def exploration(args, actor_id, param_queue): writer = SummaryWriter(comment="-{}-eval".format(args.env)) args.clip_rewards = False args.episode_life = False env = make_atari(args.env) env = wrap_atari_dqn(env, args) seed = args.seed + actor_id utils.set_global_seeds(seed, use_torch=True) env.seed(seed) model = DuelingDQN(env, args) param = param_queue.get(block=True) model.load_state_dict(param) param = None print("Received First Parameter!") episode_reward, episode_length, episode_idx = 0, 0, 0 state = env.reset() tb_dict = {k: [] for k in ['episode_reward', 'episode_length']} while True: action, _ = model.act(torch.FloatTensor(np.array(state)), 0.) next_state, reward, done, _ = env.step(action) state = next_state episode_reward += reward episode_length += 1 if done or episode_length == args.max_episode_length: state = env.reset() tb_dict["episode_reward"].append(episode_reward) tb_dict["episode_length"].append(episode_length) episode_reward = 0 episode_length = 0 episode_idx += 1 param = param_queue.get() model.load_state_dict(param) print(f"{datetime.now()} Updated Parameter..") if (episode_idx * args.num_envs_per_worker) % args.tb_interval == 0: writer.add_scalar('evaluator/episode_reward_mean', np.mean(tb_dict['episode_reward']), episode_idx) writer.add_scalar('evaluator/episode_reward_max', np.max(tb_dict['episode_reward']), episode_idx) writer.add_scalar('evaluator/episode_reward_min', np.min(tb_dict['episode_reward']), episode_idx) writer.add_scalar('evaluator/episode_reward_std', np.std(tb_dict['episode_reward']), episode_idx) writer.add_scalar('evaluator/episode_length_mean', np.mean(tb_dict['episode_length']), episode_idx) tb_dict['episode_reward'].clear() tb_dict['episode_length'].clear()
def train(args, n_actors, batch_queue, prios_queue, param_queue): env = wrapper.make_atari(args.env) env = wrapper.wrap_atari_dqn(env, args) utils.set_global_seeds(args.seed, use_torch=True) model = DuelingDQN(env, args).to(args.device) # model.load_state_dict(torch.load('model_30h.pth')) tgt_model = DuelingDQN(env, args).to(args.device) tgt_model.load_state_dict(model.state_dict()) writer = SummaryWriter(comment="-{}-learner".format(args.env)) optimizer = torch.optim.Adam(model.parameters(), args.lr) # optimizer = torch.optim.RMSprop(model.parameters(), args.lr, alpha=0.95, eps=1.5e-7, centered=True) check_connection(n_actors) param_queue.put(model.state_dict()) learn_idx = 0 ts = time.time() tb_dict = { k: [] for k in ['loss', 'grad_norm', 'max_q', 'mean_q', 'min_q'] } while True: *batch, idxes = batch_queue.get() loss, prios, q_values = utils.compute_loss(model, tgt_model, batch, args.n_steps, args.gamma) grad_norm = utils.update_parameters(loss, model, optimizer, args.max_norm) prios_queue.put((idxes, prios)) batch, idxes, prios = None, None, None learn_idx += 1 tb_dict["loss"].append(float(loss)) tb_dict["grad_norm"].append(float(grad_norm)) tb_dict["max_q"].append(float(torch.max(q_values))) tb_dict["mean_q"].append(float(torch.mean(q_values))) tb_dict["min_q"].append(float(torch.min(q_values))) if args.soft_target_update: tau = args.tau for p_tgt, p in zip(tgt_model.parameters(), model.parameters()): p_tgt.data *= 1 - tau p_tgt.data += tau * p elif learn_idx % args.target_update_interval == 0: print("Updating Target Network..") tgt_model.load_state_dict(model.state_dict()) if learn_idx % args.save_interval == 0: print("Saving Model..") torch.save(model.state_dict(), "model.pth") if learn_idx % args.publish_param_interval == 0: param_queue.put(model.state_dict()) if learn_idx % args.tb_interval == 0: bps = args.tb_interval / (time.time() - ts) print("Step: {:8} / BPS: {:.2f}".format(learn_idx, bps)) writer.add_scalar("learner/BPS", bps, learn_idx) for k, v in tb_dict.items(): writer.add_scalar(f'learner/{k}', np.mean(v), learn_idx) v.clear() ts = time.time()
def main(): args = argparser() args.clip_rewards = False env = make_atari(args.env) env = wrap_atari_dqn(env, args) seed = args.seed + 1122 utils.set_global_seeds(seed, use_torch=True) env.seed(seed) model = DuelingDQN(env) model.load_state_dict(torch.load('model.pth', map_location='cpu')) episode_reward, episode_length = 0, 0 state = env.reset() while True: if args.render: env.render() action, _ = model.act(torch.FloatTensor(np.array(state)), 0.) next_state, reward, done, _ = env.step(action) state = next_state episode_reward += reward episode_length += 1 if done: state = env.reset() print("Episode Length / Reward: {} / {}".format( episode_length, episode_reward)) episode_reward = 0 episode_length = 0
def exploration(args, actor_id, n_actors, param_queue, send_queue, req_param_queue): writer = SummaryWriter(comment="-{}-actor{}".format(args.env, actor_id)) env = make_atari(args.env) env = wrap_atari_dqn(env, args) seed = args.seed + actor_id utils.set_global_seeds(seed, use_torch=True) env.seed(seed) model = DuelingDQN(env) epsilon = args.eps_base**(1 + actor_id / (n_actors - 1) * args.eps_alpha) storage = BatchStorage(args.n_steps, args.gamma) req_param_queue.put(True) param = param_queue.get(block=True) model.load_state_dict(param) param = None print("Received First Parameter!") episode_reward, episode_length, episode_idx, actor_idx = 0, 0, 0, 0 state = env.reset() while True: action, q_values = model.act(torch.FloatTensor(np.array(state)), epsilon) next_state, reward, done, _ = env.step(action) com_state = zlib.compress(np.array(state).tobytes()) storage.add(com_state, reward, action, done, q_values) state = next_state episode_reward += reward episode_length += 1 actor_idx += 1 if done or episode_length == args.max_episode_length: state = env.reset() writer.add_scalar("actor/episode_reward", episode_reward, episode_idx) writer.add_scalar("actor/episode_length", episode_length, episode_idx) episode_reward = 0 episode_length = 0 episode_idx += 1 if actor_idx % args.update_interval == 0: try: req_param_queue.put(True) param = param_queue.get(block=True) model.load_state_dict(param) print("Updated Parameter..") except queue.Empty: pass if len(storage) == args.send_interval: batch, prios = storage.make_batch() send_queue.put((batch, prios)) batch, prios = None, None storage.reset()
def train(args, n_actors, batch_queue, prios_queue, param_queue): env = RunTagEnv(width=5, height=5, number_of_subordinates=1, max_steps=1000) #env = wrapper.make_atari(args.env) #env = wrapper.wrap_atari_dqn(env, args) utils.set_global_seeds(args.seed, use_torch=True) model = DuelingDQN(env).to(args.device) tgt_model = DuelingDQN(env).to(args.device) tgt_model.load_state_dict(model.state_dict()) writer = SummaryWriter(comment="-{}-learner".format(args.env)) # optimizer = torch.optim.Adam(model.parameters(), args.lr) optimizer = torch.optim.RMSprop(model.parameters(), args.lr, alpha=0.95, eps=1.5e-7, centered=True) check_connection(n_actors) param_queue.put(model.state_dict()) learn_idx = 0 ts = time.time() while True: *batch, idxes = batch_queue.get() loss, prios = utils.compute_loss(model, tgt_model, batch, args.n_steps, args.gamma) grad_norm = utils.update_parameters(loss, model, optimizer, args.max_norm) print('Updated parameters!') prios_queue.put((idxes, prios)) batch, idxes, prios = None, None, None learn_idx += 1 writer.add_scalar("learner/loss", loss, learn_idx) writer.add_scalar("learner/grad_norm", grad_norm, learn_idx) if learn_idx % args.target_update_interval == 0: print("Updating Target Network..") tgt_model.load_state_dict(model.state_dict()) if learn_idx % args.save_interval == 0: print("Saving Model..") torch.save(model.state_dict(), "model.pth") if learn_idx % args.publish_param_interval == 0: param_queue.put(model.state_dict()) if learn_idx % args.bps_interval == 0: bps = args.bps_interval / (time.time() - ts) print("Step: {:8} / BPS: {:.2f}".format(learn_idx, bps)) writer.add_scalar("learner/BPS", bps, learn_idx) ts = time.time()
def main(): learner_ip = get_environ() args = argparser() writer = SummaryWriter(comment="-{}-eval".format(args.env)) ctx = zmq.Context() param_socket = ctx.socket(zmq.SUB) param_socket.setsockopt(zmq.SUBSCRIBE, b'') param_socket.setsockopt(zmq.CONFLATE, 1) param_socket.connect('tcp://{}:52001'.format(learner_ip)) env = make_atari(args.env) env = wrap_atari_dqn(env, args) seed = args.seed + 1122 utils.set_global_seeds(seed, use_torch=True) env.seed(seed) model = DuelingDQN(env) data = param_socket.recv(copy=False) param = pickle.loads(data) model.load_state_dict(param) print("Loaded first parameter from learner") episode_reward, episode_length, episode_idx = 0, 0, 0 state = env.reset() while True: if args.render: env.render() action, _ = model.act(torch.FloatTensor(np.array(state)), 0.01) next_state, reward, done, _ = env.step(action) state = next_state episode_reward += reward episode_length += 1 if done: state = env.reset() writer.add_scalar("eval/episode_reward", episode_reward, episode_idx) writer.add_scalar("eval/episode_length", episode_length, episode_idx) episode_reward = 0 episode_length = 0 episode_idx += 1 if episode_idx % args.eval_update_interval == 0: data = param_socket.recv(copy=False) param = pickle.loads(data) model.load_state_dict(param)
def main(): args = argparser() args.clip_rewards = False args.episode_life=False env = make_atari(args.env) env = wrap_atari_dqn(env, args) # seed = args.seed + 1122 # utils.set_global_seeds(seed, use_torch=True) # env.seed(seed) model = DuelingDQN(env, args) model.load_state_dict(torch.load('model.pth', map_location='cpu')) episode_reward, episode_length = 0, 0 state = env.reset() if not os.path.exists('plays'): os.mkdir('plays') video = cv2.VideoWriter('plays/tmp.avi', cv2.VideoWriter_fourcc(*'DIVX'), 15, (160, 210)) while True: img = env.render(mode='rgb_array') model.zero_grad() state = torch.tensor(state[np.newaxis, :], dtype=torch.float32, requires_grad=True) value, action = model(state).max(1) value = value[0] action = action[0] value.backward() img_gradient = np.abs(state.grad.numpy()) img_gradient = np.sum(img_gradient, axis=(0,1)) img_gradient = (img_gradient - np.min(img_gradient)) / (np.max(img_gradient) - np.min(img_gradient)) img_gradient = img_gradient.transpose() img_gradient = cv2.resize(img_gradient, (160, 210))[...,np.newaxis] img_gradient = img_gradient * 255 masked_img = (img + img_gradient).astype(np.uint8) masked_img = np.clip(masked_img, 0, 255) video.write(masked_img) next_state, reward, done, _ = env.step(int(action)) state = next_state episode_reward += reward episode_length += 1 if done: state = env.reset() print("Episode Length / Reward: {} / {}".format(episode_length, episode_reward)) video.release() os.rename('plays/tmp.avi', f'plays/{args.env}-{episode_reward}.avi') video = cv2.VideoWriter('plays/tmp.avi', cv2.VideoWriter_fourcc(*'DIVX'), 15, (160, 210)) episode_reward = 0 episode_length = 0
def exploration_eval(args, actor_id, param_queue): writer = SummaryWriter(comment="-{}-eval".format(args.env)) args.clip_rewards = False env = make_atari(args.env) env = wrap_atari_dqn(env, args) seed = args.seed + actor_id utils.set_global_seeds(seed, use_torch=True) env.seed(seed) model = DuelingDQN(env) param = param_queue.get(block=True) model.load_state_dict(param) param = None print("Received First Parameter!") episode_reward, episode_length, episode_idx = 0, 0, 0 state = env.reset() while True: action, _ = model.act(torch.FloatTensor(np.array(state)), 0.) next_state, reward, done, _ = env.step(action) state = next_state episode_reward += reward episode_length += 1 if done or episode_length == args.max_episode_length: state = env.reset() writer.add_scalar("evaluator/episode_reward", episode_reward, episode_idx) writer.add_scalar("evaluator/episode_length", episode_length, episode_idx) episode_reward = 0 episode_length = 0 episode_idx += 1 param = param_queue.get() model.load_state_dict(param) print("Updated Parameter..")
def vector_exploration(args, actor_id, n_actors, replay_ip, param_queue): ctx = zmq.Context() batch_socket = ctx.socket(zmq.DEALER) batch_socket.setsockopt(zmq.IDENTITY, pickle.dumps('actor-{}'.format(actor_id))) batch_socket.connect('tcp://{}:51001'.format(replay_ip)) outstanding = 0 writer = SummaryWriter(comment="-{}-actor{}".format(args.env, actor_id)) num_envs = args.num_envs_per_worker envs = [ wrap_atari_dqn(make_atari(args.env), args) for _ in range(num_envs) ] if args.seed is not None: seeds = args.seed + actor_id * num_envs + np.arange(num_envs) utils.set_global_seeds(seeds[0], use_torch=True) for seed, env in zip(seeds, envs): env.seed(int(seed)) model = DuelingDQN(envs[0], args) model = torch.jit.trace(model, torch.zeros((1, 4, 84, 84))) _actor_id = np.arange(num_envs) + actor_id * num_envs n_actors = n_actors * num_envs epsilons = args.eps_base**(1 + _actor_id / (n_actors - 1) * args.eps_alpha) storages = [ BatchStorage(args.n_steps, args.gamma) for _ in range(num_envs) ] param = param_queue.get(block=True) model.load_state_dict(param) param = None print("%d: Received First Parameter!" % actor_id) actor_idx = 0 tb_idx = 0 episode_rewards = np.array([0] * num_envs) episode_lengths = np.array([0] * num_envs) states = np.array([env.reset() for env in envs]) tb_dict = {key: [] for key in ['episode_reward', 'episode_length']} step_t = time.time() ref_t = 0 sim_t = 0 while True: if actor_idx * num_envs * n_actors <= args.initial_exploration_samples: # initial random exploration random_idx = np.arange(num_envs) else: random_idx, = np.where(np.random.random(num_envs) <= epsilons) _t = time.time() with torch.no_grad(): states_tensor = torch.tensor(states, dtype=torch.float32) q_values = model(states_tensor).detach().numpy() ref_t += time.time() - _t actions = np.argmax(q_values, 1) actions[random_idx] = np.random.choice(envs[0].action_space.n, len(random_idx)) for i, (state, q_value, action, env, storage) in enumerate( zip(states, q_values, actions, envs, storages)): _t = time.time() next_state, reward, done, _ = env.step(action) sim_t += time.time() - _t storage.add(np.array(state), reward, action, done, q_value, _t, episode_lengths[i]) states[i] = next_state episode_rewards[i] += reward episode_lengths[i] += 1 if done or episode_lengths[i] == args.max_episode_length: states[i] = env.reset() tb_idx += 1 tb_dict["episode_reward"].append(episode_rewards[i]) tb_dict["episode_length"].append(episode_lengths[i]) episode_rewards[i] = 0 episode_lengths[i] = 0 if tb_idx % args.tb_interval == 0: writer.add_scalar('actor/episode_reward_mean', np.mean(tb_dict['episode_reward']), tb_idx) writer.add_scalar('actor/episode_reward_max', np.max(tb_dict['episode_reward']), tb_idx) writer.add_scalar('actor/episode_reward_min', np.min(tb_dict['episode_reward']), tb_idx) writer.add_scalar('actor/episode_reward_std', np.std(tb_dict['episode_reward']), tb_idx) writer.add_scalar('actor/episode_length_mean', np.mean(tb_dict['episode_length']), tb_idx) tb_dict['episode_reward'].clear() tb_dict['episode_length'].clear() writer.add_scalar('actor/step_time', (time.time() - step_t) / np.sum(episode_lengths), tb_idx) writer.add_scalar('actor/step_inference_time', ref_t / np.sum(episode_lengths), tb_idx) writer.add_scalar('actor/step_simulation_time', sim_t / np.sum(episode_lengths), tb_idx) ref_t = 0 sim_t = 0 step_t = time.time() actor_idx += 1 if actor_idx % args.update_interval == 0: try: param = param_queue.get(block=False) model.load_state_dict(param) print("%d: Updated Parameter.." % actor_id) except queue.Empty: pass if sum(len(storage) for storage in storages) >= args.send_interval * num_envs: batch = [] prios = [] for storage in storages: _batch, _prios = storage.make_batch() batch.append(_batch) prios.append(_prios) storage.reset() batch = [np.concatenate(v) for v in zip(*batch)] prios = np.concatenate(prios) data = pickle.dumps((batch, prios)) batch, prios = None, None while outstanding >= args.max_outstanding: batch_socket.recv() outstanding -= 1 batch_socket.send(data, copy=False) outstanding += 1
class Agent: """Interacts with and learns from the environment.""" def __init__(self, config): """Initialize an Agent object""" self.seed = random.seed(config["general"]["seed"]) self.config = config # Q-Network self.q = DuelingDQN(config).to(DEVICE) self.q_target = DuelingDQN(config).to(DEVICE) self.optimizer = optim.RMSprop(self.q.parameters(), lr=config["agent"]["learning_rate"]) self.criterion = F.mse_loss self.memory = ReplayBuffer(config) # Initialize time step (for updating every UPDATE_EVERY steps) self.t_step = 0 def save_experiences(self, state, action, reward, next_state, done): """Prepare and save experience in replay memory""" reward = np.clip(reward, -1.0, 1.0) self.memory.add(state, action, reward, next_state, done) def _current_step_is_a_learning_step(self): """Check if the current step is an update step""" self.t_step = (self.t_step + 1) % self.config["agent"]["update_rate"] return self.t_step == 0 def _enough_samples_in_memory(self): """Check if minimum amount of samples are in memory""" return len(self.memory) > self.config["train"]["batch_size"] def epsilon_greedy_action_selection(self, action_values, eps): """Epsilon-greedy action selection""" if random.random() > eps: return np.argmax(action_values.cpu().data.numpy()) else: return random.choice( np.arange(self.config["general"]["action_size"])) def act(self, state, eps=0.0): """Returns actions for given state as per current policy""" state = torch.from_numpy(state).float().unsqueeze(0).to(DEVICE) self.q.eval() with torch.no_grad(): action_values = self.q(state) self.q.train() return self.epsilon_greedy_action_selection(action_values, eps) def _calc_loss(self, states, actions, rewards, next_states, dones): """Calculates loss for a given experience batch""" q_eval = self.q(states).gather(1, actions) q_eval_next = self.q(next_states) _, q_argmax = q_eval_next.detach().max(1) q_next = self.q_target(next_states) q_next = q_next.gather(1, q_argmax.unsqueeze(1)) q_target = rewards + (self.config["agent"]["gamma"] * q_next * (1 - dones)) loss = self.criterion(q_eval, q_target) return loss def _update_weights(self, loss): """update the q network weights""" torch.nn.utils.clip_grad.clip_grad_value_(self.q.parameters(), 1.0) self.optimizer.zero_grad() loss.backward() self.optimizer.step() def learn(self): """Update network using one sample of experience from memory""" if self._current_step_is_a_learning_step( ) and self._enough_samples_in_memory(): states, actions, rewards, next_states, dones = self.memory.sample( self.config["train"]["batch_size"]) loss = self._calc_loss(states, actions, rewards, next_states, dones) self._update_weights(loss) self._soft_update(self.q, self.q_target) def _soft_update(self, local_model, target_model): """Soft update target network parameters: θ_target = τ*θ_local + (1 - τ)*θ_target""" for target_param, local_param in zip(target_model.parameters(), local_model.parameters()): target_param.data.copy_( self.config["agent"]["tau"] * local_param.data + (1.0 - self.config["agent"]["tau"]) * target_param.data) def save(self): """Save the network weights""" helper.mkdir( os.path.join(".", *self.config["general"]["checkpoint_dir"], self.config["general"]["env_name"])) current_date_time = helper.get_current_date_time() current_date_time = current_date_time.replace(" ", "__").replace( "/", "_").replace(":", "_") torch.save( self.q.state_dict(), os.path.join(".", *self.config["general"]["checkpoint_dir"], self.config["general"]["env_name"], "ckpt_" + current_date_time)) def load(self): """Load latest available network weights""" list_of_files = glob.glob( os.path.join(".", *self.config["general"]["checkpoint_dir"], self.config["general"]["env_name"], "*")) latest_file = max(list_of_files, key=os.path.getctime) self.q.load_state_dict(torch.load(latest_file)) self.q_target.load_state_dict(torch.load(latest_file))
class train_DQN(): def __init__(self, env_id, seed=0, lr=1e-5, n_step=3, gamma=0.99, n_workers=20, max_norm=40, target_update_interval=2500, save_interval=5000, batch_size=64, buffer_size=1e6, prior_alpha=0.6, prior_beta=0.4, publish_param_interval=32, max_step=1e5): self.env = gym.make(env_id) self.seed = seed self.lr = lr self.n_step = n_step self.gamma = gamma self.max_norm = max_norm self.target_update_interval = target_update_interval self.save_interval = save_interval self.publish_param_interval = publish_param_interval self.batch_size = batch_size self.prior_beta = prior_beta self.max_step = max_step self.buffer = CustomPrioritizedReplayBuffer(size=buffer_size, alpha=prior_alpha) self.device = torch.device( "cuda:0" if torch.cuda.is_available() else "cpu") self.model = DuelingDQN(self.env).to(self.device) self.tgt_model = DuelingDQN(self.env).to(self.device) self.tgt_model.load_state_dict(self.model.state_dict()) self.optimizer = torch.optim.RMSprop(self.model.parameters(), self.lr, alpha=0.95, eps=1.5e-7, centered=True) self.scheduler = torch.optim.lr_scheduler.StepLR(self.optimizer, step_size=1000, gamma=0.99) self.beta_by_frame = lambda frame_idx: min( 1.0, self.prior_beta + frame_idx * (1.0 - self.prior_beta) / 1000) self.batch_recorder = BatchRecorder(env_id=env_id, env_seed=seed, n_workers=n_workers, buffer=self.buffer, n_steps=n_step, gamma=gamma, max_episode_length=50000) self.writer = SummaryWriter( comment="-{}-learner".format(self.env.unwrapped.spec.id)) def train(self): utils.set_global_seeds(self.seed, use_torch=True) learn_idx = 0 while True: beta = self.beta_by_frame(learn_idx) states, actions, rewards, next_states, dones, weights, idxes = self.buffer.sample( self.batch_size, beta) states = torch.FloatTensor(states).to(self.device) actions = torch.LongTensor(actions).to(self.device) rewards = torch.FloatTensor(rewards).to(self.device) next_states = torch.FloatTensor(next_states).to(self.device) dones = torch.FloatTensor(dones).to(self.device) weights = torch.FloatTensor(weights).to(self.device) batch = (states, actions, rewards, next_states, dones, weights) loss, prios = utils.compute_loss(self.model, self.tgt_model, batch, self.n_step, self.gamma) self.scheduler.step() grad_norm = utils.update_parameters(loss, self.model, self.optimizer, self.max_norm) self.buffer.update_priorities(idxes, prios) batch, idxes, prios = None, None, None learn_idx += 1 self.writer.add_scalar("learner/loss", loss, learn_idx) self.writer.add_scalar("learner/grad_norm", grad_norm, learn_idx) if learn_idx % self.target_update_interval == 0: print("Updating Target Network..") self.tgt_model.load_state_dict(self.model.state_dict()) if learn_idx % self.save_interval == 0: print("Saving Model..") torch.save(self.model.state_dict(), "model{}.pth".format(learn_idx)) if learn_idx % self.publish_param_interval == 0: self.batch_recorder.set_worker_weights( copy.deepcopy(self.model)) if learn_idx >= self.max_step: torch.save(self.model.state_dict(), "model{}.pth".format(learn_idx)) self.batch_recorder.cleanup() break def load_model(self, idx): with open("model{}.pth".format(idx), "rb") as f: print("loading weights_{}".format(idx)) self.model.load_state_dict(torch.load(f, map_location="cpu")) def sampling_data(self): self.batch_recorder.record_batch()
def exploration(args, actor_id, n_actors, replay_ip, param_queue): ctx = zmq.Context() batch_socket = ctx.socket(zmq.DEALER) batch_socket.setsockopt(zmq.IDENTITY, pickle.dumps('actor-{}'.format(actor_id))) batch_socket.connect('tcp://{}:51001'.format(replay_ip)) outstanding = 0 writer = SummaryWriter(comment="-{}-actor{}".format(args.env, actor_id)) env = RunTagEnv(width=5, height=5, number_of_subordinates=1, max_steps=1000) # env = make_atari(args.env) # env = wrap_atari_dqn(env, args) seed = args.seed + actor_id utils.set_global_seeds(seed, use_torch=True) env.seed(seed) blue_commander_model = DuelingDQN(env) red_commander_model = RandomPolicy(env) blue_commander_policy = CommanderPolicy(blue_commander_model) red_commander_policy = CommanderPolicy(red_commander_model) subordinate_policy = SubordinatePolicy() # model = DuelingDQN(env) epsilon = args.eps_base ** (1 + actor_id / (n_actors - 1) * args.eps_alpha) storage = BatchStorage(args.n_steps, args.gamma) param = param_queue.get(block=True) blue_commander_model.load_state_dict(param) param = None print("Received First Parameter!") episode_reward, episode_length, episode_idx, actor_idx = 0, 0, 0, 0 states = env.reset() while True: #action, q_values = model.act(torch.FloatTensor(np.array(state[0])), epsilon) state = flatten(env, states[0]) blue_com_action, q_values = blue_commander_policy.next_action(state, epsilon) blue_sub_action = subordinate_policy.next_action(states[1]) red_com_action = red_commander_policy.next_action(flatten(env, states[2])) red_sub_action = subordinate_policy.next_action(states[3]) actions = [ blue_com_action, blue_sub_action, red_com_action, red_sub_action, ] next_states, rewards, dones, _ = env.step(actions) next_state, reward, done, action = next_states[0], rewards[0], dones[0], actions[0] # print('state:', state) storage.add(state, reward, action, done, q_values) states = next_states episode_reward += reward episode_length += 1 actor_idx += 1 if done or episode_length == args.max_episode_length: state = env.reset() writer.add_scalar("actor/episode_reward", episode_reward, episode_idx) writer.add_scalar("actor/episode_length", episode_length, episode_idx) episode_reward = 0 episode_length = 0 episode_idx += 1 if actor_idx % args.update_interval == 0: try: param = param_queue.get(block=False) model.load_state_dict(param) print("Updated Parameter..") except queue.Empty: pass if len(storage) == args.send_interval: batch, prios = storage.make_batch() data = pickle.dumps((batch, prios)) batch, prios = None, None storage.reset() while outstanding >= args.max_outstanding: batch_socket.recv() outstanding -= 1 batch_socket.send(data, copy=False) outstanding += 1 print("Sending Batch..")
def evaluator(args): comm = global_dict['comm_world'] writer = SummaryWriter(log_dir=os.path.join(args['log_dir'], 'eval')) args['clip_rewards'] = False args['episode_life'] = False env = make_atari(args['env']) env = wrap_atari_dqn(env, args) seed = args['seed'] - 1 utils.set_global_seeds(seed, use_torch=True) env.seed(seed) torch.set_num_threads(1) model = DuelingDQN(env, args) recv_param_buf = bytearray(100 * 1024 * 1024) comm.Send(b'', dest=global_dict['rank_learner']) comm.Recv(buf=recv_param_buf, source=global_dict['rank_learner']) param = pickle.loads(recv_param_buf) model.load_state_dict(param) episode_reward, episode_length, episode_idx = 0, 0, 0 state = env.reset() tb_dict = {k: [] for k in ['episode_reward', 'episode_length']} while True: action, _ = model.act(torch.FloatTensor(np.array(state)), 0.) next_state, reward, done, _ = env.step(action) state = next_state episode_reward += reward episode_length += 1 if done or episode_length == args['max_episode_length']: state = env.reset() tb_dict["episode_reward"].append(episode_reward) tb_dict["episode_length"].append(episode_length) episode_reward = 0 episode_length = 0 episode_idx += 1 comm.Send(b'', dest=global_dict['rank_learner']) comm.Recv(buf=recv_param_buf, source=global_dict['rank_learner']) param = pickle.loads(recv_param_buf) model.load_state_dict(param) if (episode_idx * args['num_envs_per_worker']) % args['tb_interval'] == 0: writer.add_scalar('evaluator/1_episode_reward_mean', np.mean(tb_dict['episode_reward']), episode_idx) writer.add_scalar('evaluator/2_episode_reward_max', np.max(tb_dict['episode_reward']), episode_idx) writer.add_scalar('evaluator/3_episode_reward_min', np.min(tb_dict['episode_reward']), episode_idx) writer.add_scalar('evaluator/4_episode_reward_std', np.std(tb_dict['episode_reward']), episode_idx) writer.add_scalar('evaluator/5_episode_length_mean', np.mean(tb_dict['episode_length']), episode_idx) tb_dict['episode_reward'].clear() tb_dict['episode_length'].clear()
class Worker(mp.Process): def __init__(self, worker_id, env_id, seed, epsilon, size, lock, n_steps, gamma, send_interval, task_queue, buffer, max_episode_length): mp.Process.__init__(self) self.worker_id = worker_id self.env = gym.make(env_id) self.seed = seed self.task_queue = task_queue self.buffer = buffer self.max_episode_length = max_episode_length self.send_interval = send_interval self.storage = BatchStorage(n_steps, gamma) self.size = size self.memory = [] self.model = DuelingDQN(self.env) # self.writer = SummaryWriter(comment="-{}-actor{}".format(env_id, worker_id)) self.lock = lock self.set_all_seeds() self.epsilon = epsilon def set_all_seeds(self): self.env.seed(self.seed) np.random.seed(self.seed) random.seed(self.seed) torch.manual_seed(self.seed) torch.cuda.manual_seed_all(self.seed) def update_weights(self, DQN_state_dict): self.model.load_state_dict(DQN_state_dict) def record_batch(self): episode_reward, episode_length, episode_idx, actor_idx = 0, 0, 0, 0 state = self.env.reset() self.storage.reset() self.memory = [] # while actor_idx < self.size: while True: action, q_values = self.model.act(torch.FloatTensor(np.array(state)), self.epsilon) next_state, reward, done, _ = self.env.step(action) self.storage.add(state, reward, action, done, q_values) state = next_state episode_reward += reward episode_length += 1 actor_idx += 1 if done or episode_length >= self.max_episode_length: state = self.env.reset() # self.writer.add_scalar("actor/episode_reward", episode_reward, episode_idx) # self.writer.add_scalar("actor/episode_length", episode_length, episode_idx) episode_reward = 0 episode_length = 0 episode_idx += 1 if done or len(self.storage) == self.send_interval: batch, prios = self.storage.make_batch() self.memory.append((*batch, prios)) # for i in range(len(prios)): # self.buffer.add(batch[0][i],batch[1][i],batch[2][i],batch[3][i],batch[4][i],prios[i]) batch, prios = None, None self.storage.reset() if done: break def run(self): while True: ########## run loop task = self.task_queue.get(block=True) if task["desc"] == "record_batch": # print("start record batch") self.record_batch() self.buffer.put(self.memory) self.task_queue.task_done() # print("record batch done") elif task["desc"] == "set_pi_weights": # print("set weight") self.update_weights(task["pi_state_dict"]) self.task_queue.task_done() # print("set weight done") elif task["desc"] == "cleanup": # print("clean up") self.env.close() self.task_queue.task_done()
def exploration(args, actor_id, n_actors, replay_ip, param_queue, sample_enque, sample_deque): ctx = zmq.Context() batch_socket = ctx.socket(zmq.DEALER) batch_socket.setsockopt(zmq.IDENTITY, pickle.dumps('actor-{}'.format(actor_id))) batch_socket.connect('tcp://{}:51001'.format(replay_ip)) writer = SummaryWriter(comment="-{}-actor{}".format(args.env, actor_id)) env = make_atari(args.env) env = wrap_atari_dqn(env, args) seed = args.seed + actor_id utils.set_global_seeds(seed, use_torch=True) env.seed(seed) model = DuelingDQN(env) epsilon = args.eps_base ** (1 + actor_id / (n_actors - 1) * args.eps_alpha) storage = BatchStorage(args.n_steps, args.gamma) param = param_queue.get(block=True) model.load_state_dict(param) param = None print("Received First Parameter!") episode_reward, episode_length, episode_idx, actor_idx = 0, 0, 0, 0 state = env.reset() while True: action, q_values = model.act(torch.FloatTensor(np.array(state)), epsilon) next_state, reward, done, _ = env.step(action) storage.add(state, reward, action, done, q_values) state = next_state episode_reward += reward episode_length += 1 actor_idx += 1 if done or episode_length == args.max_episode_length: state = env.reset() writer.add_scalar("actor/episode_reward", episode_reward, episode_idx) writer.add_scalar("actor/episode_length", episode_length, episode_idx) episode_reward = 0 episode_length = 0 episode_idx += 1 if actor_idx % args.update_interval == 0: try: param = param_queue.get(block=False) model.load_state_dict(param) print("Updated Parameter..") except queue.Empty: pass # get sample batch after each step while sample_enque: idxes = sample_enque.get() sample_deque.put(storage.get_sample_batch(idxes)) # only pass the prios and get indexes from ReplayBuffer if len(storage) == args.send_interval: batch, prios = storage.make_batch() data = pickle.dumps(prios) batch, prios = None, None storage.reset() batch_socket.send(data, copy=False) _, idxes = batch_socket.recv_multipart(copy=False) storage.add_batch(batch, idxes)
class train_DQN(): def __init__(self, env_id, max_step = 1e5, prior_alpha = 0.6, prior_beta_start = 0.4, epsilon_start = 1.0, epsilon_final = 0.01, epsilon_decay = 500, batch_size = 32, gamma = 0.99, target_update_interval=1000, save_interval = 1e4, ): self.prior_beta_start = prior_beta_start self.max_step = int(max_step) self.batch_size = batch_size self.gamma = gamma self.target_update_interval = target_update_interval self.save_interval = save_interval self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") self.env = gym.make(env_id) self.model = DuelingDQN(self.env).to(self.device) self.target_model = DuelingDQN(self.env).to(self.device) self.target_model.load_state_dict(self.model.state_dict()) self.replay_buffer = PrioritizedReplayBuffer(100000,alpha=prior_alpha) self.optimizer = optim.Adam(self.model.parameters()) self.writer = SummaryWriter(comment="-{}-learner".format(self.env.unwrapped.spec.id)) # decay function self.scheduler = optim.lr_scheduler.StepLR(self.optimizer,step_size=1000,gamma=0.99) self.beta_by_frame = lambda frame_idx: min(1.0, self.prior_beta_start + frame_idx * (1.0 - self.prior_beta_start) / 1000) self.epsilon_by_frame = lambda frame_idx: epsilon_final + (epsilon_start - epsilon_final) * math.exp(-1. * frame_idx / epsilon_decay) def update_target(self,current_model, target_model): target_model.load_state_dict(current_model.state_dict()) def compute_td_loss(self,batch_size, beta): state, action, reward, next_state, done, weights, indices = self.replay_buffer.sample(batch_size, beta) state = torch.FloatTensor(state).to(self.device) next_state = torch.FloatTensor(next_state).to(self.device) action = torch.LongTensor(action).to(self.device) reward = torch.FloatTensor(reward).to(self.device) done = torch.FloatTensor(done).to(self.device) weights = torch.FloatTensor(weights).to(self.device) batch = (state, action, reward, next_state, done, weights) # q_values = self.model(state) # next_q_values = self.target_model(next_state) # q_value = q_values.gather(1, action.unsqueeze(1)).squeeze(1) # next_q_value = next_q_values.max(1)[0] # expected_q_value = reward + self.gamma * next_q_value * (1 - done) # td_error = torch.abs(expected_q_value.detach() - q_value) # loss = (td_error).pow(2) * weights # prios = loss+1e-5#0.9 * torch.max(td_error)+(1-0.9)*td_error # loss = loss.mean() loss, prios = utils.compute_loss(self.model,self.target_model, batch,1) self.optimizer.zero_grad() loss.backward() self.scheduler.step() self.replay_buffer.update_priorities(indices, prios) self.optimizer.step() return loss def train(self): losses = [] all_rewards = [] episode_reward = 0 episode_idx = 0 episode_length = 0 state = self.env.reset() for frame_idx in range(self.max_step): epsilon = self.epsilon_by_frame(frame_idx) action,_ = self.model.act(torch.FloatTensor((state)).to(self.device), epsilon) next_state, reward, done, _ = self.env.step(action) self.replay_buffer.add(state, action, reward, next_state, done) state = next_state episode_reward += reward episode_length += 1 if done: state = self.env.reset() all_rewards.append(episode_reward) self.writer.add_scalar("actor/episode_reward", episode_reward, episode_idx) self.writer.add_scalar("actor/episode_length", episode_length, episode_idx) # print("episode: ",episode_idx, " reward: ", episode_reward) episode_reward = 0 episode_length = 0 episode_idx += 1 if len(self.replay_buffer) > self.batch_size: beta = self.beta_by_frame(frame_idx) loss = self.compute_td_loss(self.batch_size, beta) losses.append(loss.item()) self.writer.add_scalar("learner/loss", loss, frame_idx) if frame_idx % self.target_update_interval == 0: print("update target...") self.update_target(self.model, self.target_model) if frame_idx % self.save_interval == 0 or frame_idx == self.max_step-1: print("save model...") self.save_model(frame_idx) def save_model(self, idx): torch.save(self.model.state_dict(), "./model{}.pth".format(idx)) def load_model(self,idx): with open("model{}.pth".format(idx), "rb") as f: print("loading weights_{}".format(idx)) self.model.load_state_dict(torch.load(f,map_location="cpu"))
def actor(args, actor_id): comm = global_dict['comm_local'] writer = SummaryWriter(log_dir=os.path.join( args['log_dir'], f'{global_dict["unit_idx"]}-actor{actor_id}')) num_envs = args['num_envs_per_worker'] envs = [ wrap_atari_dqn(make_atari(args['env']), args) for _ in range(num_envs) ] if args['seed'] is not None: seeds = args['seed'] + actor_id * num_envs + np.arange(num_envs) utils.set_global_seeds(seeds[0], use_torch=True) for seed, env in zip(seeds, envs): env.seed(int(seed)) model = DuelingDQN(envs[0], args) model = torch.jit.trace(model, torch.zeros((1, 4, 84, 84))) _actor_id = (np.arange(num_envs) + actor_id * num_envs) * args['num_units'] + global_dict['unit_idx'] n_actors = args['num_actors'] * num_envs * args['num_units'] epsilons = args['eps_base']**(1 + _actor_id / (n_actors - 1) * args['eps_alpha']) storages = [ BatchStorage(args['n_steps'], args['gamma']) for _ in range(num_envs) ] recv_param_buf = bytearray(100 * 1024 * 1024) recv_param_request = None send_batch_request = None actor_idx = 0 tb_idx = 0 episode_rewards = np.array([0] * num_envs) episode_lengths = np.array([0] * num_envs) states = np.array([env.reset() for env in envs]) tb_dict = { key: [] for key in ['episode_reward', 'episode_length', 'kept_sample_percentage'] } step_t = time.time() inf_t = 0 sim_t = 0 def make_episilons(): return epsilons while True: if recv_param_request and recv_param_request.Test(): param = pickle.loads(recv_param_buf) model.load_state_dict(param) recv_param_request = None if actor_idx * num_envs * n_actors <= args[ 'initial_exploration_samples']: # initial random exploration random_idx = np.arange(num_envs) else: random_idx, = np.where( np.random.random(num_envs) <= make_episilons()) _t = time.time() with torch.no_grad(): states_tensor = torch.tensor(states, dtype=torch.float32) q_values = model(states_tensor).detach().numpy() inf_t += time.time() - _t actions = np.argmax(q_values, 1) actions[random_idx] = np.random.choice(envs[0].action_space.n, len(random_idx)) for i, (state, q_value, action, env, storage) in enumerate( zip(states, q_values, actions, envs, storages)): _t = time.time() next_state, reward, done, _ = env.step(action) try: real_done = env.was_real_done except: real_done = done sim_t += time.time() - _t storage.add(np.array(state), reward, action, done, real_done, q_value, _t, episode_lengths[i]) states[i] = next_state episode_rewards[i] += reward episode_lengths[i] += 1 if done or episode_lengths[i] == args['max_episode_length']: states[i] = env.reset() if real_done or episode_lengths[i] == args['max_episode_length']: tb_idx += 1 tb_dict["episode_reward"].append(episode_rewards[i]) tb_dict["episode_length"].append(episode_lengths[i]) episode_rewards[i] = 0 episode_lengths[i] = 0 if tb_idx % args['tb_interval'] == 0: writer.add_scalar('actor/1_episode_reward_mean', np.mean(tb_dict['episode_reward']), tb_idx) writer.add_scalar('actor/2_episode_reward_max', np.max(tb_dict['episode_reward']), tb_idx) writer.add_scalar('actor/3_episode_reward_min', np.min(tb_dict['episode_reward']), tb_idx) writer.add_scalar('actor/4_episode_reward_std', np.std(tb_dict['episode_reward']), tb_idx) writer.add_scalar('actor/5_episode_length_mean', np.mean(tb_dict['episode_length']), tb_idx) tb_dict['episode_reward'].clear() tb_dict['episode_length'].clear() writer.add_scalar('actor/6_step_time', (time.time() - step_t) / np.sum(episode_lengths), tb_idx) writer.add_scalar('actor/7_step_inference_time', inf_t / np.sum(episode_lengths), tb_idx) writer.add_scalar('actor/8_step_simulation_time', sim_t / np.sum(episode_lengths), tb_idx) writer.add_scalar( 'actor/9_kept_sample_percentage', np.mean(tb_dict['kept_sample_percentage']), tb_idx) inf_t = 0 sim_t = 0 step_t = time.time() tb_dict['kept_sample_percentage'].clear() actor_idx += 1 if actor_idx % args['update_interval'] == 0: if recv_param_request is not None: print( f"actor {global_dict['unit_idx']}-{actor_id}: last recv param request is not complete!" ) sys.stdout.flush() else: comm.Send(b'', dest=global_dict['rank_learner']) recv_param_request = comm.Irecv( buf=recv_param_buf, source=global_dict['rank_learner']) if sum(len(storage) for storage in storages) >= args['send_interval'] * num_envs: batch = [] prios = [] for storage in storages: _batch, _prios = storage.make_batch() batch.append(_batch) prios.append(_prios) storage.reset() batch = [np.concatenate(v) for v in zip(*batch)] prios = np.concatenate(prios) threshold = args['sample_filter_threshold'] prios_mask = prios > np.max(prios) * threshold tb_dict['kept_sample_percentage'].append( np.sum(prios_mask) / len(prios_mask)) prios = prios[prios_mask] batch = [i[prios_mask] for i in batch] data = pickle.dumps((batch, prios)) if send_batch_request is not None: send_batch_request.wait() send_batch_request = comm.Isend(data, dest=global_dict['rank_replay'], tag=utils.TAG_RECV_BATCH)
def learner(args): comm_cross = global_dict['comm_cross'] hvd.init(comm=comm_cross) torch.cuda.set_device(hvd.local_rank()) env = wrap_atari_dqn(make_atari(args['env']), args) # utils.set_global_seeds(args['seed'], use_torch=True) device = args['device'] model = DuelingDQN(env, args).to(device) if os.path.exists('model.pth'): # model.load_state_dict(torch.load('model.pth')) pass tgt_model = DuelingDQN(env, args).to(device) del env writer = SummaryWriter(log_dir=os.path.join( args['log_dir'], f'{global_dict["unit_idx"]}-learner')) # optimizer = torch.optim.SGD(model.parameters(), 1e-5 * args['num_units'], momentum=0.8) # optimizer = torch.optim.RMSprop(model.parameters(), args['lr'], alpha=0.95, eps=1.5e-7, centered=True) optimizer = torch.optim.Adam(model.parameters(), args['lr'] * args['num_units']) optimizer = hvd.DistributedOptimizer( optimizer, named_parameters=model.named_parameters()) hvd.broadcast_parameters(model.state_dict(), root_rank=0) tgt_model.load_state_dict(model.state_dict()) if args['dynamic_gradient_clip']: grad_norm_running_mean = args['gradient_norm_running_mean'] grad_norm_lambda = args['gradient_norm_lambda'] batch_queue = queue.Queue(maxsize=3) prios_queue = queue.Queue(maxsize=4) param_queue = queue.Queue(maxsize=3) threading.Thread(target=recv_batch, args=(batch_queue, )).start() threading.Thread(target=send_prios, args=(prios_queue, )).start() threading.Thread(target=send_param, args=(param_queue, )).start() if global_dict['unit_idx'] == 0: threading.Thread(target=send_param_evaluator, args=(param_queue, )).start() prefetcher = data_prefetcher(batch_queue, args['cuda']) learn_idx = 0 ts = time.time() tb_dict = { k: [] for k in [ 'loss', 'grad_norm', 'max_q', 'mean_q', 'min_q', 'batch_queue_size', 'prios_queue_size' ] } first_rount = True while True: (*batch, idxes) = prefetcher.next() if first_rount: print("start training") sys.stdout.flush() first_rount = False loss, prios, q_values = utils.compute_loss(model, tgt_model, batch, args['n_steps'], args['gamma']) optimizer.zero_grad() loss.backward() if args['dynamic_gradient_clip']: grad_norm = torch.nn.utils.clip_grad_norm_( model.parameters(), grad_norm_running_mean * args['clipping_threshold']) grad_norm_running_mean = grad_norm_running_mean * grad_norm_lambda + \ min(grad_norm, grad_norm_running_mean * args['clipping_threshold']) * (1-grad_norm_lambda) else: grad_norm = torch.norm( torch.stack([ torch.norm(p.grad.detach(), 2) for p in model.parameters() ]), 2) # global_prios_sum = np.array(prios_sum) # comm_cross.Allreduce(MPI.IN_PLACE, global_prios_sum.data) # global_prios_sum = float(global_prios_sum) # scale = prios_sum / global_prios_sum if args['dynamic_gradient_clip'] and args[ 'dropping_threshold'] and grad_norm > grad_norm_running_mean * args[ 'dropping_threshold']: pass else: optimizer.step() prios_queue.put((idxes, prios)) learn_idx += 1 tb_dict["loss"].append(float(loss)) tb_dict["grad_norm"].append(float(grad_norm)) tb_dict["max_q"].append(float(torch.max(q_values))) tb_dict["mean_q"].append(float(torch.mean(q_values))) tb_dict["min_q"].append(float(torch.min(q_values))) tb_dict["batch_queue_size"].append(batch_queue.qsize()) tb_dict["prios_queue_size"].append(prios_queue.qsize()) if learn_idx % args['target_update_interval'] == 0: tgt_model.load_state_dict(model.state_dict()) if learn_idx % args['save_interval'] == 0 and global_dict[ 'unit_idx'] == 0: torch.save(model.state_dict(), "model.pth") if learn_idx % args['publish_param_interval'] == 0: param_queue.put(model.state_dict()) if learn_idx % args['tb_interval'] == 0: bps = args['tb_interval'] / (time.time() - ts) for i, (k, v) in enumerate(tb_dict.items()): writer.add_scalar(f'learner/{i+1}_{k}', np.mean(v), learn_idx) v.clear() writer.add_scalar(f"learner/{i+2}_BPS", bps, learn_idx) ts = time.time()
def train(args, n_actors, batch_queue, prios_queue, param_queue): """ thread to fill parameter queue """ def _fill_param(): while True: model_dict = {} state_dict = model.state_dict() for k, v in state_dict.items(): model_dict[k] = v.cpu().numpy() param_queue.put(model_dict) env = wrapper.make_atari(args.env) env = wrapper.wrap_atari_dqn(env, args) utils.set_global_seeds(args.seed, use_torch=True) model = DuelingDQN(env).to(args.device) tgt_model = DuelingDQN(env).to(args.device) tgt_model.load_state_dict(model.state_dict()) writer = SummaryWriter(comment="-{}-learner".format(args.env)) # optimizer = torch.optim.Adam(model.parameters(), args.lr) optimizer = torch.optim.RMSprop(model.parameters(), args.lr, alpha=0.95, eps=1.5e-7, centered=True) model_dict = {} state_dict = model.state_dict() for k, v in state_dict.items(): model_dict[k] = v.cpu().numpy() param_queue.put(model_dict) threading.Thread(target=_fill_param).start() learn_idx = 0 ts = time.time() while True: #if batch_queue.empty(): # print("batch queue size:{}".format(batch_queue.qsize())) *batch, idxes = batch_queue.get() loss, prios = utils.compute_loss(model, tgt_model, batch, args.n_steps, args.gamma) grad_norm = utils.update_parameters(loss, model, optimizer, args.max_norm) prios_queue.put((idxes, prios)) batch, idxes, prios = None, None, None learn_idx += 1 if learn_idx % args.tensorboard_update_interval == 0: writer.add_scalar("learner/loss", loss, learn_idx) writer.add_scalar("learner/grad_norm", grad_norm, learn_idx) if learn_idx % args.target_update_interval == 0: print("Updating Target Network..") tgt_model.load_state_dict(model.state_dict()) if learn_idx % args.save_interval == 0: print("Saving Model..") torch.save(model.state_dict(), "model.pth") if learn_idx % args.publish_param_interval == 0: param_queue.get() if learn_idx % args.bps_interval == 0: bps = args.bps_interval / (time.time() - ts) print("Step: {:8} / BPS: {:.2f}".format(learn_idx, bps)) writer.add_scalar("learner/BPS", bps, learn_idx) ts = time.time()