Пример #1
0
def example2():
    cm = ConfigManager('testset')
    imgs = DataLoader.get_images_objects(cm.get_dataset_path(),
                                         'processed_x.pt',
                                         'processed_y.pt',
                                         to_tensor=True)
    print(type(imgs))
    dm = DatasetsManager(cm, imgs)

    n_output = 2
    net = ConvNet(n_output)
    optimizer = optim.Adam(net.parameters(), lr=1e-3)
    loss_function = nn.MSELoss()

    EPOCHS = 10
    BATCH_SIZE = 128

    print('Start training')
    for epoch in range(EPOCHS):
        for k in tqdm(range(0, len(dm.train), BATCH_SIZE)):
            batch_x = torch.cat(dm.train.get_x(start=k, end=k + BATCH_SIZE),
                                dim=0)
            batch_y = torch.Tensor(dm.train.get_y(start=k, end=k + BATCH_SIZE))
            print(type(batch_x))
            net.zero_grad()

            out = net(batch_x)
            loss = loss_function(out, batch_y)
            loss.backward()
            optimizer.step()

        print(f'Epoch: {epoch}. Loss: {loss}')

    correct = 0
    total = 0

    # with torch.no_grad():
    #     for k in tqdm(range(len(x_test))):
    #         real_class = torch.argmax(y_test[k])
    #         net_out = net(x_test[k].view(-1, 1, IMG_SIZE, IMG_SIZE))[0]  # returns list
    #         predicted_class = torch.argmax(net_out)

    #         if predicted_class == real_class:
    #             correct += 1
    #         total += 1

    print('Accuracy: ', round(correct / total, 3))

    torch.save(net, 'data/cnn_cats_dogs_model.pt')
Пример #2
0
def baseline_fitness(state_dict,num_epochs=600):
    
    # Hyper Parameters
    param = {    
        'batch_size': 4, 
        'test_batch_size': 50,
        'num_epochs': num_epochs,
        'learning_rate': 0.001,
        'weight_decay': 5e-4,
    }
    
    num_cnn_layer =sum( [ int(len(v.size())==4) for d, v in state_dict.items() ] )        

    num_fc_layer = sum( [ int(len(v.size())==2) for d, v in state_dict.items() ] ) 
    
    state_key = [ k for k,v in state_dict.items()]
        
    cfg = []
    first = True
    for d, v in state_dict.items():
        #print(v.data.size())    
        if len(v.data.size()) == 4 or len(v.data.size()) ==2:
            if first:
                first = False
                cfg.append(v.data.size()[1]) 
            cfg.append(v.data.size()[0])
    

    assert num_cnn_layer + num_fc_layer == len(cfg) - 1
    
    net = ConvNet(cfg, num_cnn_layer)
         
#    masks = []

    for i, p in enumerate(net.parameters()):
        
        p.data = state_dict[ state_key[i] ]
        
        if len(p.data.size()) == 4:
            pass
            #p_np = p.data.cpu().numpy()
            
            #masks.append(np.ones(p_np.shape).astype('float32'))
                    
            #value_this_layer = np.abs(p_np).sum(axis=(2,3))        
                                    
#            for j in range(len(value_this_layer)):
#                
#                for k in range(len(value_this_layer[0])):
#                    
#                    if abs( value_this_layer[j][k] ) < 1e-4:
#                    
#                        masks[-1][j][k] = 0.
                        
        elif len(p.data.size()) == 2:
            pass
            #p_np = p.data.cpu().numpy()
            
            #masks.append(np.ones(p_np.shape).astype('float32'))
                    
            #value_this_layer = np.abs(p_np)   
                                    
#            for j in range(len(value_this_layer)):
#                
#                for k in range(len(value_this_layer[0])):
#                    
#                    if abs( value_this_layer[j][k] ) < 1e-4:
#                    
#                        masks[-1][j][k] = 0.                                        
                        
    #net.set_masks(masks)   
    
    
    ## Retraining    
    loader_train, loader_test = load_dataset()
    
    criterion = nn.CrossEntropyLoss()
    optimizer = torch.optim.RMSprop(net.parameters(), lr=param['learning_rate'], 
                                    weight_decay=param['weight_decay'])
    #if num_epochs > 0:
    #    test(net, loader_test)
    
    #train(net, criterion, optimizer, param, loader_train)
    
    test_acc_list = []
    
    for t in range(num_epochs ):
    
        param['num_epochs'] = 10
        train(net, criterion, optimizer, param, loader_train)
    
        #print("--- After training ---")
        
        test_acc_list.append(test(net, loader_test))
        
    plt.plot(test_acc_list)
    
    with open('baseline_result.csv','a',newline='') as csvfile:
        writer  = csv.writer(csvfile)
        for row in test_acc_list:
            writer.writerow([row])
def retrain(state_dict, part=1, num_epochs=5):

    # Hyper Parameters
    param = {
        'batch_size': 4,
        'test_batch_size': 50,
        'num_epochs': num_epochs,
        'learning_rate': 0.001,
        'weight_decay': 5e-4,
    }

    num_cnn_layer = sum(
        [int(len(v.size()) == 4) for d, v in state_dict.items()])

    num_fc_layer = sum(
        [int(len(v.size()) == 2) for d, v in state_dict.items()])

    state_key = [k for k, v in state_dict.items()]

    cfg = []
    first = True
    for d, v in state_dict.items():
        #print(v.data.size())
        if len(v.data.size()) == 4 or len(v.data.size()) == 2:
            if first:
                first = False
                cfg.append(v.data.size()[1])
            cfg.append(v.data.size()[0])

    assert num_cnn_layer + num_fc_layer == len(cfg) - 1

    net = ConvNet(cfg, num_cnn_layer, part)

    masks = []

    for i, p in enumerate(net.parameters()):

        p.data = state_dict[state_key[i]]

        if len(p.data.size()) == 4:

            p_np = p.data.cpu().numpy()

            masks.append(np.ones(p_np.shape).astype('float32'))

            value_this_layer = np.abs(p_np).sum(axis=(2, 3))

            for j in range(len(value_this_layer)):

                for k in range(len(value_this_layer[0])):

                    if abs(value_this_layer[j][k]) < 1e-4:

                        masks[-1][j][k] = 0.

        elif len(p.data.size()) == 2:

            p_np = p.data.cpu().numpy()

            masks.append(np.ones(p_np.shape).astype('float32'))

            value_this_layer = np.abs(p_np)

            for j in range(len(value_this_layer)):

                for k in range(len(value_this_layer[0])):

                    if abs(value_this_layer[j][k]) < 1e-4:

                        masks[-1][j][k] = 0.

    net.set_masks(masks)

    ## Retraining
    loader_train, loader_test = load_dataset()

    criterion = nn.CrossEntropyLoss()
    optimizer = torch.optim.RMSprop(net.parameters(),
                                    lr=param['learning_rate'],
                                    weight_decay=param['weight_decay'])
    #if num_epochs > 0:
    #    test(net, loader_test)

    train(net, criterion, optimizer, param, loader_train)

    for i, p in enumerate(net.parameters()):

        state_dict[state_key[i]] = p.data
        #print(p.data == state_dict[ state_key[i] ])

    #print("--- After retraining ---")
    #test(net, loader_test)

    #return net.state_dict()
    return state_dict
Пример #4
0
def example1():
    """ Train convnet and then save the model """
    DATASETS_DICT = './data'
    IMG_SIZE = CONFIG['img_size']

    # x_train = DataLoader.load(os.path.join(DATASETS_DICT, 'x_train_cats_dogs.npy'))
    # y_train = DataLoader.load(os.path.join(DATASETS_DICT, 'y_train_cats_dogs.npy'))
    # x_train = DataLoader.load(os.path.join(DATASETS_DICT, 'x_cats_dogs_skimage.npy'))
    # y_train = DataLoader.load(os.path.join(DATASETS_DICT, 'y_cats_dogs_skimage.npy'))

    # x_train = DataLoader.load(os.path.join(DATASETS_DICT, 'x_rps_skimage.npy'))
    # y_train = DataLoader.load(os.path.join(DATASETS_DICT, 'y_rps_skimage.npy'))
    x_train = DataLoader.load_npy(CONFIG['data']['x_path'])
    y_train = DataLoader.load_npy(CONFIG['data']['y_path'])

    x_train = torch.Tensor(x_train).view(-1, IMG_SIZE, IMG_SIZE)
    y_train = torch.Tensor(y_train)

    N_TRAIN = CONFIG['n_train']
    N_EVAL = CONFIG['n_eval']
    N_TEST = CONFIG['n_test']

    if N_TRAIN + N_EVAL + N_TEST > len(x_train):
        raise Exception('Not enough data!')

    # resnet50 works with 224, 244 input size
    n_output = 2
    net = ConvNet(n_output)
    optimizer = optim.Adam(net.parameters(), lr=1e-3)
    loss_function = nn.MSELoss()

    # split data
    x_eval = x_train[:N_EVAL]
    y_eval = y_train[:N_EVAL]

    x_test = x_train[N_EVAL:N_EVAL + N_TEST]
    y_test = y_train[N_EVAL:N_EVAL + N_TEST]

    x_train = x_train[N_EVAL + N_TEST:N_EVAL + N_TEST + N_TRAIN]
    y_oracle = y_train[N_EVAL + N_TEST:N_EVAL + N_TEST + N_TRAIN]

    # show_grid_imgs(x_train[:16], y_oracle[:16], (4, 4))

    EPOCHS = 10
    BATCH_SIZE = 128

    print('Start training')
    for epoch in range(EPOCHS):
        for k in tqdm(range(0, len(x_train), BATCH_SIZE)):
            batch_x = x_train[k:k + BATCH_SIZE].view(-1, 1, IMG_SIZE, IMG_SIZE)
            batch_y = y_oracle[k:k + BATCH_SIZE]

            net.zero_grad()

            out = net(batch_x)
            loss = loss_function(out, batch_y)
            loss.backward()
            optimizer.step()

        print(f'Epoch: {epoch}. Loss: {loss}')

    correct = 0
    total = 0

    with torch.no_grad():
        for k in tqdm(range(len(x_test))):
            real_class = torch.argmax(y_test[k])
            net_out = net(x_test[k].view(-1, 1, IMG_SIZE,
                                         IMG_SIZE))[0]  # returns list
            predicted_class = torch.argmax(net_out)

            if predicted_class == real_class:
                correct += 1
            total += 1

    print('Accuracy: ', round(correct / total, 3))

    torch.save(net, f'{DATASETS_DICT}/cnn_rps_model.pt')
Пример #5
0
# Load the pretrained model
net = ConvNet()
net.load_state_dict(torch.load('models/convnet_pretrained.pkl'))
if torch.cuda.is_available():
    print('CUDA ensabled.')
    net.cuda()
print("--- Pretrained network loaded ---")
test(net, loader_test)

# prune the weights
masks = filter_prune(net, param['pruning_perc'])
net.set_masks(masks)
print("--- {}% parameters pruned ---".format(param['pruning_perc']))
test(net, loader_test)

# Retraining
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.RMSprop(net.parameters(),
                                lr=param['learning_rate'],
                                weight_decay=param['weight_decay'])

train(net, criterion, optimizer, param, loader_train)

# Check accuracy and nonzeros weights in each layer
print("--- After retraining ---")
test(net, loader_test)
prune_rate(net)

# Save and load the entire model
torch.save(net.state_dict(), 'models/convnet_pruned.pkl')
            # w.shape (output_channels, reshaped_inputs )
            # w (10, 3136=7*7*64)
            # = (output_channels, size*size*input_channels)
            m1.weight.data = m0.weight.data[:, idx0_new.tolist()].clone()
            #m1.weight.data = m0.weight.data[:, idx0].clone()

            m1.bias.data = m0.bias.data.clone()
            print('m1.weight.data shape ', m1.weight.data.size())
            layer_id_in_cfg += 1
            continue

        m1.weight.data = m0.weight.data.clone()
        m1.bias.data = m0.bias.data.clone()

num_parameters = sum([param.nelement() for param in new_net.parameters()])

# prune the weights
#masks = filter_prune(net, param['pruning_perc'])
#net.set_masks(masks)
#print("--- {}% parameters pruned ---".format(param['pruning_perc']))
test(new_net, loader_test)

# Retraining
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.RMSprop(new_net.parameters(),
                                lr=param['learning_rate'],
                                weight_decay=param['weight_decay'])

train(new_net, criterion, optimizer, param, loader_train)
Пример #7
0
def main():
    # data normalization
    input_size = 224
    normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
                                     std=[0.229, 0.224, 0.225])

    # data loaders
    kwargs = {'num_workers': 8, 'pin_memory': True} if args.cuda else {}

    if args.da:
        train_transforms = transforms.Compose([
            random_transform,
            transforms.ToPILImage(),
            transforms.Resize((input_size, input_size)),
            transforms.ToTensor(), normalize
        ])
    else:
        train_transforms = transforms.Compose([
            transforms.ToPILImage(),
            transforms.Resize((input_size, input_size)),
            transforms.RandomHorizontalFlip(),
            transforms.ToTensor(), normalize
        ])

    test_transforms = transforms.Compose([
        transforms.ToPILImage(),
        transforms.Resize((input_size, input_size)),
        transforms.ToTensor(), normalize
    ])

    train_loader = torch.utils.data.DataLoader(DataLoader(df_train,
                                                          train_transforms,
                                                          root=args.data_dir,
                                                          mode=args.mode),
                                               batch_size=args.batch_size,
                                               shuffle=True,
                                               **kwargs)

    test_loader = torch.utils.data.DataLoader(DataLoader(df_gal,
                                                         test_transforms,
                                                         root=args.data_dir,
                                                         mode=args.mode),
                                              batch_size=args.batch_size,
                                              shuffle=False,
                                              **kwargs)

    # instanciate the models
    output_shape, backbone = get_backbone(args)
    embed = LinearProjection(output_shape, args.dim_embed)
    model = ConvNet(backbone, embed)

    # instanciate the proxies
    fsem = get_semantic_fname(args.word)
    path_semantic = os.path.join('aux', 'Semantic', args.dataset, fsem)
    train_proxies = get_proxies(path_semantic, df_train['cat'].cat.categories)
    test_proxies = get_proxies(path_semantic, df_gal['cat'].cat.categories)

    train_proxynet = ProxyNet(args.n_classes,
                              args.dim_embed,
                              proxies=torch.from_numpy(train_proxies))
    test_proxynet = ProxyNet(args.n_classes_gal,
                             args.dim_embed,
                             proxies=torch.from_numpy(test_proxies))

    # criterion
    criterion = ProxyLoss(args.temperature)

    if args.multi_gpu:
        model = nn.DataParallel(model)

    if args.cuda:
        backbone.cuda()
        embed.cuda()
        model.cuda()
        train_proxynet.cuda()
        test_proxynet.cuda()

    parameters_set = []

    low_layers = []
    upper_layers = []

    for c in backbone.children():
        low_layers.extend(list(c.parameters()))
    for c in embed.children():
        upper_layers.extend(list(c.parameters()))

    parameters_set.append({
        'params': low_layers,
        'lr': args.lr * args.factor_lower
    })
    parameters_set.append({'params': upper_layers, 'lr': args.lr * 1.})

    optimizer = optim.SGD(parameters_set,
                          lr=args.lr,
                          momentum=0.9,
                          nesterov=True,
                          weight_decay=args.wd)

    n_parameters = sum([p.data.nelement() for p in model.parameters()])
    print('  + Number of params: {}'.format(n_parameters))

    scheduler = CosineAnnealingLR(optimizer,
                                  args.epochs * len(train_loader),
                                  eta_min=3e-6)

    print('Starting training...')
    for epoch in range(args.start_epoch, args.epochs + 1):
        # update learning rate
        scheduler.step()

        # train for one epoch
        train(train_loader, model, train_proxynet.proxies.weight, criterion,
              optimizer, epoch, scheduler)

        val_acc = evaluate(test_loader, model, test_proxynet.proxies.weight,
                           criterion)

        # saving
        if epoch == args.epochs:
            save_checkpoint({'epoch': epoch, 'state_dict': model.state_dict()})

    print('\nResults on test set (end of training)')
    write_logs('\nResults on test set (end of training)')
    test_acc = evaluate(test_loader, model, test_proxynet.proxies.weight,
                        criterion)
Пример #8
0
import torch
import torch.nn.functional as F
from torch.autograd import Variable
import copy
import time

from models import ConvNet, nCrossEntropyLoss
from config import DefaultConfig
from data.dataset import data_loader, data, dataset_size
from utils.utils import equal

net = ConvNet()
optimizer = torch.optim.Adam(net.parameters(), lr=0.001)
loss_func = nCrossEntropyLoss()

best_model_wts = copy.deepcopy(net.state_dict())
best_acc = 0.0

since = time.time()
for epoch in range(DefaultConfig.EPOCH):

    running_loss = 0.0
    running_corrects = 0

    for step, (inputs, label) in enumerate(data_loader):
        # 用 0 填充 LongTensor
        pred = torch.LongTensor(DefaultConfig.BATCH_SIZE, 1).zero_()
        inputs = Variable(inputs)  # (bs, 3, 60, 160)
        label = Variable(label)  # (bs, 4)
        # 梯度清零
        optimizer.zero_grad()
Пример #9
0
test_loader = torch.utils.data.DataLoader(test_set, batch_size=1000)

################ initialize the model ################
if args.model == 'convnet':
    model = ConvNet()
elif args.model == 'mymodel':
    model = MyModel()
else:
    raise Exception('Incorrect model name')

if args.cuda:
    model.cuda()

######## Define loss function and optimizer ##########
############## Write your code here ##################
params = model.parameters()
optimizer = optim.Adam(params, lr=args.lr, weight_decay=args.weight_decay)
criterion = nn.CrossEntropyLoss()
######################################################


def train(epoch):
    """ Runs training for 1 epoch
    epoch: int, denotes the epoch number for printing
    """
    ############# Write train function ###############
    mean_training_loss = 0.0
    model.train()
    for i, batch in enumerate(train_loader):
        ############ Write your code here ############
        # Get input and labels
Пример #10
0
def main(args):

    init_process_group(backend='nccl')

    with open(args.config) as file:
        config = json.load(file)
        config.update(vars(args))
        config = apply_dict(Dict, config)

    backends.cudnn.benchmark = True
    backends.cudnn.fastest = True

    cuda.set_device(distributed.get_rank() % cuda.device_count())

    train_dataset = ImageDataset(root=config.train_root,
                                 meta=config.train_meta,
                                 transform=transforms.Compose([
                                     transforms.ToTensor(),
                                     transforms.Normalize((0.5, ) * 3,
                                                          (0.5, ) * 3)
                                 ]))
    val_dataset = ImageDataset(root=config.val_root,
                               meta=config.val_meta,
                               transform=transforms.Compose([
                                   transforms.ToTensor(),
                                   transforms.Normalize((0.5, ) * 3,
                                                        (0.5, ) * 3)
                               ]))

    train_sampler = utils.data.distributed.DistributedSampler(train_dataset)
    val_sampler = utils.data.distributed.DistributedSampler(val_dataset)

    train_data_loader = utils.data.DataLoader(
        dataset=train_dataset,
        batch_size=config.local_batch_size,
        sampler=train_sampler,
        num_workers=config.num_workers,
        pin_memory=True)
    val_data_loader = utils.data.DataLoader(dataset=val_dataset,
                                            batch_size=config.local_batch_size,
                                            sampler=val_sampler,
                                            num_workers=config.num_workers,
                                            pin_memory=True)

    model = ConvNet(conv_params=[
        Dict(in_channels=3,
             out_channels=32,
             kernel_size=5,
             padding=2,
             stride=2,
             bias=False),
        Dict(in_channels=32,
             out_channels=64,
             kernel_size=5,
             padding=2,
             stride=2,
             bias=False),
    ],
                    linear_params=[
                        Dict(in_channels=3136,
                             out_channels=1024,
                             kernel_size=1,
                             bias=False),
                        Dict(in_channels=1024,
                             out_channels=10,
                             kernel_size=1,
                             bias=True),
                    ])

    config.global_batch_size = config.local_batch_size * distributed.get_world_size(
    )
    config.optimizer.lr *= config.global_batch_size / config.global_batch_denom
    optimizer = optim.Adam(model.parameters(), **config.optimizer)

    epoch = 0
    global_step = 0
    if config.checkpoint:
        checkpoint = Dict(torch.load(config.checkpoint))
        model.load_state_dict(checkpoint.model_state_dict)
        optimizer.load_state_dict(checkpoint.optimizer_state_dict)
        epoch = checkpoint.last_epoch + 1
        global_step = checkpoint.global_step

    def train(data_loader):
        nonlocal global_step
        model.train()
        for images, labels in data_loader:
            images = images.cuda()
            labels = labels.cuda()
            optimizer.zero_grad()
            logits = model(images)
            loss = nn.functional.cross_entropy(logits, labels)
            loss.backward(retain_graph=True)
            average_gradients(model.parameters())
            optimizer.step()
            predictions = logits.topk(k=1, dim=1)[1].squeeze()
            accuracy = torch.mean((predictions == labels).float())
            average_tensors([loss, accuracy])
            global_step += 1
            dprint(f'[training] epoch: {epoch} global_step: {global_step} '
                   f'loss: {loss:.4f} accuracy: {accuracy:.4f}')

    @torch.no_grad()
    def validate(data_loader):
        model.eval()
        losses = []
        accuracies = []
        for images, labels in data_loader:
            images = images.cuda()
            labels = labels.cuda()
            logits = model(images)
            loss = nn.functional.cross_entropy(logits, labels)
            predictions = logits.topk(k=1, dim=1)[1].squeeze()
            accuracy = torch.mean((predictions == labels).float())
            average_tensors([loss, accuracy])
            losses.append(loss)
            accuracies.append(accuracy)
        loss = torch.mean(torch.stack(losses)).item()
        accuracy = torch.mean(torch.stack(accuracies)).item()
        dprint(f'[validation] epoch: {epoch} global_step: {global_step} '
               f'loss: {loss:.4f} accuracy: {accuracy:.4f}')

    @torch.no_grad()
    def feed(data_loader):
        model.eval()
        for images, _ in data_loader:
            images = images.cuda()
            logits = model(images)

    def save():
        if not distributed.get_rank():
            os.makedirs('checkpoints', exist_ok=True)
            torch.save(
                dict(model_state_dict=model.state_dict(),
                     optimizer_state_dict=optimizer.state_dict(),
                     last_epoch=epoch,
                     global_step=global_step),
                os.path.join('checkpoints', f'epoch_{epoch}'))

    if config.training:
        model.cuda()
        broadcast_tensors(model.state_dict().values())
        for epoch in range(epoch, config.num_training_epochs):
            train_sampler.set_epoch(epoch)
            train(train_data_loader)
            validate(val_data_loader)
            save()

    if config.validation:
        model.cuda()
        broadcast_tensors(model.state_dict().values())
        validate(val_data_loader)

    if config.quantization:
        model.cuda()
        broadcast_tensors(model.state_dict().values())
        with QuantizationEnabler(model):
            with BatchStatsUser(model):
                for epoch in range(epoch, config.num_quantization_epochs):
                    train_sampler.set_epoch(epoch)
                    train(train_data_loader)
                    validate(val_data_loader)
                    save()
            with AverageStatsUser(model):
                for epoch in range(epoch, config.num_quantization_epochs):
                    train_sampler.set_epoch(epoch)
                    train(train_data_loader)
                    validate(val_data_loader)
                    save()
Пример #11
0
from models import ConvNet

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

# Load the dataset
transform = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])

dataset = torchvision.datasets.ImageFolder("D:/PokeRapper/Pokemon",
                                           transform=transform)
dataloader = torch.utils.data.DataLoad(dataset,
                                       batch_size=1024,
                                       shuffle=True,
                                       num_workers=4)

# build the model
# TODO: Add support for loading different models
model = ConvNet()
model.to(device)

criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.001, momentum=0.9)

# train the network
for epoch in range(100):
    for i, data in enumerate(dataloader, 0):
        print('')