action="store_true") args = parser.parse_args() load_data = LoadData() slide_sequences, slide_labels = load_data.get_RNN_data() network = Network() if args.train: network.train_and_save(slide_sequences, slide_labels, "CORRECT", should_save_auc=True) else: network.load_results("CORRECT") if args.conf: print('DISPLAYING CONFUSION MATRICES:\n') conf = network.get_confusion_matrices() for slide_id in range(NUM_SLIDES): print('Slide ' + str(slide_id + 1) + ':\n', conf[slide_id]) if args.acc: print('DISPLAYING ACCURACIES:\n') acc = network.get_accuracies() for slide_id in range(NUM_SLIDES): print('Slide ' + str(slide_id + 1) + ':', acc[slide_id], '\n') print('Average accuracy of slide 2 to 21:', acc[1:].mean()) if args.auc:
section=None) print('slide_sequences[0][0]: ', slide_sequences[0][0]) print('discard_last_dup_sequences[0][0]: ', discard_last_dup_sequences[0][0]) print('slide_sequences[9][9]: ', slide_sequences[9][9]) print('discard_last_dup_sequences[9][9]: ', discard_last_dup_sequences[9][9]) slide_sequences = discard_last_dup_sequences if args.train: network.train_and_save(slide_sequences, slide_selections, "SELECTION", should_save_auc=False) else: network.load_results("SELECTION") if args.conf: print('DISPLAYING CONFUSION MATRICES:\n') conf = network.get_confusion_matrices() for slide_id in range(NUM_SLIDES): print('Slide ' + str(slide_id + 1) + ':\n', conf[slide_id]) if args.acc: print('DISPLAYING ACCURACIES:\n') acc = network.get_accuracies() for slide_id in range(NUM_SLIDES): print('Slide ' + str(slide_id + 1) + ':', acc[slide_id], '\n') print('Average accuracy of slide 2 to 21:', acc[1:].mean()) if args.auc: