Пример #1
0
    def to_image(self, path=None, data=None):
        """Write itself as a binary image, and returns it

        Parameters
        ----------
        path: string, path of the output image, if any
        data: array of shape self.size,
              data to put in the nonzer-region of the image

        """
        if data is None:
            wdata = np.zeros(self.shape, np.int8)
        else:
            wdata = np.zeros(self.shape, data.dtype)
        wdata[self.ijk[:, 0], self.ijk[:, 1], self.ijk[:, 2]] = 1
        if data is not None:
            if data.size != self.size:
                raise ValueError('incorrect data size')
            wdata[wdata > 0] = data

        nim = Nifti1Image(wdata, self.affine)
        get_header(nim)['descrip'] = ('mask image representing domain %s' %
                                      self.id)
        if path is not None:
            save(nim, path)
        return nim
Пример #2
0
    def to_image(self, path=None, data=None):
        """Write itself as a binary image, and returns it

        Parameters
        ----------
        path: string, path of the output image, if any
        data: array of shape self.size,
              data to put in the nonzer-region of the image

        """
        if data is None:
            wdata = np.zeros(self.shape, np.int8)
        else:
            wdata = np.zeros(self.shape, data.dtype)
        wdata[self.ijk[:, 0], self.ijk[:, 1], self.ijk[:, 2]] = 1
        if data is not None:
            if data.size != self.size:
                raise ValueError('incorrect data size')
            wdata[wdata > 0] = data

        nim = Nifti1Image(wdata, self.affine)
        get_header(nim)['descrip'] = ('mask image representing domain %s'
                                      % self.id)
        if path is not None:
            save(nim, path)
        return nim
Пример #3
0
def parcellation_based_analysis(Pa,
                                test_images,
                                test_id='one_sample',
                                rfx_path=None,
                                condition_id='',
                                swd=None):
    """ This function computes parcel averages and RFX at the parcel-level

    Parameters
    ----------
    Pa: MultiSubjectParcellation instance
        the description of the parcellation
    test_images: (Pa.nb_subj-) list of paths
                 paths of images used in the inference procedure
    test_id: string, optional,
          if test_id=='one_sample', the one_sample statstic is computed
          otherwise, the parcel-based signal averages are returned
    rfx_path: string optional,
              path of the resulting one-sample test image, if applicable
    swd: string, optional
         output directory used to compute output path if rfx_path is not given
    condition_id: string, optional,
                  contrast/condition id  used to compute output path

    Returns
    -------
    test_data: array of shape(Pa.nb_parcel, Pa.nb_subj)
               the parcel-level signal average if test is not 'one_sample'
    prfx: array of shape(Pa.nb_parcel),
          the one-sample t-value if test_id is 'one_sample'
    """
    nb_subj = Pa.nb_subj

    # 1. read the test data
    if len(test_images) != nb_subj:
        raise ValueError('Inconsistent number of test images')

    test = np.array(
        [Pa.domain.make_feature_from_image(ti) for ti in test_images]).T
    test_data = Pa.make_feature('', np.array(test))

    if test_id is not 'one_sample':
        return test_data

    # 2. perform one-sample test
    # computation
    from ..utils.reproducibility_measures import ttest
    prfx = ttest(test_data)

    # Write the stuff
    template = SubDomains(Pa.domain, Pa.template_labels)
    template.set_roi_feature('prfx', prfx)
    wim = template.to_image('prfx', roi=True)
    hdr = get_header(wim)
    hdr['descrip'] = 'parcel-based random effects image (in t-variate)'
    if rfx_path is not None:
        save(wim, rfx_path)

    return prfx
Пример #4
0
def parcellation_based_analysis(Pa, test_images, test_id='one_sample',
                                rfx_path=None, condition_id='', swd=None):
    """ This function computes parcel averages and RFX at the parcel-level

    Parameters
    ----------
    Pa: MultiSubjectParcellation instance
        the description of the parcellation
    test_images: (Pa.nb_subj-) list of paths
                 paths of images used in the inference procedure
    test_id: string, optional,
          if test_id=='one_sample', the one_sample statstic is computed
          otherwise, the parcel-based signal averages are returned
    rfx_path: string optional,
              path of the resulting one-sample test image, if applicable
    swd: string, optional
         output directory used to compute output path if rfx_path is not given
    condition_id: string, optional,
                  contrast/condition id  used to compute output path

    Returns
    -------
    test_data: array of shape(Pa.nb_parcel, Pa.nb_subj)
               the parcel-level signal average if test is not 'one_sample'
    prfx: array of shape(Pa.nb_parcel),
          the one-sample t-value if test_id is 'one_sample'
    """
    nb_subj = Pa.nb_subj

    # 1. read the test data
    if len(test_images) != nb_subj:
        raise ValueError('Inconsistent number of test images')

    test = np.array([Pa.domain.make_feature_from_image(ti)
                     for ti in test_images]).T
    test_data = Pa.make_feature('', np.array(test))

    if test_id is not 'one_sample':
        return test_data

    # 2. perform one-sample test
    # computation
    from ..utils.reproducibility_measures import ttest
    prfx = ttest(test_data)

    # Write the stuff
    template = SubDomains(Pa.domain, Pa.template_labels)
    template.set_roi_feature('prfx', prfx)
    wim = template.to_image('prfx', roi=True)
    hdr = get_header(wim)
    hdr['descrip'] = 'parcel-based random effects image (in t-variate)'
    if rfx_path is not None:
        save(wim, rfx_path)

    return prfx
Пример #5
0
    def to_image(self, fid=None, roi=False, method="mean", descrip=None):
        """Generates a label image that represents self.

        Parameters
        ----------
        fid: str,
          Feature to be represented. If None, a binary image of the MROI
          domain will be we created.
        roi: bool,
          Whether or not to write the desired feature as a ROI one.
          (i.e. a ROI feature corresponding to `fid` will be looked upon,
          and if not found, a representative feature will be computed from
          the `fid` feature).
        method: str,
          If a feature is written as a ROI feature, this keyword tweaks
          the way the representative feature is computed.
        descrip: str,
          Description of the image, to be written in its header.

        Notes
        -----
        Requires that self.dom is an ddom.NDGridDomain

        Returns
        -------
        nim : nibabel nifti image
          Nifti image corresponding to the ROI feature to be written.

        """
        if not isinstance(self.domain, ddom.NDGridDomain):
            print('self.domain is not an NDGridDomain; nothing was written.')
            return None

        if fid is None:
            # write a binary representation of the domain if no fid provided
            nim = self.domain.to_image(data=(self.label != -1).astype(np.int32))
            if descrip is None:
                descrip = 'binary representation of MROI'
        else:
            data = -np.ones(self.label.size, dtype=np.int32)
            tmp_image = self.domain.to_image()
            mask = tmp_image.get_data().copy().astype(bool)
            if not roi:
                # write a feature
                if fid not in self.features:
                    raise ValueError("`%s` feature could not be found" % fid)
                for i in self.get_id():
                    data[self.select_id(i, roi=False)] = \
                        self.get_feature(fid, i)
            else:
                # write a roi feature
                if fid in self.roi_features:
                    # write from existing roi feature
                    for i in self.get_id():
                        data[self.select_id(i, roi=False)] = \
                            self.get_roi_feature(
                            fid, i)
                elif fid in self.features:
                    # write from representative feature
                    summary_feature = self.representative_feature(
                        fid, method=method)
                    for i in self.get_id():
                        data[self.select_id(i, roi=False)] = \
                            summary_feature[self.select_id(i)]
            # MROI object was defined on a masked image: we square it back.
            wdata = -np.ones(mask.shape, data.dtype)
            wdata[mask] = data
            nim = Nifti1Image(wdata, get_affine(tmp_image))
        # set description of the image
        if descrip is not None:
            get_header(nim)['descrip'] = descrip
        return nim
Пример #6
0
Файл: glm.py Проект: Lx37/nipy
    def contrast(
        self,
        contrasts,
        con_id="",
        contrast_type=None,
        output_z=True,
        output_stat=False,
        output_effects=False,
        output_variance=False,
    ):
        """ Estimation of a contrast as fixed effects on all sessions

        Parameters
        ----------
        contrasts : array or list of arrays of shape (n_col) or (n_dim, n_col)
            where ``n_col`` is the number of columns of the design matrix,
            numerical definition of the contrast (one array per run)
        con_id : str, optional
            name of the contrast
        contrast_type : {'t', 'F', 'tmin-conjunction'}, optional
            type of the contrast
        output_z : bool, optional
            Return or not the corresponding z-stat image
        output_stat : bool, optional
            Return or not the base (t/F) stat image
        output_effects : bool, optional
            Return or not the corresponding effect image
        output_variance : bool, optional
            Return or not the corresponding variance image

        Returns
        -------
        output_images : list of nibabel images
            The required output images, in the following order:
            z image, stat(t/F) image, effects image, variance image
        """
        if self.glms == []:
            raise ValueError("first run fit() to estimate the model")
        if isinstance(contrasts, np.ndarray):
            contrasts = [contrasts]
        if len(contrasts) != len(self.glms):
            raise ValueError("contrasts must be a sequence of %d session contrasts" % len(self.glms))

        contrast_ = None
        for i, (glm, con) in enumerate(zip(self.glms, contrasts)):
            if np.all(con == 0):
                warn("Contrast for session %d is null" % i)
            elif contrast_ is None:
                contrast_ = glm.contrast(con, contrast_type)
            else:
                contrast_ = contrast_ + glm.contrast(con, contrast_type)
        if output_z or output_stat:
            # compute the contrast and stat
            contrast_.z_score()

        # Prepare the returned images
        mask = self.mask.get_data().astype(np.bool)
        do_outputs = [output_z, output_stat, output_effects, output_variance]
        estimates = ["z_score_", "stat_", "effect", "variance"]
        descrips = ["z statistic", "Statistical value", "Estimated effect", "Estimated variance"]
        dims = [1, 1, contrast_.dim, contrast_.dim ** 2]
        n_vox = mask.sum()
        output_images = []
        for (do_output, estimate, descrip, dim) in zip(do_outputs, estimates, descrips, dims):
            if do_output:
                if dim > 1:
                    result_map = np.tile(mask.astype(np.float)[:, :, :, np.newaxis], dim)
                    result_map[mask] = np.reshape(getattr(contrast_, estimate).T, (n_vox, dim))
                else:
                    result_map = mask.astype(np.float)
                    result_map[mask] = np.squeeze(getattr(contrast_, estimate))
                output = Nifti1Image(result_map, self.affine)
                get_header(output)["descrip"] = "%s associated with contrast %s" % (descrip, con_id)
                output_images.append(output)
        return output_images
Пример #7
0
def as_volume_img(obj, copy=True, squeeze=True, world_space=None):
    """ Convert the input to a VolumeImg.

        Parameters
        ----------
        obj : filename, pynifti or brifti object, or volume dataset.
            Input object, in any form that can be converted to a
            VolumeImg. This includes Nifti filenames, pynifti or brifti
            objects, or other volumetric dataset objects.
        copy: boolean, optional
            If copy is True, the data and affine arrays are copied, 
            elsewhere a view is taken.
        squeeze: boolean, optional
            If squeeze is True, the data array is squeeze on for
            dimensions above 3.
        world_space: string or None, optional
            An optional specification of the world space, to override
            that given by the image.

        Returns
        -------
        volume_img: VolumeImg object
            A VolumeImg object containing the data. The metadata is
            kept as much as possible in the metadata attribute.

        Notes
        ------
        The world space might not be correctly defined by the input
        object (in particular, when loading data from disk). In this
        case, you can correct it manually using the world_space keyword
        argument.

        For pynifti objects, the data is transposed.
    """
    if hasattr(obj, 'as_volume_img'):
        obj = obj.as_volume_img(copy=copy)
        if copy:
            obj = obj.__copy__()
        return obj

    elif isinstance(obj, basestring):
        if not os.path.exists(obj):
            raise ValueError("The file '%s' cannot be found" % obj)
        obj = nib.load(obj)
        copy = False

    if isinstance(obj, SpatialImage):
        data = obj.get_data()
        affine = get_affine(obj)
        header = dict(get_header(obj))
        fname = obj.file_map['image'].filename
        if fname:
            header['filename'] = fname
    elif hasattr(obj, 'data') and hasattr(obj, 'sform') and \
                                            hasattr(obj, 'getVolumeExtent'):
        # Duck-types to a pynifti object
        data = obj.data.T
        affine = obj.sform
        header = obj.header
        filename = obj.getFilename()
        if filename != '':
            header['filename'] = filename
    else:
        raise ValueError('Invalid type (%s) passed in: cannot convert %s to '
                         'VolumeImg' % (type(obj), obj))

    if world_space is None and header.get('sform_code', 0) == 4:
        world_space = 'mni152'

    data = np.asanyarray(data)
    affine = np.asanyarray(affine)
    if copy:
        data = data.copy()
        affine = affine.copy()

    if squeeze:
        # Squeeze the dimensions above 3
        shape = [
            val for index, val in enumerate(data.shape)
            if val != 1 or index < 3
        ]
        data = np.reshape(data, shape)

    return VolumeImg(data, affine, world_space, metadata=header)
Пример #8
0
def as_volume_img(obj, copy=True, squeeze=True, world_space=None):
    """ Convert the input to a VolumeImg.

        Parameters
        ----------
        obj : filename, pynifti or brifti object, or volume dataset.
            Input object, in any form that can be converted to a
            VolumeImg. This includes Nifti filenames, pynifti or brifti
            objects, or other volumetric dataset objects.
        copy: boolean, optional
            If copy is True, the data and affine arrays are copied, 
            elsewhere a view is taken.
        squeeze: boolean, optional
            If squeeze is True, the data array is squeeze on for
            dimensions above 3.
        world_space: string or None, optional
            An optional specification of the world space, to override
            that given by the image.

        Returns
        -------
        volume_img: VolumeImg object
            A VolumeImg object containing the data. The metadata is
            kept as much as possible in the metadata attribute.

        Notes
        ------
        The world space might not be correctly defined by the input
        object (in particular, when loading data from disk). In this
        case, you can correct it manually using the world_space keyword
        argument.

        For pynifti objects, the data is transposed.
    """
    if hasattr(obj, 'as_volume_img'):
        obj = obj.as_volume_img(copy=copy)
        if copy:
            obj = obj.__copy__()
        return obj

    elif isinstance(obj, string_types):
        if not os.path.exists(obj):
            raise ValueError("The file '%s' cannot be found" % obj)
        obj = nib.load(obj)
        copy = False

    if isinstance(obj, SpatialImage):
        data   = obj.get_data()
        affine = get_affine(obj)
        header = dict(get_header(obj))
        fname = obj.file_map['image'].filename
        if fname:
            header['filename'] = fname
    elif hasattr(obj, 'data') and hasattr(obj, 'sform') and \
                                            hasattr(obj, 'getVolumeExtent'):
        # Duck-types to a pynifti object
        data     = obj.data.T
        affine   = obj.sform
        header   = obj.header
        filename = obj.getFilename()
        if filename != '':
            header['filename'] = filename
    else:
        raise ValueError('Invalid type (%s) passed in: cannot convert %s to '
                    'VolumeImg' % (type(obj), obj))

    if world_space is None and header.get('sform_code', 0) == 4:
        world_space = 'mni152'

    data    = np.asanyarray(data)
    affine  = np.asanyarray(affine)
    if copy:
        data    = data.copy()
        affine  = affine.copy()

    if squeeze:
        # Squeeze the dimensions above 3
        shape = [val for index, val in enumerate(data.shape)
                     if val !=1 or index < 3]
        data = np.reshape(data, shape)
    
    return VolumeImg(data, affine, world_space, metadata=header)
Пример #9
0
    def to_image(self, fid=None, roi=False, method="mean", descrip=None):
        """Generates a label image that represents self.

        Parameters
        ----------
        fid: str,
          Feature to be represented. If None, a binary image of the MROI
          domain will be we created.
        roi: bool,
          Whether or not to write the desired feature as a ROI one.
          (i.e. a ROI feature corresponding to `fid` will be looked upon,
          and if not found, a representative feature will be computed from
          the `fid` feature).
        method: str,
          If a feature is written as a ROI feature, this keyword tweaks
          the way the representative feature is computed.
        descrip: str,
          Description of the image, to be written in its header.

        Notes
        -----
        Requires that self.dom is an ddom.NDGridDomain

        Returns
        -------
        nim : nibabel nifti image
          Nifti image corresponding to the ROI feature to be written.

        """
        if not isinstance(self.domain, ddom.NDGridDomain):
            print('self.domain is not an NDGridDomain; nothing was written.')
            return None

        if fid is None:
            # write a binary representation of the domain if no fid provided
            nim = self.domain.to_image(
                data=(self.label != -1).astype(np.int32))
            if descrip is None:
                descrip = 'binary representation of MROI'
        else:
            data = -np.ones(self.label.size, dtype=np.int32)
            tmp_image = self.domain.to_image()
            mask = tmp_image.get_data().copy().astype(bool)
            if not roi:
                # write a feature
                if fid not in self.features:
                    raise ValueError("`%s` feature could not be found" % fid)
                for i in self.get_id():
                    data[self.select_id(i, roi=False)] = \
                        self.get_feature(fid, i)
            else:
                # write a roi feature
                if fid in self.roi_features:
                    # write from existing roi feature
                    for i in self.get_id():
                        data[self.select_id(i, roi=False)] = \
                            self.get_roi_feature(
                            fid, i)
                elif fid in self.features:
                    # write from representative feature
                    summary_feature = self.representative_feature(
                        fid, method=method)
                    for i in self.get_id():
                        data[self.select_id(i, roi=False)] = \
                            summary_feature[self.select_id(i)]
            # MROI object was defined on a masked image: we square it back.
            wdata = -np.ones(mask.shape, data.dtype)
            wdata[mask] = data
            nim = Nifti1Image(wdata, get_affine(tmp_image))
        # set description of the image
        if descrip is not None:
            get_header(nim)['descrip'] = descrip
        return nim
Пример #10
0
    def contrast(self,
                 contrasts,
                 con_id='',
                 contrast_type=None,
                 output_z=True,
                 output_stat=False,
                 output_effects=False,
                 output_variance=False):
        """ Estimation of a contrast as fixed effects on all sessions

        Parameters
        ----------
        contrasts : array or list of arrays of shape (n_col) or (n_dim, n_col)
            where ``n_col`` is the number of columns of the design matrix,
            numerical definition of the contrast (one array per run)
        con_id : str, optional
            name of the contrast
        contrast_type : {'t', 'F', 'tmin-conjunction'}, optional
            type of the contrast
        output_z : bool, optional
            Return or not the corresponding z-stat image
        output_stat : bool, optional
            Return or not the base (t/F) stat image
        output_effects : bool, optional
            Return or not the corresponding effect image
        output_variance : bool, optional
            Return or not the corresponding variance image

        Returns
        -------
        output_images : list of nibabel images
            The required output images, in the following order:
            z image, stat(t/F) image, effects image, variance image
        """
        if self.glms == []:
            raise ValueError('first run fit() to estimate the model')
        if isinstance(contrasts, np.ndarray):
            contrasts = [contrasts]
        if len(contrasts) != len(self.glms):
            raise ValueError(
                'contrasts must be a sequence of %d session contrasts' %
                len(self.glms))

        contrast_ = None
        for i, (glm, con) in enumerate(zip(self.glms, contrasts)):
            if np.all(con == 0):
                warn('Contrast for session %d is null' % i)
            elif contrast_ is None:
                contrast_ = glm.contrast(con, contrast_type)
            else:
                contrast_ = contrast_ + glm.contrast(con, contrast_type)
        if output_z or output_stat:
            # compute the contrast and stat
            contrast_.z_score()

        # Prepare the returned images
        mask = self.mask.get_data().astype(np.bool)
        do_outputs = [output_z, output_stat, output_effects, output_variance]
        estimates = ['z_score_', 'stat_', 'effect', 'variance']
        descrips = [
            'z statistic', 'Statistical value', 'Estimated effect',
            'Estimated variance'
        ]
        dims = [1, 1, contrast_.dim, contrast_.dim**2]
        n_vox = mask.sum()
        output_images = []
        for (do_output, estimate, descrip, dim) in zip(do_outputs, estimates,
                                                       descrips, dims):
            if do_output:
                if dim > 1:
                    result_map = np.tile(
                        mask.astype(np.float)[:, :, :, np.newaxis], dim)
                    result_map[mask] = np.reshape(
                        getattr(contrast_, estimate).T, (n_vox, dim))
                else:
                    result_map = mask.astype(np.float)
                    result_map[mask] = np.squeeze(getattr(contrast_, estimate))
                output = Nifti1Image(result_map, self.affine)
                get_header(output)['descrip'] = (
                    '%s associated with contrast %s' % (descrip, con_id))
                output_images.append(output)
        return output_images