.parameters()):
            target_param.data.copy_(tau*local_param.data + (1.0-tau)*target_param.data)