Пример #1
0
def demo_main(char_set, weight, name):

    _, valid_transform = get_transform()
    demo_data = DemoDataset('cleaned_data', name, valid_transform)

    test_loader = DataLoader(
        dataset=demo_data,
        batch_size=3,
        shuffle=False,
        num_workers=1,
        pin_memory=True,
    )

    model = ConvNet(1, len(char_set))

    if torch.cuda.is_available():
        model = model.cuda()

    print('load weights from {}'.format(weight))
    model.load_state_dict(torch.load(weight))
    model.eval()

    def map_indexlist_char(ind_list, char_set):
        return ''.join([char_set[i] for i in ind_list])

    with torch.no_grad():
        for batch_idx, (x, imgpath) in enumerate(test_loader):
            if batch_idx > 0:
                break
            x = x.cuda()
            out = model(x)
            _, pred_label = torch.max(out, 1)
            pred_name = map_indexlist_char(pred_label.tolist(), char_set)

    print('name {} pred name {}'.format(name, pred_name))

    def get_concat(im1, im2):
        dst = Image.new('RGB', (im1.width + im2.width, im1.height))
        dst.paste(im1, (0, 0))
        dst.paste(im2, (im1.width, 0))
        return dst

    concat_im = None
    for img in demo_data.images():
        im = Image.open(img)
        if concat_im is None:
            concat_im = im
        else:
            concat_im = get_concat(concat_im, im)
    #concat_im.show()
    concat_im.save('demo.jpg')
def perform_experiments(n_runs=10,
                        n_points=1000,
                        n_epochs=200,
                        run_best=False,
                        verbose=False):
    """
    Perform experiments for 5 different neural network architectures and losses.
    
    To run all experiments call this function with default params
    
    :param n_runs: number of runs for which experiment should be repeated
    :param n_points: number of training and testing data points used in the experiments
    :param n_epochs: number of epochs every architecture should be trained on
    :param run_best: If True only the best architecture (Siamese Network with auxiliary loss) is trained
    :param verbose: If True, print training and validation loss every epoch
    :returns: dictionary containing history of training (training, validation loss and accuracy)
    """
    history_mlp_net = []
    history_conv_net = []
    history_conv_net_aux = []
    history_siamese = []
    history_siamese_aux = []

    for n_run in range(n_runs):
        data_set = generate_pair_sets(n_points)
        MAX_VAL = 255.0

        TRAIN_INPUT = Variable(data_set[0]) / MAX_VAL
        TRAIN_TARGET = Variable(data_set[1])
        TRAIN_CLASSES = Variable(data_set[2])

        TEST_INPUT = Variable(data_set[3]) / MAX_VAL
        TEST_TARGET = Variable(data_set[4])
        TEST_CLASSES = Variable(data_set[5])

        if not run_best:
            ##############################################################################
            # Creates Multilayer Perceptron Network with ReLU activationss
            mlp_net = MLPNet(in_features=392,
                             out_features=2,
                             n_layers=3,
                             n_hidden=16)

            # Set train flag on (for dropouts)
            mlp_net.train()

            # Train the model and append the history
            history_mlp_net.append(
                train_model(mlp_net,
                            train_input=TRAIN_INPUT.view((n_points, -1)),
                            train_target=TRAIN_TARGET,
                            val_input=TEST_INPUT.view((n_points, -1)),
                            val_target=TEST_TARGET,
                            n_epochs=n_epochs,
                            verbose=verbose))

            # Set train flag to False for getting accuracies on validation data
            mlp_net.eval()
            acc = get_accuracy(mlp_net, TEST_INPUT.view(
                (n_points, -1)), TEST_TARGET) * 100.0
            print("Run: {}, Mlp_net Test Accuracy: {:.3f} %".format(
                n_run, acc))

            ##############################################################################
            # Create ConvNet without auxiliary outputs
            conv_net = ConvNet(n_classes=2, n_layers=3, n_features=16)

            # Set train flag on (for dropouts)
            conv_net.train()

            # Train the model and append the history
            history_conv_net.append(
                train_model(conv_net,
                            train_input=TRAIN_INPUT,
                            train_target=TRAIN_TARGET,
                            val_input=TEST_INPUT,
                            val_target=TEST_TARGET,
                            n_epochs=n_epochs,
                            verbose=verbose))

            # Set train flag to False for getting accuracies on validation data
            conv_net.eval()
            acc = get_accuracy(conv_net, TEST_INPUT, TEST_TARGET) * 100.0
            print("Run: {}, ConvNet Test Accuracy: {:.3f} %".format(
                n_run, acc))

            ##############################################################################
            # Create ConvNet with auxiliary outputs
            conv_net_aux = ConvNet(n_classes=22, n_layers=3, n_features=16)

            # Set train flag on (for dropouts)
            conv_net_aux.train()

            # Train the model and append the history
            history_conv_net_aux.append(
                train_model(conv_net_aux,
                            train_input=TRAIN_INPUT,
                            train_target=TRAIN_TARGET,
                            aux_param=1.0,
                            train_classes=TRAIN_CLASSES,
                            val_input=TEST_INPUT,
                            val_target=TEST_TARGET,
                            val_classes=TEST_CLASSES,
                            n_epochs=n_epochs,
                            verbose=verbose))

            # Set train flag to False for getting accuracies on validation data
            conv_net_aux.eval()
            acc = get_accuracy(conv_net_aux, TEST_INPUT, TEST_TARGET) * 100.0
            print("Run: {}, ConvNet Auxilary Test Accuracy: {:.3f} %".format(
                n_run, acc))

            ##############################################################################
            # Create Siamese Network without auxiliary outputs
            conv_net = BlockConvNet()
            conv_net_siamese = DeepSiameseNet(conv_net)

            # Set train flag on (for dropouts)
            conv_net.train()
            conv_net_siamese.train()

            # Train the model and append the history
            history_siamese.append(
                train_model(conv_net_siamese,
                            train_input=TRAIN_INPUT,
                            train_target=TRAIN_TARGET,
                            val_input=TEST_INPUT,
                            val_target=TEST_TARGET,
                            n_epochs=n_epochs,
                            verbose=verbose))

            # Set train flag to False for getting accuracies on validation data
            conv_net.eval()
            conv_net_siamese.eval()

            acc = get_accuracy(conv_net_siamese, TEST_INPUT,
                               TEST_TARGET) * 100.0
            print("Run: {}, Siamese Test Accuracy: {:.3f} %".format(
                n_run, acc))

        ##############################################################################
        # Create Siamese Network with auxiliary outputs
        conv_net = BlockConvNet()
        conv_net_siamese_aux = DeepSiameseNet(conv_net)

        # Set train flag on (for dropouts)
        conv_net.train()
        conv_net_siamese_aux.train()

        # Train the model and append the history
        history_siamese_aux.append(
            train_model(conv_net_siamese_aux,
                        train_input=TRAIN_INPUT,
                        train_target=TRAIN_TARGET,
                        train_classes=TRAIN_CLASSES,
                        val_input=TEST_INPUT,
                        val_target=TEST_TARGET,
                        val_classes=TEST_CLASSES,
                        aux_param=3.0,
                        n_epochs=n_epochs,
                        verbose=verbose))

        # Set train flag to False for getting accuracies on validation data
        conv_net.eval()
        conv_net_siamese_aux.eval()

        acc = get_accuracy(conv_net_siamese_aux, TEST_INPUT,
                           TEST_TARGET) * 100.0
        print("Run: {}, Siamese Auxilary Test Accuracy: {:.3f} %".format(
            n_run, acc))
        ##############################################################################

        return {
            'history_mlp_net': history_mlp_net,
            'history_conv_net': history_conv_net,
            'history_conv_net_aux': history_conv_net_aux,
            'history_siamese': history_siamese,
            'history_siamese_aux': history_siamese_aux
        }