Пример #1
0
    def setUp(self):
        nest.ResetKernel()
        nest.SetKernelStatus({"total_num_virtual_procs": 4})
        nest.ResetNetwork()
        nest.set_verbosity('M_DEBUG')

        self.sim_time = 10000
        self.sim_step = 100

        nest.SetKernelStatus(
            {'structural_plasticity_update_interval': self.sim_time + 1})

        self.se_integrator = []
        self.sim_steps = None
        self.ca_nest = None
        self.ca_python = None
        self.se_nest = None
        self.se_python = None

        # build
        self.pop = nest.Create('iaf_psc_alpha', 10)
        local_nodes = nest.GetNodes([0], {'model': 'iaf_psc_alpha'}, True)
        self.local_nodes = local_nodes[0]
        self.spike_detector = nest.Create('spike_detector')
        nest.Connect(self.pop, self.spike_detector, 'all_to_all')
        noise = nest.Create('poisson_generator')
        nest.SetStatus(noise, {"rate": 800000.0})
        nest.Connect(noise, self.pop, 'all_to_all')
    def setUp(self):
        nest.ResetKernel()
        nest.SetKernelStatus({"total_num_virtual_procs": 4})
        nest.ResetNetwork()
        nest.set_verbosity('M_DEBUG')

        self.sim_time = 10000
        self.sim_step = 100

        nest.SetKernelStatus(
            {'structural_plasticity_update_interval': self.sim_time + 1})

        self.se_integrator = []
        self.sim_steps = None
        self.ca_nest = None
        self.ca_python = None
        self.se_nest = None
        self.se_python = None

        # build
        self.pop = nest.Create('iaf_psc_alpha', 10)
        self.local_nodes = nest.GetNodes([0], {'model': 'iaf_psc_alpha'}, True)[0]
        self.spike_detector = nest.Create('spike_detector')
        nest.Connect(self.pop, self.spike_detector, 'all_to_all')
        noise = nest.Create('poisson_generator')
        nest.SetStatus(noise, {"rate": 800000.0})
        nest.Connect(noise, self.pop, 'all_to_all')
    def setUp(self):
        """Set up the test."""
        nest.set_verbosity('M_WARNING')
        nest.ResetKernel()

        # settings
        self.dendritic_delay = 1.0
        self.decay_duration = 5.0
        self.synapse_model = "vogels_sprekeler_synapse"
        self.syn_spec = {
            "model": self.synapse_model,
            "delay": self.dendritic_delay,
            "weight": 5.0,
            "eta": 0.001,
            "alpha": 0.1,
            "tau": 20.,
            "Kplus": 0.0,
            "Wmax": 15.,
        }

        # setup basic circuit
        self.pre_neuron = nest.Create("parrot_neuron")
        self.post_neuron = nest.Create("parrot_neuron")
        nest.Connect(self.pre_neuron, self.post_neuron,
                     syn_spec=self.syn_spec)
Пример #4
0
    def test_nest_instantiability(self):
        # N.B. all models are assumed to have been already built (see .travis.yml)

        nest.ResetKernel()
        nest.set_verbosity("M_ALL")
        nest.Install("nestml_allmodels_module")

        models = nest.Models(mtype="nodes")
        neuron_models = [
            m for m in models
            if str(nest.GetDefaults(m, "element_type")) == "neuron"
        ]
        _neuron_models = strip_suffix(neuron_models, "_neuron")

        nestml_unit_test_models = [
            neuron_model_name for neuron_model_name in _neuron_models
            if neuron_model_name.endswith("_nestml")
        ]

        nest.ResetKernel()

        for neuron_model in nestml_unit_test_models:
            print("Instantiating neuron model: " + str(neuron_model))
            nest.Create(neuron_model)

        nest.Simulate(100.)
Пример #5
0
    def __init__(self, dt, nthreads):
        # adj, N, dt, tau_syn_ex, delay,  nthreads):

        self.name = self.__class__.__name__

        nest.ResetKernel()
        nest.set_verbosity('M_WARNING')

        self.dt = dt
        # self.delay = delay
        # self.adj = adj
        # self.N = N
        # self.tau_syn_ex = tau_syn_ex

        nest.SetKernelStatus({
            'resolution': self.dt,
            'local_num_threads': nthreads,
            "data_path": self.data_path,
            "overwrite_files": True,
            "print_time": False,
        })

        msd = 1000  # master seed
        n_vp = nest.GetKernelStatus('total_num_virtual_procs')
        msdrange1 = range(msd, msd + n_vp)
        self.pyrngs = [np.random.RandomState(s) for s in msdrange1]
        msdrange2 = range(msd + n_vp + 1, msd + 1 + 2 * n_vp)
        nest.SetKernelStatus({'grng_seed': msd + n_vp, 'rng_seeds': msdrange2})
Пример #6
0
def single_neuron(spike_times, sim_duration):
    nest.set_verbosity('M_WARNING')  # reduce NEST output
    nest.ResetKernel()  # reset simulation kernel
    # create LIF neuron with exponential synaptic currents
    neuron = nest.Create('iaf_psc_exp')
    # create a voltmeter
    voltmeter = nest.Create('voltmeter', params={'interval': 0.1})
    # create a spike generator
    spikegenerator = nest.Create('spike_generator')
    # ... and let it spike at predefined times
    nest.SetStatus(spikegenerator, {'spike_times': spike_times})
    # connect spike generator and voltmeter to the neuron
    nest.Connect(spikegenerator, neuron)
    nest.Connect(voltmeter, neuron)
    # run simulation for sim_duration
    nest.Simulate(sim_duration)
    # read out recording time and voltage from voltmeter
    times = nest.GetStatus(voltmeter)[0]['events']['times']
    voltage = nest.GetStatus(voltmeter)[0]['events']['V_m']
    # plot results
    plt.plot(times, voltage)
    plt.xlabel('Time (ms)')
    plt.ylabel('Membrane potential (mV)')
    filename = 'single_neuron.png'
    plt.savefig(filename, dpi=300)
Пример #7
0
def run_simulation():
    """Performs a simulation, including network construction"""

    # open log file
    with Logger(params['log_file']) as logger:

        nest.ResetKernel()
        nest.set_verbosity(M_INFO)

        logger.log(str(memory_thisjob()) + ' # virt_mem_0')

        sr = build_network(logger)

        tic = time.time()

        nest.Simulate(params['presimtime'])

        PreparationTime = time.time() - tic

        logger.log(str(memory_thisjob()) + ' # virt_mem_after_presim')
        logger.log(str(PreparationTime) + ' # presim_time')

        tic = time.time()

        nest.Simulate(params['simtime'])

        SimCPUTime = time.time() - tic

        logger.log(str(memory_thisjob()) + ' # virt_mem_after_sim')
        logger.log(str(SimCPUTime) + ' # sim_time')

        if params['record_spikes']:
            logger.log(str(compute_rate(sr)) + ' # average rate')

        print(nest.GetKernelStatus())
    def test_ConnectNeuronsWithClopathSynapse(self):
        """Ensures that the restriction to supported neuron models works."""

        nest.set_verbosity('M_WARNING')

        # Specify supported models
        supported_models = [
            'aeif_psc_delta_clopath',
            'hh_psc_alpha_clopath',
        ]

        # Connect supported models with Clopath synapse
        for nm in supported_models:
            nest.ResetKernel()

            n = nest.Create(nm, 2)

            nest.Connect(n, n, {"rule": "all_to_all"},
                         {"model": "clopath_synapse"})

        # Compute not supported models
        not_supported_models = [n for n in nest.Models(mtype='nodes')
                                if n not in supported_models]

        # Ensure that connecting not supported models fails
        for nm in not_supported_models:
            nest.ResetKernel()

            n = nest.Create(nm, 2)

            # try to connect with clopath_rule
            with self.assertRaises(nest.kernel.NESTError):
                nest.Connect(n, n, {"rule": "all_to_all"},
                             {"model": "clopath_synapse"})
    def __init__(self, dt):

        self.name = self.__class__.__name__

        if not os.path.exists(self.data_path):
            os.makedirs(self.data_path)

        nest.ResetKernel()
        nest.set_verbosity('M_QUIET')
        self.dt = dt

        self.model = "{}_nestml".format(self.model_name)
        nest.Install(self.module_name)

        # parameters = nest.GetDefaults(self.model)
        # for i in parameters:
        #     print(i, parameters[i])

        nest.SetKernelStatus({
            "resolution": dt,
            "print_time": False,
            "overwrite_files": True,
            "data_path": self.data_path,
            "local_num_threads": self.nthreads
        })
Пример #10
0
    def __init__(self, dt, nthreads):
        self.name = self.__class__.__name__
        nest.ResetKernel()
        nest.set_verbosity('M_QUIET')

        if not os.path.exists(self.data_path):
            os.makedirs(self.data_path)

        nest.SetKernelStatus({
            "resolution": dt,
            "print_time": False,
            "overwrite_files": True,
            "data_path": self.data_path,
            "local_num_threads": nthreads
        })

        np.random.seed(125472)

        # Create and seed RNGs
        msd = 1000  # master seed
        n_vp = nest.GetKernelStatus('total_num_virtual_procs')
        msdrange1 = range(msd, msd + n_vp)
        self.pyrngs = [np.random.RandomState(s) for s in msdrange1]
        msdrange2 = range(msd + n_vp + 1, msd + 1 + 2 * n_vp)
        nest.SetKernelStatus({'grng_seed': msd + n_vp, 'rng_seeds': msdrange2})
Пример #11
0
    def setUp(self):
        nest.set_verbosity('M_WARNING')
        nest.ResetKernel()

        # settings
        self.dendritic_delay = 1.0
        self.decay_duration = 5.0
        self.synapse_model = "stdp_triplet_synapse"
        self.syn_spec = {
            "synapse_model": self.synapse_model,
            "delay": self.dendritic_delay,
            # set receptor 1 postsynaptically, to not generate extra spikes
            "receptor_type": 1,
            "weight": 5.0,
            "tau_plus": 16.8,
            "tau_plus_triplet": 101.0,
            "Aplus": 0.1,
            "Aminus": 0.1,
            "Aplus_triplet": 0.1,
            "Aminus_triplet": 0.1,
            "Kplus": 0.0,
            "Kplus_triplet": 0.0,
            "Wmax": 100.0,
        }
        self.post_neuron_params = {
            "tau_minus": 33.7,
            "tau_minus_triplet": 125.0,
        }

        # setup basic circuit
        self.pre_neuron = nest.Create("parrot_neuron")
        self.post_neuron = nest.Create("parrot_neuron",
                                       1,
                                       params=self.post_neuron_params)
        nest.Connect(self.pre_neuron, self.post_neuron, syn_spec=self.syn_spec)
Пример #12
0
    def setUp(self):
        nest.ResetKernel()
        nest.set_verbosity('M_ERROR')
        nest.total_num_virtual_procs = 4
        nest.rng_seed = 1

        self.sim_time = 10000.0
        self.sim_step = 100

        nest.structural_plasticity_update_interval = self.sim_time + 1

        self.se_integrator = []
        self.sim_steps = None
        self.ca_nest = None
        self.ca_python = None
        self.se_nest = None
        self.se_python = None

        # build
        self.pop = nest.Create('iaf_psc_alpha', 10)
        self.spike_recorder = nest.Create('spike_recorder')
        nest.Connect(self.pop, self.spike_recorder, 'all_to_all')
        noise = nest.Create('poisson_generator')
        nest.SetStatus(noise, {"rate": 800000.0})
        nest.Connect(noise, self.pop, 'all_to_all')
Пример #13
0
    def setUp(self):
        # test parameter
        self.rtol = 0.05

        # neuron parameters
        self.neuron_params = {'mu': 1.5, 'sigma': 0.5, 'tau': 5.}

        # simulation parameters
        self.simtime = 10000.
        self.dt = 0.1
        self.tstart = 10. * self.neuron_params['tau']

        nest.set_verbosity('M_WARNING')
        nest.ResetKernel()
        nest.SetKernelStatus(
            {'resolution': self.dt, 'use_wfr': False, 'print_time': True})

        # set up rate neuron and devices
        self.rate_neuron_ipn = nest.Create(
            'lin_rate_ipn', params=self.neuron_params)
        self.rate_neuron_opn = nest.Create(
            'lin_rate_opn', params=self.neuron_params)
        self.multimeter = nest.Create(
            "multimeter", params={'record_from': ['rate', 'noise'],
                                  'interval': self.dt, 'start': self.tstart})

        # record rates and noise
        nest.Connect(
            self.multimeter, self.rate_neuron_ipn + self.rate_neuron_opn)
    def test_multiple_poisson_generators(self):
        """Invariable number of spikes with multiple poisson generators"""
        local_num_threads = 4
        time_simulation = 100
        num_neurons = 1
        num_pg = 50
        num_iterations = 50

        num_spikes = []
        for i in range(num_iterations):
            nest.ResetKernel()
            nest.SetKernelStatus({'local_num_threads': local_num_threads})
            nest.set_verbosity('M_WARNING')
            print('num iter {:>5d}/{}'.format(i+1, num_iterations), end='\r')

            parrots = nest.Create('parrot_neuron', num_neurons)
            poisson_generator = nest.Create('poisson_generator', num_pg)
            poisson_generator.rate = 2000.

            nest.Connect(poisson_generator, parrots, 'all_to_all')

            nest.Simulate(time_simulation)
            num_spikes.append(nest.GetKernelStatus('local_spike_counter'))

        self.assertEqual(len(np.unique(num_spikes)), 1)
Пример #15
0
 def setUp(self):
     nest.ResetKernel()
     nest.set_verbosity('M_ERROR')
     self.num_procs = 1
     if mpi_test:
         self.comm = MPI.COMM_WORLD
         self.rank = self.comm.Get_rank()
         assert(nest.Rank() == self.rank)
         self.num_procs = 2
     self.exclude_synapse_model = [
         'stdp_dopamine_synapse',
         'stdp_dopamine_synapse_lbl',
         'stdp_dopamine_synapse_hpc',
         'stdp_dopamine_synapse_hpc_lbl',
         'rate_connection_instantaneous',
         'rate_connection_instantaneous_lbl',
         'rate_connection_delayed',
         'rate_connection_delayed_lbl',
         'gap_junction',
         'gap_junction_lbl',
         'diffusion_connection',
         'diffusion_connection_lbl',
         'clopath_synapse',
         'clopath_synapse_lbl'
     ]
    def setUp(self):
        nest.set_verbosity('M_WARNING')
        nest.ResetKernel()

        # settings
        self.dendritic_delay = 1.0
        self.decay_duration = 5.0
        self.synapse_model = "stdp_triplet_synapse"
        self.syn_spec = {
            "model": self.synapse_model,
            "delay": self.dendritic_delay,
            "receptor_type": 1,  # set receptor 1 post-synaptically, to not generate extra spikes
            "weight": 5.0,
            "tau_plus": 16.8,
            "tau_plus_triplet": 101.0,
            "Aplus": 0.1,
            "Aminus": 0.1,
            "Aplus_triplet": 0.1,
            "Aminus_triplet": 0.1,
            "Kplus": 0.0,
            "Kplus_triplet": 0.0,
            "Wmax": 100.0,
        }
        self.post_neuron_params = {
            "tau_minus": 33.7,
            "tau_minus_triplet": 125.0,
        }

        # setup basic circuit
        self.pre_neuron = nest.Create("parrot_neuron")
        self.post_neuron = nest.Create("parrot_neuron", 1, params=self.post_neuron_params)
        nest.Connect(self.pre_neuron, self.post_neuron, syn_spec=self.syn_spec)
Пример #17
0
    def setUp(self):
        # test parameter to compare analytic solution to simulation
        self.rtol = 1.0

        # test parameters
        self.N = 100
        self.rate_ex = 1.5 * 1e4
        self.J = 0.1

        # simulation parameters
        self.simtime = 500.
        self.dt = 0.1
        self.start = 200.

        nest.set_verbosity('M_WARNING')
        nest.ResetKernel()
        nest.SetKernelStatus(
            {'resolution': self.dt, 'use_wfr': False, 'print_time': True})

        # set up driven integrate-and-fire neuron

        self.iaf_psc_delta = nest.Create(
            'iaf_psc_delta', self.N)  # , params={"C_m": 1.0})

        self.poisson_generator = nest.Create(
            'poisson_generator', params={'rate': self.rate_ex})
        nest.Connect(self.poisson_generator, self.iaf_psc_delta,
                     syn_spec={'weight': self.J, 'delay': self.dt})

        self.spike_detector = nest.Create(
            "spike_detector", params={'start': self.start})
        nest.Connect(
            self.iaf_psc_delta, self.spike_detector)

        # set up driven siegert neuron

        neuron_status = nest.GetStatus(self.iaf_psc_delta)[0]
        siegert_params = {'tau_m': neuron_status['tau_m'],
                          't_ref': neuron_status['t_ref'],
                          'theta': neuron_status['V_th'] -
                          neuron_status['E_L'],
                          'V_reset': neuron_status['V_reset'] -
                          neuron_status['E_L']}
        self.siegert_neuron = nest.Create(
            'siegert_neuron', params=siegert_params)

        self.siegert_drive = nest.Create(
            'siegert_neuron', 1, params={'mean': self.rate_ex})
        J_mu_ex = neuron_status['tau_m'] * 1e-3 * self.J
        J_sigma_ex = neuron_status['tau_m'] * 1e-3 * self.J ** 2
        syn_dict = {'drift_factor': J_mu_ex, 'diffusion_factor':
                    J_sigma_ex, 'model': 'diffusion_connection'}
        nest.Connect(
            self.siegert_drive, self.siegert_neuron, syn_spec=syn_dict)

        self.multimeter = nest.Create(
            "multimeter", params={'record_from': ['rate'],
                                  'interval': self.dt})
        nest.Connect(
            self.multimeter, self.siegert_neuron)
    def __init__(self, L, N, kernel_name, kernel_params=None):
        '''
        Construct a test object.

        Parameters
        ----------
            L            : Side length of area / volume.
            N            : Number of nodes.
            kernel_name  : Name of kernel to use.
            kernel_params: Dict with params to update.
        '''

        nest.set_verbosity('M_FATAL')

        SpatialTester.__init__(self, L=L, N=N)

        assert kernel_name == 'gaussian', 'Currently, only a Gaussian kernel' \
                              'is supported by this implementation of the CSA.'
        self._kernel = lambda D: (self._params['c'] + self._params['p_center']
                                  * np.e**-((D - self._params['mean'])**2 /
                                            (2. * self._params['sigma']**2)))

        default_params = {
            'p_center': 1.,
            'sigma': self._L / 4.,
            'mean': 0.,
            'c': 0.
        }
        self._params = default_params
        if kernel_params is not None:
            assert kernel_params.keys() == ['sigma'], \
                'Only valid kernel parameter is "sigma".'
            self._params.update(kernel_params)
Пример #19
0
 def setUp(self):
     nest.ResetKernel()
     nest.set_verbosity('M_ERROR')
     self.num_procs = 1
     if mpi_test:
         self.comm = MPI.COMM_WORLD
         self.rank = self.comm.Get_rank()
         assert(nest.Rank() == self.rank)
         self.num_procs = 2
     self.exclude_synapse_model = [
         'stdp_dopamine_synapse',
         'stdp_dopamine_synapse_lbl',
         'stdp_dopamine_synapse_hpc',
         'stdp_dopamine_synapse_hpc_lbl',
         'rate_connection_instantaneous',
         'rate_connection_instantaneous_lbl',
         'rate_connection_delayed',
         'rate_connection_delayed_lbl',
         'gap_junction',
         'gap_junction_lbl',
         'diffusion_connection',
         'diffusion_connection_lbl',
         'clopath_synapse',
         'clopath_synapse_lbl',
         'clopath_synapse_hpc'
     ]
    def setupSimulation(self):
        """Set up the simulation."""
        print("[INFO] Setting up simulation.")
        # NEST stuff
        nest.ResetKernel()
        nest.set_verbosity('M_INFO')
        nest.EnableStructuralPlasticity()
        nest.SetKernelStatus(
            {
                'resolution': self.dt
            }
            )
        nest.SetStructuralPlasticityStatus(
            {
                'structural_plasticity_update_interval':
                self.spUpdateInterval, }
            )

        self.setupSPSynapses()
        self.setupLayered()

        self.setupSpikeRecorders()
        self.calciumFile = open(self.calciumFileName, 'w')
        self.synapticElementsFile = open(self.synapticElementsFileName, 'w')

        print("[INFO] Setup complete.")
Пример #21
0
    def test_ConnectNeuronsWithClopathSynapse(self):
        """Ensures that the restriction to supported neuron models works."""

        nest.set_verbosity('M_WARNING')

        supported_models = [
            'aeif_psc_delta_clopath',
            'hh_psc_alpha_clopath',
        ]

        # Connect supported models with Clopath synapse
        for nm in supported_models:
            nest.ResetKernel()

            n = nest.Create(nm, 2)

            nest.Connect(n, n, {"rule": "all_to_all"},
                         {"synapse_model": "clopath_synapse"})

        # Ensure that connecting not supported models fails
        for nm in [n for n in nest.node_models if n not in supported_models]:
            nest.ResetKernel()

            n = nest.Create(nm, 2)

            # try to connect with clopath_rule
            with self.assertRaises(nest.kernel.NESTError):
                nest.Connect(n, n, {"rule": "all_to_all"},
                             {"synapse_model": "clopath_synapse"})
    def __init__(self, N_s, N_t, p, e_min=5):
        '''
        Construct a test object.

        Parameters
        ----------
            N_s   : Number of nodes in source population.
            N_t   : Number of nodes in target population.
            p     : Connection probability.
            e_min : Minimum expected number of observations in each bin.
        '''

        nest.set_verbosity('M_FATAL')

        FPCTester.__init__(self, N_s=N_s, N_t=N_t, p=p, e_min=e_min)

        self._L = 1.
        maskdict = {
            'rectangular': {
                'lower_left': [-self._L / 2.] * 2,
                'upper_right': [self._L / 2.] * 2
            }
        }
        kernel = self._p
        self._conndict = {
            'connection_type': 'divergent',
            'mask': maskdict,
            'kernel': kernel
        }
    def setUp(self):
        """
        Clean up and initialize NEST before each test.
        """
        # test parameter to compare analytic solution to simulation
        self.rtol = 1e-1

        # parameters of driven integrate-and-fire neurons
        self.N = 50
        lif_params = {
            "V_th": -55.,
            "V_reset": -70.,
            "E_L": -70.,
            "tau_m": 10.0,
            "t_ref": 2.0,
            "C_m": 250.
        }
        self.lif_params = lif_params

        # simulation parameters
        rng_seed = 123456
        self.simtime = 600.
        self.dt = 0.01
        self.start = 100.

        # reset kernel
        nest.set_verbosity("M_WARNING")
        nest.ResetKernel()
        nest.resolution = self.dt
        nest.use_wfr = False
        nest.rng_seed = rng_seed
def RunSimulation():

    nest.set_verbosity(M_INFO)
    logger = Logger()

    logger.log('{} # virt_mem_0'.format(memory_thisjob()))

    # ----------------------- Network Construction -----------------------------

    BuildNetwork(logger)

    # ---------------- Initial simulation: rig and calibrate -------------------

    tic = time.time()

    nest.Prepare()
    nest.Run(params['inisimtime'])

    InitializationTime = time.time() - tic

    logger.log('{} # init_time'.format(InitializationTime))
    logger.log('{} # virt_mem_after_init'.format(memory_thisjob()))

    # ----------------------- Cleanup and output -------------------------------

    nest.Cleanup()

    logger.log('{} # num_neurons'.format(logger_params['num_nodes']))
    logger.log('{} # num_connections'.format(
        nest.GetKernelStatus('num_connections')))
    logger.log('{} # min_delay'.format(nest.GetKernelStatus('min_delay')))
    logger.log('{} # max_delay'.format(nest.GetKernelStatus('max_delay')))
Пример #25
0
def single_neuron(spike_times, sim_duration):
    nest.set_verbosity('M_WARNING')  # reduce NEST output
    nest.ResetKernel()  # reset simulation kernel
    # create LIF neuron with exponential synaptic currents
    neuron = nest.Create('iaf_psc_exp')
    # create a voltmeter
    voltmeter = nest.Create('voltmeter', params={'interval': 0.1})
    # create a spike generator
    spikegenerator = nest.Create('spike_generator')
    # ... and let it spike at predefined times
    nest.SetStatus(spikegenerator, {'spike_times': spike_times})
    # connect spike generator and voltmeter to the neuron
    nest.Connect(spikegenerator, neuron)
    nest.Connect(voltmeter, neuron)
    # run simulation for sim_duration
    nest.Simulate(sim_duration)
    # read out recording time and voltage from voltmeter
    times = nest.GetStatus(voltmeter)[0]['events']['times']
    voltage = nest.GetStatus(voltmeter)[0]['events']['V_m']
    # plot results
    plt.plot(times, voltage)
    plt.xlabel('Time (ms)')
    plt.ylabel('Membrane potential (mV)')
    filename = 'single_neuron.png'
    plt.savefig(filename, dpi=300)
Пример #26
0
    def __init__(self, dt, nthreads=1):

        self.name = self.__class__.__name__
        nest.ResetKernel()
        nest.set_verbosity('M_QUIET')
        self.dt = dt

        # parameters = nest.GetDefaults(self.stn_model_name)
        # for i in parameters:
        # print(i, parameters[i])

        if not os.path.exists(self.data_path):
            os.makedirs(self.data_path)

        nest.SetKernelStatus({
            "resolution": dt,
            "print_time": False,
            "overwrite_files": True,
            "data_path": self.data_path,
            "local_num_threads": nthreads
        })

        np.random.seed(2)

        # Create and seed RNGs
        master_seed = 1000  # master seed
        n_vp = nest.GetKernelStatus('total_num_virtual_procs')
        master_seed_range1 = range(master_seed, master_seed + n_vp)
        self.pyrngs = [np.random.RandomState(s) for s in master_seed_range1]
        master_seed_range2 = range(master_seed + n_vp + 1,
                                   master_seed + 1 + 2 * n_vp)
        nest.SetKernelStatus({
            'grng_seed': master_seed + n_vp,
            'rng_seeds': master_seed_range2
        })
    def __init__(self,
                 input_neurons_theta_size,
                 input_neurons_theta_dot_size,
                 liquid_neurons_size,
                 readout_neurons_tau1_size,
                 readout_neurons_tau2_size,
                 output_layer_weight=100.0,
                 thread_num=-1):

        # Don't make any nest nodes or connections before this line!
        nest.SetKernelStatus({
            "local_num_threads":
            thread_num if thread_num > 0 else multiprocessing.cpu_count()
        })

        nest.set_verbosity("M_ERROR")  # suppress trivial messages

        self.total_sim_time = 0.0

        self.tau1 = np.zeros(readout_neurons_tau1_size)
        self.tau2 = np.zeros(readout_neurons_tau2_size)

        self.output_layer_weight = output_layer_weight

        self.lsm = lsm.Lsm(input_neurons_theta_size,
                           input_neurons_theta_dot_size,
                           liquid_neurons_size,
                           readout_neurons_tau1_size,
                           readout_neurons_tau2_size,
                           output_layer_weight=self.output_layer_weight)
Пример #28
0
def run_simulation():
    '''Performs a simulation, including network construction'''

    # open log file
    with Logger(params['log_file']) as logger:

        nest.ResetKernel()
        nest.set_verbosity(M_INFO)

        logger.log(str(memory_thisjob()) + ' # virt_mem_0')

        sdet = build_network(logger)

        tic = time.time()

        nest.Simulate(params['presimtime'])

        PreparationTime = time.time() - tic

        logger.log(str(memory_thisjob()) + ' # virt_mem_after_presim')
        logger.log(str(PreparationTime) + ' # presim_time')

        tic = time.time()

        nest.Simulate(params['simtime'])

        SimCPUTime = time.time() - tic

        logger.log(str(memory_thisjob()) + ' # virt_mem_after_sim')
        logger.log(str(SimCPUTime) + ' # sim_time')

        if params['record_spikes']:
            logger.log(str(compute_rate(sdet)) + ' # average rate')

        print(nest.GetKernelStatus())
Пример #29
0
    def test_targets(self):
        nest.ResetKernel()
        nest.set_verbosity('M_ALL')
        # Testing with 2 MPI processes
        nest.SetKernelStatus({'resolution': 0.1, 'total_num_virtual_procs': 2})
        # Update the SP interval
        nest.EnableStructuralPlasticity()
        nest.SetKernelStatus({
            'structural_plasticity_update_interval': 1000.,
        })

        growth_curve = {
            'growth_curve': "gaussian",
            'growth_rate': 0.0001,  # Beta (elements/ms)
            'continuous': False,
            'eta': 0.1,
            'eps': 0.7,
        }
        structural_p_elements_E = {
            'Den_ex': growth_curve,
            'Den_in': growth_curve,
            'Axon_ex': growth_curve
        }
        neuronDict = {
            'V_m': -60.,
            't_ref': 5.0,
            'V_reset': -60.,
            'V_th': -50.,
            'C_m': 200.,
            'E_L': -60.,
            'g_L': 10.,
            'E_ex': 0.,
            'E_in': -80.,
            'tau_syn_ex': 5.,
            'tau_syn_in': 10.,
            'I_e': 220.
        }

        nest.SetDefaults("iaf_cond_exp", neuronDict)
        neuronsE = nest.Create('iaf_cond_exp', 1,
                               {'synaptic_elements': structural_p_elements_E})

        # synapses
        synDictE = {
            'synapse_model': 'static_synapse',
            'weight': 3.,
            'pre_synaptic_element': 'Axon_ex',
            'post_synaptic_element': 'Den_ex'
        }

        nest.SetKernelStatus(
            {'structural_plasticity_synapses': {
                'synapseEE': synDictE,
            }})

        try:
            nest.Simulate(200 * 1000)
        except Exception:
            print(sys.exc_info()[0])
            self.fail("Exception during simulation")
    def __setup(self, sim_time=500.):
        """Setup the simulation

        :sim_time: time for each simulation phase
        :file_prefix: output file prefix
        :returns: nothing

        """
        nest.ResetKernel()
        # http://www.nest-simulator.org/sli/setverbosity/
        nest.set_verbosity('M_INFO')
        nest.SetKernelStatus({
            'resolution': self.dt,
            'local_num_threads': 1,
            'overwrite_files': True
        })
        # Since I've patched NEST, this doesn't actually update connectivity
        # But, it's required to ensure that synaptic elements are connected
        # correctly when I form or delete new connections
        nest.EnableStructuralPlasticity()
        nest.CopyModel("iaf_cond_exp", "tif_neuronE")
        nest.SetDefaults('tif_neuronE', self.neuronDict)

        # do the bits
        self.__create_neurons()
        self.__get_optimal_activity()
        self.__grow_initial_elements()
        self.__return_activity_to_hom()
        self.__prepare_hypotheses()
Пример #31
0
    def setUp(self):
        # test parameter
        self.rtol = 0.05

        # neuron parameters
        self.neuron_params = {'mu': 1.5, 'sigma': 0.5, 'tau': 5.}

        # simulation parameters
        self.simtime = 10000.
        self.dt = 0.1
        self.tstart = 10. * self.neuron_params['tau']

        nest.set_verbosity('M_WARNING')
        nest.ResetKernel()
        nest.SetKernelStatus({
            'resolution': self.dt,
            'use_wfr': False,
            'print_time': True
        })

        # set up rate neuron and devices
        self.rate_neuron_ipn = nest.Create('lin_rate_ipn',
                                           params=self.neuron_params)
        self.rate_neuron_opn = nest.Create('lin_rate_opn',
                                           params=self.neuron_params)
        self.multimeter = nest.Create("multimeter",
                                      params={
                                          'record_from': ['rate', 'noise'],
                                          'interval': self.dt,
                                          'start': self.tstart
                                      })

        # record rates and noise
        nest.Connect(self.multimeter,
                     self.rate_neuron_ipn + self.rate_neuron_opn)
    def test_spike_multiplicity_pre(self):
        """Multiplicity of presynpatic spikes is correcly reproduced"""
        """ TODO add here true spike multiplicity. right now this just sends
        multiple spikes in the same timestep"""

        nest.set_verbosity("M_WARNING")
        nest.ResetKernel()
        nest.SetKernelStatus({"resolution": 1.})

        # set pre and postsynaptic spike times
        delay = 1.  # delay for connections

        # set the correct real spike times for generators (correcting for
        # delays)
        pre_times = [100. - delay, 200. - delay]
        post_times = [150. - delay]

        # create parrot neurons and connect spike_generators
        self.pre_parrot = nest.Create("parrot_neuron", 1)
        self.post_parrot = nest.Create("parrot_neuron", 1)

        # create spike_generators with these times
        pre_spikes = nest.Create("spike_generator", 1,
                                 {"spike_times": pre_times})
        post_spikes = nest.Create("spike_generator", 1,
                                  {"spike_times": post_times})

        # connect twice
        nest.Connect(pre_spikes, self.pre_parrot, syn_spec={"delay": delay})
        nest.Connect(pre_spikes, self.pre_parrot, syn_spec={"delay": delay})
        nest.Connect(post_spikes, self.post_parrot, syn_spec={"delay": delay})

        pars = {'p_fail': 0., 'n_pot_conns': 1, 'tau': 10.}
        nest.CopyModel('stdp_structpl_synapse_hom', 'testsyn', pars)

        syn_spec = {
            "model": "testsyn",
            "receptor_type": 1,
        }

        conn_spec = {
            "rule": "all_to_all",
        }

        # two syns, different number of potential conns
        nest.Connect(self.pre_parrot,
                     self.post_parrot,
                     syn_spec=syn_spec,
                     conn_spec=conn_spec)
        syn = nest.GetConnections(source=self.pre_parrot,
                                  synapse_model="testsyn")

        nest.Simulate(150.)

        syn_defaults = nest.GetDefaults('testsyn')
        val_exp = 1. / syn_defaults['tau'] * 2.
        val = nest.GetStatus(syn)[0]['r_jk'][0]
        self.assertAlmostEqualDetailed(
            val_exp, val, "Multiple presynaptic spikes not treated properly")
Пример #33
0
 def test_set_verbosity(self):
     levels = [('M_ALL', 0), ('M_DEBUG', 5), ('M_STATUS', 7),
               ('M_INFO', 10), ('M_DEPRECATED', 18), ('M_WARNING', 20),
               ('M_ERROR', 30), ('M_FATAL', 40), ('M_QUIET', 100)]
     for level, code in levels:
         nest.set_verbosity(level)
         verbosity = nest.get_verbosity()
         self.assertEqual(verbosity, code)
Пример #34
0
 def setUp(self):
     nest.ResetKernel()
     nest.set_verbosity('M_ERROR')
     self.exclude_synapse_model = [
         'stdp_dopamine_synapse', 'stdp_dopamine_synapse_lbl',
         'stdp_dopamine_synapse_hpc', 'stdp_dopamine_synapse_hpc_lbl',
         'gap_junction', 'gap_junction_lbl'
     ]
    def test_targets(self):
        nest.ResetKernel()
        nest.set_verbosity('M_ALL')
        # Testing with 2 MPI processes
        nest.SetKernelStatus(
            {
                'resolution': 0.1,
                'total_num_virtual_procs': 2
            }
        )
        # Update the SP interval
        nest.EnableStructuralPlasticity()
        nest.SetStructuralPlasticityStatus({
            'structural_plasticity_update_interval':
            100,
        })

        growth_curve = {
            'growth_curve': "gaussian",
            'growth_rate': 0.0001,  # Beta (elements/ms)
            'continuous': False,
            'eta': 0.1,
            'eps': 0.7,
        }
        structural_p_elements_E = {
            'Den_ex': growth_curve,
            'Den_in': growth_curve,
            'Axon_ex': growth_curve
        }
        neuronDict = {'V_m': -60.,
                      't_ref': 5.0, 'V_reset': -60.,
                      'V_th': -50., 'C_m': 200.,
                      'E_L': -60., 'g_L': 10.,
                      'E_ex': 0., 'E_in': -80.,
                      'tau_syn_ex': 5., 'tau_syn_in': 10.,
                      'I_e': 220.}

        nest.SetDefaults("iaf_cond_exp", neuronDict)
        neuronsE = nest.Create('iaf_cond_exp', 1, {
            'synaptic_elements': structural_p_elements_E})

        # synapses
        synDictE = {'model': 'static_synapse',
                    'weight': 3.,
                    'pre_synaptic_element': 'Axon_ex',
                    'post_synaptic_element': 'Den_ex'}

        nest.SetStructuralPlasticityStatus({
            'structural_plasticity_synapses': {
                'synapseEE': synDictE,
            }
        })

        try:
            nest.Simulate(200 * 1000)
        except:
            print(sys.exc_info()[0])
            self.fail("Exception during simulation")
Пример #36
0
    def __init__(self,
                 actor,
                 num_input=8,
                 num_output=2,
                 neuron_labels: List[str] = []):
        """
        Create and connect a nest network
        :param initial:
        :param num_input:
        :param num_output:
        :return:
        """
        self.actor = actor
        # note that the order does not reflect the internal nest order
        self.neur_ids_parrot = []
        self.neur_ids_out: List[int] = []
        self.neur_ids_core: np.ndarray  # the neurons which are used for wiring (except spike generators)
        self.neur_ids_ex = []  # includes input
        self.neur_ids_hidden_in = [
        ]  # ids of the free (not in population) in hidden layer
        self.neur_ids_hidden_ex = [
        ]  # ids of the free (not in population) in hidden layer

        # store connected pairs (source, target) for reconnecting, order different from nest
        self.conns: np.ndarray
        self.conns_in: np.ndarray
        self.conns_ex: np.ndarray

        # redundance in nest format/indexing
        self.conns_nest: SynapseCollection = []  # contains all stdp synapses
        self.conns_nest_ex: SynapseCollection = []
        self.conns_nest_in: SynapseCollection = []
        self.populations_nest: List[NodeCollection] = []
        self.neurons_nest_ex: NodeCollection = []
        self.neurons_nest_in: NodeCollection = []
        self.neurons_nest: NodeCollection = []
        self.neurons_input: NodeCollection = []

        self.cycles_to_reconnect = 2  # counts the cycles till a reconnect (structural plasticity) happens
        self.num_input = num_input
        self.num_output = num_output
        self.last_num_spikes = [
        ]  # record the number of spikes in this trial to only get new spikes for each out population
        self.multimeter = None
        self.synapsecontingent = 1

        self.spike_detector = None
        self.spike_detectors_populations = []
        # log
        self.lastweights: Weightstorage = [
        ]  # only stores last entries for restoring in next episode, order like nest connections

        self.neuron_labels: List[str] = neuron_labels

        # after initalizing fields construct
        nest.set_verbosity("M_WARNING")
        self.rebuild(True)
        print("Training " + str(len(self.conns_nest)) + " weights")
    def test_rate_copy_model(self):

        # neuron parameters
        neuron_params = {'tau': 5., 'sigma': 0.}
        drive = 1.5
        weight = 0.5

        # simulation parameters
        simtime = 100.
        dt = 0.001

        nest.set_verbosity('M_WARNING')
        nest.ResetKernel()
        nest.SetKernelStatus(
            {'resolution': dt, 'use_wfr': True, 'print_time': False})

        # set up rate neuron network
        rate_neuron_drive = nest.Create(
            'lin_rate_ipn', params={'mu': drive, 'sigma': 0.})

        rate_neuron_1 = nest.Create(
            'lin_rate_ipn', params=neuron_params)
        rate_neuron_2 = nest.Create(
            'lin_rate_ipn', params=neuron_params)

        multimeter = nest.Create(
            'multimeter', params={
                'record_from': ['rate'],
                'precision': 10,
                'interval': dt})

        # create new connection
        nest.CopyModel('rate_connection_instantaneous', 'rate_connection_new')

        # record rates and connect neurons
        neurons = rate_neuron_1 + rate_neuron_2

        nest.Connect(
            multimeter, neurons, 'all_to_all', {'delay': 10.})

        nest.Connect(rate_neuron_drive, rate_neuron_1,
                     'all_to_all', {'model': 'rate_connection_instantaneous',
                                    'weight': weight})

        nest.Connect(rate_neuron_drive, rate_neuron_2,
                     'all_to_all', {'model': 'rate_connection_new',
                                    'weight': weight})

        # simulate
        nest.Simulate(simtime)

        # make sure rates are identical
        events = nest.GetStatus(multimeter)[0]['events']
        senders = events['senders']
        rate_1 = np.array(events['rate'][np.where(senders == rate_neuron_1)])
        rate_2 = np.array(events['rate'][np.where(senders == rate_neuron_2)])
        assert(np.sum(np.abs(rate_2 - rate_1)) < 1e-12)
Пример #38
0
 def __nest_init(self):
     nest.ResetKernel()
     # nest.SetKernelStatus({"local_num_threads": 4})
     nest.set_verbosity('M_ERROR')
     nest.CopyModel("iaf_psc_alpha", "input_neuron", params={"V_th": -68., "t_ref": 20.})
     nest.CopyModel("iaf_psc_alpha", "output_neuron", params={"V_th": -67., "t_ref": 300.})
     # 具体参数待调整
     nest.CopyModel("iaf_psc_alpha", "memory_neuron")
     nest.CopyModel("iaf_psc_alpha", "wn_neuron")
Пример #39
0
 def setUpNetwork(self, conn_dict=None, syn_dict=None, N1=None, N2=None):
     if N1 is None:
         N1 = self.N1
     if N2 is None:
         N2 = self.N2
     self.pop1 = nest.Create('iaf_psc_alpha', N1)
     self.pop2 = nest.Create('iaf_psc_alpha', N2)
     nest.set_verbosity('M_FATAL')
     nest.Connect(self.pop1, self.pop2, conn_dict, syn_dict)
Пример #40
0
def _nest_start_(n_cores=n_cores):
    nest.ResetKernel()
    nest.SetKernelStatus({
        "resolution": dt,
        "print_time": True,
        "overwrite_files": True,
        'local_num_threads': n_cores
    })
    nest.set_verbosity("M_WARNING")
Пример #41
0
    def build_and_connect_nodes(self, sigma, theta):
        """ sets up an erfc neuron and spin detector. """
        nest.set_verbosity('M_WARNING')
        nest.ResetKernel()

        self.neuron = nest.Create('erfc_neuron', 1,
                                  {'sigma': sigma, 'theta': theta})
        self.detector = nest.Create('spin_detector', 1)
        nest.Connect(self.neuron, self.detector)
    def do_the_nest_simulation(self):
        """
        This function is where calls to NEST reside.
        Returns the generated pre- and post spike sequences
        and the resulting weight established by STDP.
        """
        nest.set_verbosity('M_WARNING')
        nest.ResetKernel()
        nest.resolution = self.resolution

        presynaptic_neuron, postsynaptic_neuron = nest.Create(
            "parrot_neuron",
            2,
            params=self.neuron_parameters)

        generators = nest.Create(
            "poisson_generator",
            2,
            params=({"rate": self.presynaptic_firing_rate,
                     "stop": (self.simulation_duration - self.hardcoded_trains_length)},
                    {"rate": self.postsynaptic_firing_rate,
                     "stop": (self.simulation_duration - self.hardcoded_trains_length)}))
        presynaptic_generator = generators[0]
        postsynaptic_generator = generators[1]

        spike_senders = nest.Create(
            "spike_generator",
            2,
            params=({"spike_times": self.hardcoded_pre_times
                    + self.simulation_duration - self.hardcoded_trains_length},
                    {"spike_times": self.hardcoded_post_times
                    + self.simulation_duration - self.hardcoded_trains_length})
        )
        pre_spike_generator = spike_senders[0]
        post_spike_generator = spike_senders[1]

        # The recorder is to save the randomly generated spike trains.
        spike_recorder = nest.Create("spike_recorder")

        nest.Connect(presynaptic_generator + pre_spike_generator, presynaptic_neuron,
                     syn_spec={"synapse_model": "static_synapse"})
        nest.Connect(postsynaptic_generator + post_spike_generator, postsynaptic_neuron,
                     syn_spec={"synapse_model": "static_synapse"})
        nest.Connect(presynaptic_neuron + postsynaptic_neuron, spike_recorder,
                     syn_spec={"synapse_model": "static_synapse"})
        # The synapse of interest itself
        nest.Connect(presynaptic_neuron, postsynaptic_neuron,
                     syn_spec=self.synapse_parameters)
        plastic_synapse_of_interest = nest.GetConnections(synapse_model=self.synapse_parameters["synapse_model"])

        nest.Simulate(self.simulation_duration)

        all_spikes = nest.GetStatus(spike_recorder, keys='events')[0]
        pre_spikes = all_spikes['times'][all_spikes['senders'] == presynaptic_neuron.tolist()[0]]
        post_spikes = all_spikes['times'][all_spikes['senders'] == postsynaptic_neuron.tolist()[0]]
        weight = nest.GetStatus(plastic_synapse_of_interest, keys='weight')[0]
        return (pre_spikes, post_spikes, weight)
Пример #43
0
 def setUpNetwork(self, conn_dict=None, syn_dict=None, N1=None, N2=None):
     if N1 == None:
         N1 = self.N1
     if N2 == None:
         N2 = self.N2
     self.pop1 = nest.Create('iaf_neuron', N1)
     self.pop2 = nest.Create('iaf_neuron', N2)
     nest.set_verbosity('M_FATAL')
     nest.Connect(self.pop1, self.pop2, conn_dict, syn_dict)
    def run_protocol(self, dt):

        """Set up a network with pre-post spike pairings with t_post - t_pre = dt"""

        nest.set_verbosity("M_WARNING")
        nest.ResetKernel()

        # set pre and postsynaptic spike times
        delay = 1.  # delay for connections
        dspike = 100.  # ISI

        # set the correct real spike times for generators (correcting for delays)
        pre_times = [100., 100. + dspike]
        post_times = [k+dt for k in pre_times]

        # create spike_generators with these times
        pre_spikes = nest.Create("spike_generator", 1, {"spike_times": pre_times})
        post_spikes = nest.Create("spike_generator", 1, {"spike_times": post_times})

        # create parrot neurons and connect spike_generators
        pre_parrot = nest.Create("parrot_neuron", 1)
        post_parrot = nest.Create("parrot_neuron", 1)

        nest.Connect(pre_spikes, pre_parrot, syn_spec={"delay": delay})
        nest.Connect(post_spikes, post_parrot, syn_spec={"delay": delay})

        # create spike detector
        spikes = nest.Create("spike_detector")
        nest.Connect(pre_parrot, spikes)
        nest.Connect(post_parrot, spikes)

        # connect both parrot neurons with a stdp synapse onto port 1
        # thereby spikes transmitted through the stdp connection are
        # not repeated postsynaptically.
        syn_spec = {
           "model": "stdp_synapse",
           "receptor_type": 1,  # set receptor 1 postsynaptically, to not generate extra spikes
        }
        conn_spec = {
           "rule": "one_to_one",
        }
        nest.Connect(pre_parrot, post_parrot, syn_spec=syn_spec, conn_spec=conn_spec)

        # get STDP synapse and weight before protocol
        syn = nest.GetConnections(source=pre_parrot, synapse_model="stdp_synapse")
        syn_status = nest.GetStatus(syn)[0]
        w_pre = syn_status['weight']

        last_time = max(pre_times[-1], post_times[-1])
        nest.Simulate(last_time + 2 * delay)

        # get weight post protocol
        syn_status = nest.GetStatus(syn)[0]
        w_post = syn_status['weight']

        return w_pre, w_post
Пример #45
0
def create_network(network_obj, weight, JENoise, noise_rate, resolution=0.1,
                   verbose=True, print_time=False):

    ncells = network_obj['ncells']
    ncons = network_obj['ncons']

    if verbose:
        print "Constructing NEST network of %i nodes and %i connections." % (
            ncells, ncons)

    nest.ResetKernel()

    nthreads = cpu_count()

    if verbose:
        nest.set_verbosity('M_INFO')
    else:
        nest.set_verbosity('M_ERROR')

    nest.SetKernelStatus(dict(local_num_threads=nthreads, resolution=0.1,
                              print_time=print_time, overwrite_files=True))

    neuron_params = dict(C_m=1.0, tau_m=20.0, t_ref=2.0, E_L=0.0, V_th=20.0)
    nest.SetDefaults("iaf_neuron", neuron_params)
    neuronsE = nest.Create("iaf_neuron", n=ncells)

    # save GID offset of first neuron - this has the advantage that the output
    # later will be independent of the point at which the neurons were created
    GIDoffset = neuronsE[0]

    espikes = nest.Create("spike_detector")
    nest.ConvergentConnect(neuronsE, espikes)

    noise = nest.Create("poisson_generator", n=1, params=dict(rate=noise_rate))

    # Warning: delay is overwritten later if weights are given!
    nest.SetDefaults("tsodyks_synapse",
                     dict(delay=1.5, tau_rec=500., tau_fac=0., U=0.3))
    nest.CopyModel("tsodyks_synapse", "exc", dict(weight=weight))
    nest.CopyModel("static_synapse", "poisson", dict(weight=JENoise))

    # every neuron gets the same noisy input???
    nest.DivergentConnect(noise, neuronsE, model="poisson")

    for node in network_obj['nodes']:

        presyn_index = node['id']
        postsyn_indices = node['connectedTo']

        nest.DivergentConnect(
            [neuronsE[presyn_index]],                   # from, list of len 1
            [neuronsE[ii] for ii in postsyn_indices],   # to, list
            model='exc',                                # synapse model
        )

    return ncells, ncons, neuronsE, espikes, noise, GIDoffset
 def nestSetup(self):
     """Common nest stuff."""
     # NEST stuff
     nest.ResetKernel()
     nest.set_verbosity('M_INFO')
     nest.SetKernelStatus(
         {
             'resolution': self.dt
         }
         )
Пример #47
0
 def setUp(self):
     nest.ResetKernel()
     nest.set_verbosity("M_ERROR")
     self.exclude_synapse_model = [
         "stdp_dopamine_synapse",
         "stdp_dopamine_synapse_lbl",
         "stdp_dopamine_synapse_hpc",
         "stdp_dopamine_synapse_hpc_lbl",
         "gap_junction",
         "gap_junction_lbl",
     ]
    def test_ParrotNeuronIncomingMultiplicity(self):
        """
        Check parrot_neuron heeds multiplicity information in incoming spikes.

        This test relies on the fact that poisson_generator transmits
        multiple spikes during a time step using multiplicity, and that 
        these spikes are delivered directly, i.e., without multiplicity-
        unrolling in send_remote().
        
        We create a high-rate poisson_generator. If parrot_neuron
        ignored multiplicity, it would only transmit one spike per time
        step. We chain two parrot_neurons to check against any loss.
        
        Note: Even though we test parrot_neuron_ps, we drive it with the
        plain poisson_generator, since only that generator uses multiplicity.
        """

        # set up source spike generator, as well as parrot neurons
        h = 0.1  # ms
        rate = 1000000.  # spikes / s
        delay = 1.  # ms
        t_base = 1000.  # ms
        t_sim = t_base + 3 * delay  # after t_sim, spikes from t_base arrived
        spikes_expected = rate * t_base / 1000.
        spikes_std = math.sqrt(spikes_expected)

        # if the test is to be meaningful we must expect signficantly more
        # spikes than time steps
        assert spikes_expected - 3 * spikes_std > 10. * t_sim / h, \
               "Internal inconsistency: too few spikes."

        nest.set_verbosity('M_WARNING')
        nest.ResetKernel()
        nest.SetKernelStatus({
            'resolution': h,
            'grng_seed': 123,
            'rng_seeds': [456]
        })

        source = nest.Create('poisson_generator', params={'rate': rate})
        parrots = nest.Create('parrot_neuron_ps', 2)
        detect = nest.Create('spike_detector', params={'precise_times': True})

        nest.Connect(source, parrots[:1], syn_spec={'delay': delay})
        nest.Connect(parrots[:1], parrots[1:], syn_spec={'delay': delay})
        nest.Connect(parrots[1:], detect)

        nest.Simulate(_round_up(t_sim))

        n_spikes = nest.GetStatus(detect)[0]['n_events']
        assert n_spikes > spikes_expected - 3 * spikes_std, \
               "parrot_neuron loses spikes."
        assert n_spikes < spikes_expected + 3 * spikes_std, \
               "parrot_neuron adds spikes."
 def setUp(self):
     nest.ResetKernel()
     nest.set_verbosity('M_ERROR')
     self.exclude_synapse_model = [
         'stdp_dopamine_synapse',
         'stdp_dopamine_synapse_lbl',
         'stdp_dopamine_synapse_hpc',
         'stdp_dopamine_synapse_hpc_lbl',
         'gap_junction',
         'gap_junction_lbl'
     ]
Пример #50
0
def single_neuron_task(spike_times, sim_duration):
    '''
       Task Manifest Version: 1
       Full Name: single_neuron_task
       Caption: Single neuron
       Author: NEST Developers
       Description: |
           This script simulates a neuron stimulated by spikes
           with predefined times and creates a plot of the membrane
           potential trace.
           Simulator: NEST (http://nest-simulator.org)
       Categories:
           - NEST
       Compatible_queues: ['cscs_viz', 'cscs_bgq', 'epfl_viz']
       Accepts:
           spike_times:
               type: list(double)
               description: Spike times in ms at which the neuron is stimulated (e.g., [10, 50]).
           sim_duration:
               type: double
               description: Simulation duration in ms (e.g., 100).
       Returns:
           res: image/png
    '''

    nest.set_verbosity('M_WARNING')  # reduce NEST output
    nest.ResetKernel()  # reset simulation kernel
    # create LIF neuron with exponential synaptic currents
    neuron = nest.Create('iaf_psc_exp')
    # create a voltmeter
    voltmeter = nest.Create('voltmeter', params={'interval': 0.1})
    # create a spike generator
    spikegenerator = nest.Create('spike_generator')
    # ... and let it spike at predefined times
    nest.SetStatus(spikegenerator, {'spike_times': spike_times})
    # connect spike generator and voltmeter to the neuron
    nest.Connect(spikegenerator, neuron)
    nest.Connect(voltmeter, neuron)
    # run simulation for sim_duration
    nest.Simulate(sim_duration)
    # read out recording time and voltage from voltmeter
    times = nest.GetStatus(voltmeter)[0]['events']['times']
    voltage = nest.GetStatus(voltmeter)[0]['events']['V_m']
    # plot results
    plt.plot(times, voltage)
    plt.xlabel('Time (ms)')
    plt.ylabel('Membrane potential (mV)')
    filename = 'single_neuron_task.png'
    plt.savefig(filename, dpi=300)

    return single_neuron_task.task.uri.save_file(mime_type='image/png',
                                                 src_path=filename,
                                                 dst_path=filename)
    def prepare_simulation(self):
        nest.ResetKernel()
        nest.set_verbosity('M_ERROR')
        '''
        We set global kernel parameters. Here we define the resolution
        for the simulation, which is also the time resolution for the update
        of the synaptic elements.
        '''
        nest.SetKernelStatus(
            {
                'resolution': self.dt
            }
        )

        '''
        Set Structural Plasticity synaptic update interval which is how often
        the connectivity will be updated inside the network. It is important
        to notice that synaptic elements and connections change on different
        time scales.
        '''
        nest.SetStructuralPlasticityStatus({
            'structural_plasticity_update_interval': self.update_interval,
        })

        '''
        Now we define Structural Plasticity synapses. In this example we create
        two synapse models, one for excitatory and one for inhibitory synapses.
        Then we define that excitatory synapses can only be created between a
        pre synaptic element called 'Axon_ex' and a post synaptic element
        called Den_ex. In a similar manner, synaptic elements for inhibitory
        synapses are defined.
        '''
        nest.CopyModel('static_synapse', 'synapse_ex')
        nest.SetDefaults('synapse_ex', {'weight': self.psc_e, 'delay': 1.0})
        nest.CopyModel('static_synapse', 'synapse_in')
        nest.SetDefaults('synapse_in', {'weight': self.psc_i, 'delay': 1.0})
        nest.SetStructuralPlasticityStatus({
            'structural_plasticity_synapses': {
                'synapse_ex': {
                    'model': 'synapse_ex',
                    'post_synaptic_element': 'Den_ex',
                    'pre_synaptic_element': 'Axon_ex',
                },
                'synapse_in': {
                    'model': 'synapse_in',
                    'post_synaptic_element': 'Den_in',
                    'pre_synaptic_element': 'Axon_in',
                },
            }
        })
    def setUp(self):
        nest.set_verbosity('M_WARNING')
        nest.ResetKernel()

        # set up source spike generator, as well as parrot neurons
        self.spike_time = 1.
        self.delay = .2
        self.source = nest.Create("spike_generator", 1, {"spike_times": [self.spike_time]})
        self.parrot = nest.Create('parrot_neuron')
        self.spikes = nest.Create("spike_detector")

        # record source and parrot spikes
        nest.Connect(self.source, self.spikes)
        nest.Connect(self.parrot, self.spikes)
Пример #53
0
 def compute_transfer(self, i_mean=(400.0, 900.0, 50.0),
                      i_std=(0.0, 600.0, 50.0)):
     '''
     We loop through all possible combinations of (I_mean, I_sigma)
     and measure the output rate of the neuron.
     '''
     self.i_range = numpy.arange(*i_mean)
     self.std_range = numpy.arange(*i_std)
     self.rate = numpy.zeros((self.i_range.size, self.std_range.size))
     nest.set_verbosity('M_WARNING')
     for n, i in enumerate(self.i_range):
         print('I  =  {0}'.format(i))
         for m, std in enumerate(self.std_range):
             self.rate[n, m] = self.output_rate(i, std)
 def test_set_verbosity(self):
     levels = [('M_ALL', 0),
               ('M_DEBUG', 5),
               ('M_STATUS', 7),
               ('M_INFO', 10),
               ('M_DEPRECATED', 18),
               ('M_WARNING', 20),
               ('M_ERROR', 30),
               ('M_FATAL', 40),
               ('M_QUIET', 100)
               ]
     for level, code in levels:
         nest.set_verbosity(level)
         verbosity = nest.get_verbosity()
         self.assertEqual(verbosity, code)
    def test_SynapseFunctionWithAeifModel(self):
        """Ensure that spikes are properly processed"""

        nest.set_verbosity('M_WARNING')
        nest.ResetKernel()

        # Create neurons and devices
        nrns = nest.Create('aeif_psc_delta_clopath', 2, {'V_m': -70.6})
        prrt_nrn = nest.Create('parrot_neuron', 1)

        spike_times = [10.0]
        sg = nest.Create('spike_generator', 1, {'spike_times': spike_times})

        mm = nest.Create('multimeter', params={
                         'record_from': ['V_m'], 'interval': 1.0})

        nest.Connect(sg, prrt_nrn)
        nest.Connect(mm, nrns)

        # Connect one neuron with static connection
        conn_dict = {'rule': 'all_to_all'}
        static_syn_dict = {'model': 'static_synapse',
                           'weight': 2.0, 'delay': 1.0}
        nest.Connect(prrt_nrn, nrns[0:1], conn_dict, static_syn_dict)

        # Connect one neuron with Clopath stdp connection
        cl_stdp_syn_dict = {'model': 'clopath_synapse',
                            'weight': 2.0, 'delay': 1.0}
        nest.Connect(prrt_nrn, nrns[1:2], conn_dict, cl_stdp_syn_dict)

        # Simulation
        nest.Simulate(20.)

        # Evaluation
        data = nest.GetStatus(mm)
        senders = data[0]['events']['senders']
        voltages = data[0]['events']['V_m']

        vm1 = voltages[np.where(senders == 1)]
        vm2 = voltages[np.where(senders == 2)]

        # Compare results for static synapse and Clopath stdp synapse
        self.assertTrue(np.allclose(vm1, vm2, rtol=1e-5))
        # Check that a spike with weight 2.0 is processes properly
        # in the aeif_psc_delta_clopath model
        self.assertTrue(np.isclose(vm2[11]-vm2[10], 2.0, rtol=1e-5))
Пример #56
0
 def setUp(self):
     nest.ResetKernel()
     nest.set_verbosity('M_ERROR')
     self.num_procs = 1
     if mpi_test:
         self.comm = MPI.COMM_WORLD
         self.rank = self.comm.Get_rank()
         assert(nest.Rank() == self.rank)
         self.num_procs = 2
     self.exclude_synapse_model = [
         'stdp_dopamine_synapse',
         'stdp_dopamine_synapse_lbl',
         'stdp_dopamine_synapse_hpc',
         'stdp_dopamine_synapse_hpc_lbl',
         'gap_junction',
         'gap_junction_lbl',
     ]
    def setUp(self):
        nest.set_verbosity('M_WARNING')
        nest.ResetKernel()

        # setting up the neuron and the generators
        self.neuron = nest.Create('iaf_psc_alpha', params={'V_reset': -65.0})

        self.t_origin = 5.0
        self.t_start = 2.5
        self.t_stop = 40.0
        self.t_next = 25.0
        self.i_amp = 500.0
        self.i_off = 50.0

        self.ac = nest.Create('ac_generator', 1,
                              params={'amplitude': self.i_amp,
                                      'offset': self.i_off,
                                      'frequency': 50.0, 'phase': 45.0,
                                      'origin': self.t_origin,
                                      'start': self.t_start,
                                      'stop': self.t_stop})
        nest.Connect(self.ac, self.neuron)

        self.dc = nest.Create('dc_generator', 1,
                              params={'amplitude': self.i_amp,
                                      'origin': self.t_origin,
                                      'start': self.t_start,
                                      'stop': self.t_stop})
        nest.Connect(self.dc, self.neuron)

        times = [self.t_start, self.t_next]
        currents = [self.i_amp / 4, self.i_amp / 2]
        params = {'amplitude_times': times, 'amplitude_values': currents,
                  'origin': self.t_origin, 'start': self.t_start,
                  'stop': self.t_stop}
        self.step = nest.Create("step_current_generator", 1, params)
        nest.Connect(self.step, self.neuron)

        self.noise = nest.Create('noise_generator', 1,
                                 params={'mean': self.i_amp, 'std': 0.0,
                                         'dt': 0.1, 'std_mod': 0.0,
                                         'phase': 45.0, 'frequency': 50.0,
                                         'origin': self.t_origin,
                                         'start': self.t_start,
                                         'stop': self.t_stop})
        nest.Connect(self.noise, self.neuron)
Пример #58
0
 def setUp(self):
     nest.ResetKernel()
     nest.set_verbosity('M_INFO')
     self.exclude_synapse_model = [
         'stdp_dopamine_synapse',
         'stdp_dopamine_synapse_lbl',
         'stdp_dopamine_synapse_hpc',
         'stdp_dopamine_synapse_hpc_lbl',
         'gap_junction',
         'gap_junction_lbl',
         'diffusion_connection',
         'diffusion_connection_lbl',
         'rate_connection_instantaneous',
         'rate_connection_instantaneous_lbl',
         'rate_connection_delayed',
         'rate_connection_delayed_lbl'
     ]
    def test_ParrotNeuronIncomingMultiplicity(self):
        """
        Check parrot_neuron heeds multiplicity information in incoming spikes.

        This test relies on the fact that poisson_generator transmits
        multiple spikes during a time step using multiplicity, and that
        these spikes are delivered directly, i.e., without multiplicity-
        unrolling in send_remote().

        We create a high-rate poisson_generator. If parrot_neuron
        ignored multiplicity, it would only transmit one spike per time
        step. We chain two parrot_neurons to check against any loss.
        """

        # set up source spike generator, as well as parrot neurons
        h = 0.1  # ms
        rate = 1000000.0  # spikes / s
        delay = 1.0  # ms
        t_base = 1000.0  # ms
        t_sim = t_base + 3 * delay  # after t_sim, spikes from t_base arrived
        spikes_expected = rate * t_base / 1000.0
        spikes_std = math.sqrt(spikes_expected)

        # if the test is to be meaningful we must expect signficantly more
        # spikes than time steps
        assert spikes_expected - 3 * spikes_std > 10.0 * t_sim / h, "Internal inconsistency: too few spikes."

        nest.set_verbosity("M_WARNING")
        nest.ResetKernel()
        nest.SetKernelStatus({"resolution": h, "grng_seed": 123, "rng_seeds": [456]})

        source = nest.Create("poisson_generator", params={"rate": rate})
        parrots = nest.Create("parrot_neuron", 2)
        detect = nest.Create("spike_detector")

        nest.Connect(source, parrots[:1], syn_spec={"delay": delay})
        nest.Connect(parrots[:1], parrots[1:], syn_spec={"delay": delay})
        nest.Connect(parrots[1:], detect)

        nest.Simulate(t_sim)

        n_spikes = nest.GetStatus(detect)[0]["n_events"]
        assert n_spikes > spikes_expected - 3 * spikes_std, "parrot_neuron loses spikes."
        assert n_spikes < spikes_expected + 3 * spikes_std, "parrot_neuron adds spikes."