def run_predictions(): import MySQLdb as mdb from pyfann import libfann #from datetime import date from network_functions import save_prediction mydate = "" con = None con = mdb.connect('localhost', 'root', 'fil1202job', 'stock'); with con: cur = con.cursor(mdb.cursors.DictCursor) cur1 = con.cursor() # # Get a list of all networks # cur.execute("SELECT a.id, a.group, b.ticker, b.predict_data, a.net_file FROM `network`.`network` a, network.net_group b where a.group = b.id;") rows = cur.fetchall() for row in rows: # # For each network get the training data - only most recent data at the moment # #seldate = "select latest_prediction from network.network where id = " + str(row["id"]) #cur2.execute(seldate) #latestdate = cur2.fetchone() #latestdate1 = latestdate[0] #print latestdate1 cur1.execute(row["predict_data"]) for row1 in cur1.fetchall(): # # Extract Date # mydate = row1[(len(row1) - 1)] row1b = list(row1) del row1b[(len(row1b) - 1)] # # Set up network # ann = libfann.neural_net() ann.create_from_file(row["net_file"]) # # Run Prediction # print row1b print ann.run(row1b) prediction = ann.run(row1b) prediction = str(prediction).translate(None, '[]') # # Store results in db - Function # save_prediction(row["id"], mydate, prediction) calc_signals()
#cur2.execute(seldate) #latestdate = cur2.fetchone() #latestdate1 = latestdate[0] #print latestdate1 cur1.execute(row["predict_data"]) for row1 in cur1.fetchall(): # # Extract Date # mydate = row1[(len(row1) - 1)] row1b = list(row1) del row1b[(len(row1b) - 1)] # # Set up network # ann = libfann.neural_net() ann.create_from_file(row["net_file"]) # # Run Prediction # print ann.run(row1b) prediction = ann.run(row1b) prediction = str(prediction).translate(None, '[]') # # Store results in db - Function # save_prediction(row["id"], mydate, prediction)