Пример #1
0
def main():
    from pathlib import Path
    home = str(Path.home())  # get home directory

    # DATA
    data_folder = data_folder = home + "/Dev/DATA/"
    data = load_data(data_folder, toyset=True)

    data['pose_maps'] = data['pose_maps'][:, 0:1, ...]
    data['light_maps'] = data['light_maps'][:, 0:1, ...]

    data['pose_maps'] = reshape_data(data['pose_maps'])

    # Split data
    d_set = dataset_train_val_test_split(data['light_maps'], toyset=True)
    training_data = {
        'light_maps': reshape_data(d_set['train_set']),
        'pose_maps': data['pose_maps']
    }
    val_data = {
        'light_maps': reshape_data(d_set['val_set']),
        'pose_maps': data['pose_maps']
    }
    test_data = {
        'light_maps': reshape_data(d_set['test_set']),
        'pose_maps': data['pose_maps']
    }

    # TRAINING
    train(training_data, validation_data=val_data)
Пример #2
0
                 activation='relu',
                 kernel_initializer='glorot_uniform'),
    layers.Dense(500, activation='relu', kernel_initializer='glorot_uniform'),
    layers.Dense(2000, activation='relu', kernel_initializer='glorot_uniform'),
    layers.Dense(10, activation='linear', kernel_initializer='glorot_uniform')
]

test_data_list, numPerClass = my_utils.getTest_data(numPerClass=100,
                                                    reshape=False)
colors = [
    'blue', 'green', 'red', 'cyan', 'magenta', 'yellow', 'black', 'purple',
    'pink', 'brown'
]
#             0       1       2       3        4          5        6        7         8       9

X, Y = my_utils.load_data('mnist')
high_dims = 784
num_outputs = 10
perplexity = 30
num_data = 20000
ptSNE = parametric_tSNE.Parametric_tSNE(high_dims,
                                        num_outputs,
                                        perplexity,
                                        do_pretrain=False,
                                        all_layers=all_layers)


# ptSNE.fit(X[:num_data], epochs=100, verbose=1)
def test_acc(X):
    from sklearn.cluster import KMeans
    from sklearn.manifold import TSNE
Пример #3
0
import time
import numpy
import theano
import theano.tensor as T
from theano.tensor.signal import downsample
from theano.tensor.nnet import conv

from logistic_sgd import LogisticRegression
from my_utils import load_data,shuffle_list
from mlp import HiddenLayer
from convolutional_mlp import LeNetConvPoolLayer
from parameters import *
if __name__ == '__main__':

	rng = numpy.random.RandomState(23455)
	datasets = load_data(dataset)

	train_set_x, train_set_y = datasets[0]
	valid_set_x, valid_set_y = datasets[1]
	test_set_x, test_set_y = datasets[2]

    # compute number of minibatches for training, validation and testing
	n_train_batches = train_set_x.get_value(borrow=True).shape[0]
	n_valid_batches = valid_set_x.get_value(borrow=True).shape[0]
	n_test_batches = test_set_x.get_value(borrow=True).shape[0]
	n_train_batches /= batch_size
	n_valid_batches /= batch_size
	n_test_batches /= batch_size

    # allocate symbolic variables for the data
	index = T.lscalar()  # index to a [mini]batch
Пример #4
0
def test_mlp(learning_rate=0.01, L1_reg=0.00, L2_reg=0.0001, n_epochs=1000,
             dataset='mnist.pkl.gz', batch_size=20, n_hidden=500):
    """
    Demonstrate stochastic gradient descent optimization for a multilayer
    perceptron

    This is demonstrated on MNIST.

    :type learning_rate: float
    :param learning_rate: learning rate used (factor for the stochastic
    gradient

    :type L1_reg: float
    :param L1_reg: L1-norm's weight when added to the cost (see
    regularization)

    :type L2_reg: float
    :param L2_reg: L2-norm's weight when added to the cost (see
    regularization)

    :type n_epochs: int
    :param n_epochs: maximal number of epochs to run the optimizer

    :type dataset: string
    :param dataset: the path of the MNIST dataset file from
                 http://www.iro.umontreal.ca/~lisa/deep/data/mnist/mnist.pkl.gz


   """
    datasets = load_data(dataset)

    train_set_x, train_set_y = datasets[0]
    valid_set_x, valid_set_y = datasets[1]
    test_set_x, test_set_y = datasets[2]

    # compute number of minibatches for training, validation and testing
    n_train_batches = train_set_x.get_value(borrow=True).shape[0] / batch_size
    n_valid_batches = valid_set_x.get_value(borrow=True).shape[0] / batch_size
    n_test_batches = test_set_x.get_value(borrow=True).shape[0] / batch_size

    ######################
    # BUILD ACTUAL MODEL #
    ######################
    print '... building the model'

    # allocate symbolic variables for the data
    index = T.lscalar()  # index to a [mini]batch
    x = T.matrix('x')  # the data is presented as rasterized images
    y = T.ivector('y')  # the labels are presented as 1D vector of
                        # [int] labels

    rng = numpy.random.RandomState(1234)

    # construct the MLP class
    classifier = MLP(rng=rng, input=x, n_in=28 * 28,
                     n_hidden=n_hidden, n_out=10)

    # the cost we minimize during training is the negative log likelihood of
    # the model plus the regularization terms (L1 and L2); cost is expressed
    # here symbolically
    cost = classifier.negative_log_likelihood(y) \
         + L1_reg * classifier.L1 \
         + L2_reg * classifier.L2_sqr

    # compiling a Theano function that computes the mistakes that are made
    # by the model on a minibatch
    test_model = theano.function(inputs=[index],
            outputs=classifier.errors(y),
            givens={
                x: test_set_x[index * batch_size:(index + 1) * batch_size],
                y: test_set_y[index * batch_size:(index + 1) * batch_size]})

    validate_model = theano.function(inputs=[index],
            outputs=classifier.errors(y),
            givens={
                x: valid_set_x[index * batch_size:(index + 1) * batch_size],
                y: valid_set_y[index * batch_size:(index + 1) * batch_size]})

    # compute the gradient of cost with respect to theta (sotred in params)
    # the resulting gradients will be stored in a list gparams
    gparams = []
    for param in classifier.params:
        gparam = T.grad(cost, param)
        gparams.append(gparam)

    # specify how to update the parameters of the model as a list of
    # (variable, update expression) pairs
    updates = []
    # given two list the zip A = [a1, a2, a3, a4] and B = [b1, b2, b3, b4] of
    # same length, zip generates a list C of same size, where each element
    # is a pair formed from the two lists :
    #    C = [(a1, b1), (a2, b2), (a3, b3), (a4, b4)]
    for param, gparam in zip(classifier.params, gparams):
        updates.append((param, param - learning_rate * gparam))

    # compiling a Theano function `train_model` that returns the cost, but
    # in the same time updates the parameter of the model based on the rules
    # defined in `updates`
    train_model = theano.function(inputs=[index], outputs=cost,
            updates=updates,
            givens={
                x: train_set_x[index * batch_size:(index + 1) * batch_size],
                y: train_set_y[index * batch_size:(index + 1) * batch_size]})

    ###############
    # TRAIN MODEL #
    ###############
    print '... training'

    # early-stopping parameters
    patience = 10000  # look as this many examples regardless
    patience_increase = 2  # wait this much longer when a new best is
                           # found
    improvement_threshold = 0.995  # a relative improvement of this much is
                                   # considered significant
    validation_frequency = min(n_train_batches, patience / 2)
                                  # go through this many
                                  # minibatche before checking the network
                                  # on the validation set; in this case we
                                  # check every epoch

    best_params = None
    best_validation_loss = numpy.inf
    best_iter = 0
    test_score = 0.
    start_time = time.clock()

    epoch = 0
    done_looping = False

    while (epoch < n_epochs) and (not done_looping):
        epoch = epoch + 1
        for minibatch_index in xrange(n_train_batches):

            minibatch_avg_cost = train_model(minibatch_index)
            # iteration number
            iter = (epoch - 1) * n_train_batches + minibatch_index

            if (iter + 1) % validation_frequency == 0:
                # compute zero-one loss on validation set
                validation_losses = [validate_model(i) for i
                                     in xrange(n_valid_batches)]
                this_validation_loss = numpy.mean(validation_losses)

                print('epoch %i, minibatch %i/%i, validation error %f %%' %
                     (epoch, minibatch_index + 1, n_train_batches,
                      this_validation_loss * 100.))

                # if we got the best validation score until now
                if this_validation_loss < best_validation_loss:
                    #improve patience if loss improvement is good enough
                    if this_validation_loss < best_validation_loss *  \
                           improvement_threshold:
                        patience = max(patience, iter * patience_increase)

                    best_validation_loss = this_validation_loss
                    best_iter = iter

                    # test it on the test set
                    test_losses = [test_model(i) for i
                                   in xrange(n_test_batches)]
                    test_score = numpy.mean(test_losses)

                    print(('     epoch %i, minibatch %i/%i, test error of '
                           'best model %f %%') %
                          (epoch, minibatch_index + 1, n_train_batches,
                           test_score * 100.))

            if patience <= iter:
                    done_looping = True
                    break

    end_time = time.clock()
    print(('Optimization complete. Best validation score of %f %% '
           'obtained at iteration %i, with test performance %f %%') %
          (best_validation_loss * 100., best_iter + 1, test_score * 100.))
    print >> sys.stderr, ('The code for file ' +
                          os.path.split(__file__)[1] +
                          ' ran for %.2fm' % ((end_time - start_time) / 60.))
Пример #5
0
def evaluate_cnn(learning_rate=0.1, n_epochs=200,
                    dataset='mnist.pkl.gz',
                    nkerns=[20, 50], batch_size=500):
    rng = numpy.random.RandomState(23455)
    datasets = load_data(dataset)
    train_set_x, train_set_y = datasets[0]
    valid_set_x, valid_set_y = datasets[1]
    test_set_x, test_set_y = datasets[2]
    n_train_batches = train_set_x.get_value(borrow=True).shape[0]
    n_valid_batches = valid_set_x.get_value(borrow=True).shape[0]
    n_test_batches = test_set_x.get_value(borrow=True).shape[0]
    n_train_batches /= batch_size
    n_valid_batches /= batch_size
    index = T.lscalar()
    n_test_batches /= batch_size
    x = T.matrix('x')
    y = T.ivector('y')
    layer0_input = x.reshape((batch_size, 1, 28, 28))
    layer0 = ConvPoolLayer(
        rng,
        input=layer0_input,
        image_shape=(batch_size, 1, 28, 28),
        filter_shape=(nkerns[0], 1, 5, 5),
        poolsize=(2, 2)
    )
    layer1 = ConvPoolLayer(
        rng,
        input=layer0.output,
        image_shape=(batch_size, nkerns[0], 12, 12),
        filter_shape=(nkerns[1], nkerns[0], 5, 5),
        poolsize=(2, 2)
    )
    layer2_input = layer1.output.flatten(2)
    layer2 = HiddenLayer(
        rng,
        input=layer2_input,
        n_in=nkerns[1] * 4 * 4,
        n_out=500,
        activation=T.tanh
    )
    layer3 = LogisticRegressionLayer(input=layer2.output, n_in=500, n_out=10)
    cost = layer3.negative_log_likelihood(y)
    test_model = theano.function(
        [index],
        layer3.errors(y),
        givens={
            x: test_set_x[index * batch_size: (index + 1) * batch_size],
            y: test_set_y[index * batch_size: (index + 1) * batch_size]
        }
    )
    validate_model = theano.function(
        [index],
        layer3.errors(y),
        givens={
            x: valid_set_x[index * batch_size: (index + 1) * batch_size],
            y: valid_set_y[index * batch_size: (index + 1) * batch_size]
        }
    )
    params = layer3.params + layer2.params + layer1.params + layer0.params
    grads = T.grad(cost, params)
    updates = [
        (param_i, param_i - learning_rate * grad_i)
        for param_i, grad_i in zip(params, grads)
    ]
    train_model = theano.function(
        [index],
        cost,
        updates=updates,
        givens={
            x: train_set_x[index * batch_size: (index + 1) * batch_size],
            y: train_set_y[index * batch_size: (index + 1) * batch_size]
        }
    )
    patience = 10000
    patience_increase = 2
    improvement_threshold = 0.995
    validation_frequency = min(n_train_batches, patience / 2)
    best_validation_loss = numpy.inf
    best_iter = 0
    test_score = 0.
    start_time = time.clock()
    epoch = 0
    done_looping = False
    while (epoch < n_epochs) and (not done_looping):
        epoch = epoch + 1
        for minibatch_index in xrange(n_train_batches):
            iter = (epoch - 1) * n_train_batches + minibatch_index
            if iter % 10 == 0:
                print 'training iter = ', iter
            cost_ij = train_model(minibatch_index)
            if (iter + 1) % validation_frequency == 0:
                validation_losses = [validate_model(i) for i
                                     in xrange(n_valid_batches)]
                this_validation_loss = numpy.mean(validation_losses)
                print('epoch %i, minibatch %i/%i, validation error %f %%' %
                      (epoch, minibatch_index + 1, n_train_batches,
                       this_validation_loss * 100.))
                if this_validation_loss < best_validation_loss:
                    if this_validation_loss < best_validation_loss *  \
                       improvement_threshold:
                        patience = max(patience, iter * patience_increase)
                    best_validation_loss = this_validation_loss
                    best_iter = iter
                    test_losses = [
                        test_model(i)
                        for i in xrange(n_test_batches)
                    ]
                    test_score = numpy.mean(test_losses)
                    print(('     epoch %i, minibatch %i/%i, test error of '
                           'best model %f %%') %
                          (epoch, minibatch_index + 1, n_train_batches,
                           test_score * 100.))
            if patience <= iter:
                done_looping = True
                break
    end_time = time.clock()
    print('Optimization complete.')
    print('Best validation score of %f %% obtained at iteration %i, '
          'with test performance %f %%' %
          (best_validation_loss * 100., best_iter + 1, test_score * 100.))
    print >> sys.stderr, ('The code for file ' +
                          os.path.split(__file__)[1] +
                          ' ran for %.2fm' % ((end_time - start_time) / 60.))