spimem.sclk.eq(timer[0]), #spimem.copi.eq((timer == 0x30) | (timer == 0x10)), # read address 1 spimem.copi.eq((timer == 0x30) | (timer == 0x40)), # write address 1, dout = 1 spimem.csn.eq(timer == 0), spimem.din.eq(0x55) ] return m if __name__ == "__main__": m = Module() m.submodules.test = test = TestSPI() sim = Simulator(m) sim.add_clock(1e-6) def process(): for i in range(67): yield addr = yield test.spimem.addr print("addr:", addr) dout = yield test.spimem.dout print("dout:", dout) sim.add_sync_process(process) with sim.write_vcd("test.vcd", "test.gtkw"): sim.run()
def main(): # parser = main_parser() # args = parser.parse_args() m = Module() m.submodules.ft = ft = FT600() m.submodules.wfifo = wfifo = AsyncFIFOBuffered( width=16, depth=1024, r_domain="sync", w_domain="sync") m.submodules.rfifo = rfifo = AsyncFIFOBuffered( width=16, depth=1024, r_domain="sync", w_domain="sync") ft_oe = Signal() ft_be = Signal() ft_txe = Signal() # FT control m.d.comb += ft_oe.eq(ft.ft_oe) m.d.comb += ft_be.eq(ft.ft_be) m.d.comb += ft_txe.eq(ft.ft_txe) # FT to Write FIFO m.d.comb += ft.input_payload.eq(wfifo.r_data) m.d.comb += wfifo.r_en.eq(ft.input_ready) m.d.comb += ft.input_valid.eq(wfifo.r_rdy) # FT to Read FIFO m.d.comb += rfifo.w_data.eq(ft.output_payload) m.d.comb += rfifo.w_en.eq(ft.output_valid) m.d.comb += ft.output_ready.eq(rfifo.w_rdy) sim = Simulator(m) sim.add_clock(1e-7, domain="sync") # 10 MHz FPGA clock def process(): yield wfifo.w_en.eq(1) yield wfifo.w_data.eq(1) yield Tick(domain="sync") yield wfifo.w_data.eq(2) yield Tick(domain="sync") yield wfifo.w_data.eq(3) yield Tick(domain="sync") yield wfifo.w_data.eq(4) yield Tick(domain="sync") yield wfifo.w_data.eq(5) yield Tick(domain="sync") yield wfifo.w_data.eq(6) yield Tick(domain="sync") yield wfifo.w_data.eq(7) yield Tick(domain="sync") yield wfifo.w_en.eq(0) yield Tick(domain="sync") yield Tick(domain="sync") yield ft.ft_txe.eq(1) yield Tick(domain="sync") yield Tick(domain="sync") yield Tick(domain="sync") yield Tick(domain="sync") yield ft.ft_txe.eq(0) yield Tick(domain="sync") yield Tick(domain="sync") yield ft.ft_txe.eq(1) yield Tick(domain="sync") yield Tick(domain="sync") yield Tick(domain="sync") yield Tick(domain="sync") yield Tick(domain="sync") yield Tick(domain="sync") yield Tick(domain="sync") yield ft.ft_rxf.eq(1) yield Tick(domain="sync") yield ft.ft_override.eq(1) yield Tick(domain="sync") yield ft.ft_override.eq(2) yield Tick(domain="sync") yield ft.ft_override.eq(3) yield Tick(domain="sync") yield ft.ft_rxf.eq(0) yield Tick(domain="sync") yield Tick(domain="sync") yield Tick(domain="sync") yield Tick(domain="sync") sim.add_sync_process(process) with sim.write_vcd("test.vcd", "test.gtkw", traces=[]): sim.run()
from up_counter import * dut = UpCounter(25) def bench(): # Disabled counter should not overflow. yield dut.en.eq(0) for _ in range(30): yield assert not (yield dut.ovf) # Once enabled, the counter should overflow in 25 cycles. yield dut.en.eq(1) for _ in range(25): yield assert not (yield dut.ovf) yield assert (yield dut.ovf) # The overflow should clear in one cycle. yield assert not (yield dut.ovf) sim = Simulator(dut) sim.add_clock(1e-6) # 1 MHz sim.add_sync_process(bench) with sim.write_vcd("up_counter.vcd"): sim.run()
'WF': 3, 'ovfl': 'wrap', 'quant': 'round', 'W': 9 }, 'QCB': { 'WI': 5, 'WF': 3, 'ovfl': 'wrap', 'quant': 'round', 'W': 9 } } dut = FIR_DF_nmigen(p) def process(): # input = stimulus output = [] for i in np.ones(20): yield dut.i.eq(int(i)) yield Tick() output.append((yield dut.o)) print(output) sim = Simulator(dut) # with Simulator(m) as sim: sim.add_clock(1 / 48000) sim.add_process(process) sim.run()
def run_sim(dut, data, n): sim = Simulator(dut, engine=os.getenv('NMIGEN_SIM', 'pysim')) sim.add_clock(10e-9, domain='sync') sim.add_sync_process(dut.input.send_driver(data)) sim.add_sync_process(dut.output.recv_driver(n)) with sim.write_vcd('bla.vcd'): sim.run()
from nmigen import * from nmigen.sim import Simulator, Delay, Settle, Passive from st7789 import * if __name__ == "__main__": m = Module() m.submodules.st7789 = st7789 = ST7789(1) sim = Simulator(m) sim.add_clock(4e-8) def process(): yield st7789.color.eq(0xf800) yield Passive() sim.add_process(process) with sim.write_vcd("test.vcd", "test.gtkw", traces=st7789.ports()): sim.run_until(30e-6, run_passive=True)
parser.add_argument("-g", "--generate", action="store_true") args = parser.parse_args() fw = FIRM # use this firmware if args.simulate: spork = build(fw, mem_size=1024) from nmigen.sim import Simulator from sim_data import test_rx, str_data st = "sphinx of black quartz judge my vow" # print(hex(_crc(st.encode("utf-8")))) data = str_data(st) dut = spork.cpu.pc.devices[0]._phy dut.divisor_val = spork.divisor sim = Simulator(spork) sim.add_clock(1e-3) sim.add_sync_process(test_rx(data, dut)) with sim.write_vcd("sim.vcd"): sim.run() if args.list: spork = build(fw, detail=True) if args.program: spork = build(fw, detail=True) spork.platform.build(spork, do_program=True) if args.generate: spork = build(fw, mem_size=1024, sim=True) from nmigen.back import cxxrtl
args = parser.parse_args() oper: Optional[Operation] = None if args.oper is not None: oper = Operation[args.oper] m = Module() m.submodules.alu = alu = ALU_big(oper) if oper is not None: m.d.comb += Assume(~ResetSignal()) m.d.comb += Assume(alu.oper == oper) main_runner(parser, args, m, ports=alu.ports()) else: sim = Simulator(m) def process(): yield yield alu.inputa.eq(0x12) yield alu.inputb.eq(0x34) yield alu.oper.eq(Operation.ADC) yield yield yield alu.inputa.eq(0x7F) yield alu.inputb.eq(0x7F) yield alu.oper.eq(Operation.ADC) yield yield sim.add_clock(1e-6) # 1 MHz
def generic_chacha20(self, implementation): print("") # Encrypt a test message with a known good implementation import json from base64 import b64encode from Crypto.Cipher import ChaCha20 from Crypto.Random import get_random_bytes from struct import pack, unpack from binascii import hexlify def byte_xor(ba1, ba2): """ XOR two byte strings """ return bytes([_a ^ _b for _a, _b in zip(ba1, ba2)]) plaintext = b'A' * 64 # key = get_random_bytes(32) key = bytes([i for i in range(32)]) # nonce = get_random_bytes(12) nonce = bytes([(i * 16 + i) for i in range(12)]) cipher = ChaCha20.new(key=key, nonce=nonce) ciphertext = cipher.encrypt(plaintext) nonceb64 = b64encode(cipher.nonce).decode('utf-8') ciphertextb64 = b64encode(ciphertext).decode('utf-8') keystream = byte_xor(plaintext, ciphertext) keystream_hex = hexlify(keystream).decode('utf8') result = json.dumps({ 'nonce': nonceb64, 'ciphertext': ciphertextb64, 'keystream': keystream_hex }) # print(result) # cipher = ChaCha20.new(key=key, nonce=nonce) # cipher.seek(0) # print(cipher.decrypt(ciphertext)) m = Module() m.submodules.chacha20 = chacha20 = ChaCha20Cipher(implementation) key_words = unpack("<8I", key) m.d.comb += [ chacha20.i_key[i].eq(key_words[i]) for i in range(len(key_words)) ] nonce_words = unpack("<3I", nonce) m.d.comb += [ chacha20.i_nonce[i].eq(nonce_words[i]) for i in range(len(nonce_words)) ] sim = Simulator(m) sim.add_clock(1e-6, domain="sync") def process(): ks = [] iterations = 0 yield chacha20.i_en.eq(1) yield for i in range(30 * 4): # Simulate until it'd finished iterations += 1 if (yield chacha20.o_ready) != 0: yield yield yield break yield for i in range(16): ks.append((yield chacha20.o_stream[i])) keystream_hdl = pack("<16I", *ks) print(f"Took {iterations} iterations") print("Keystream generated by simulation: ", hexlify(keystream_hdl)) print("Decryption using simulation: ", byte_xor(keystream_hdl, ciphertext)) self.assertEqual(keystream_hdl, keystream) self.assertEqual(plaintext, byte_xor(keystream_hdl, ciphertext)) sim.add_sync_process(process) with sim.write_vcd("test.vcd", "test.gtkw"): sim.run()
mem = { 0x0000: 0x5F, 0x1000: 0x12, 0x2000: 0x34, 0x1234: 0x5F, 0x1334: 0x00, 0x1434: 0x00, } with m.Switch(core.addr): for addr, data in mem.items(): with m.Case(addr): m.d.comb += core.dout.eq(data) with m.Default(): m.d.comb += core.dout.eq(0xFF) sim = Simulator(m) sim.add_clock(1e-6, domain="sync") def process(): yield yield yield yield yield yield yield yield yield yield yield yield
register_file_r.addr.eq(self.CPU.data_port.addr), self.CPU.data_port.r_data.eq(register_file_r.data), register_file_w.addr.eq(self.CPU.data_port.addr), register_file_w.data.eq(self.CPU.data_port.w_data), register_file_w.en.eq(self.CPU.data_port.w_en) ] return m if __name__ == "__main__": with open("infinite_helloworld.bf", "r") as f: m = Module() m.submodules.DUT = DUT = Sim_top(f, brainfuck_array_size=64) sim = Simulator(m) def process(): yield DUT.si_data.eq(ord("A")) yield DUT.si_valid.eq(0) yield DUT.so_ready.eq(0) for _ in range(3210): yield yield DUT.si_valid.eq(1) yield DUT.so_ready.eq(1) yield sim.add_clock(0.02083e-6, domain="sync") sim.add_sync_process(process) with sim.write_vcd("bf_tb.vcd", "bf_tb.gtkw"): sim.run_until(500e-5, run_passive=True)
yield from jtagPDI((0x4C, 1), (0xEB, 1)) yield yield from jtagPDI((0xCA, 0), (0xEB, 1)) yield yield from jtagPDI((0x01, 1), (0xEB, 1)) yield yield from jtagPDI((0x00, 0), (0xEB, 1)) yield yield from jtagPDI((0x01, 1), (0xEB, 1)) yield yield from jtagPDI((0x00, 0), (0xEB, 1)) yield yield yield yield sim = Simulator(subtarget) # Define the JTAG clock to have a period of 1/4MHz #sim.add_clock(250e-9, domain = 'jtag') sim.add_clock(2e-6, domain='jtag') # Define the system clock to have a period of 1/48MHz sim.add_clock(20.8e-9) sim.add_sync_process(benchSync, domain='sync') sim.add_sync_process(benchJTAG, domain='jtag') with sim.write_vcd('jtag_pdi-sniffer.vcd'): sim.reset() sim.run()
class LunaGatewareTestCase(unittest.TestCase): domain = 'sync' # Convenience property: if set, instantiate_dut will automatically create # the relevant fragment with FRAGMENT_ARGUMENTS. FRAGMENT_UNDER_TEST = None FRAGMENT_ARGUMENTS = {} # Convenience properties: if not None, a clock with the relevant frequency # will automatically be added. FAST_CLOCK_FREQUENCY = None SYNC_CLOCK_FREQUENCY = 120e6 USB_CLOCK_FREQUENCY = None SS_CLOCK_FREQUENCY = None def instantiate_dut(self): """ Basic-most function to instantiate a device-under-test. By default, instantiates FRAGMENT_UNDER_TEST. """ return self.FRAGMENT_UNDER_TEST(**self.FRAGMENT_ARGUMENTS) def get_vcd_name(self): """ Return the name to use for any VCDs generated by this class. """ return "test_{}".format(self.__class__.__name__) def setUp(self): self.dut = self.instantiate_dut() self.sim = Simulator(self.dut) if self.USB_CLOCK_FREQUENCY: self.sim.add_clock(1 / self.USB_CLOCK_FREQUENCY, domain="usb") if self.SYNC_CLOCK_FREQUENCY: self.sim.add_clock(1 / self.SYNC_CLOCK_FREQUENCY, domain="sync") if self.FAST_CLOCK_FREQUENCY: self.sim.add_clock(1 / self.FAST_CLOCK_FREQUENCY, domain="fast") if self.SS_CLOCK_FREQUENCY: self.sim.add_clock(1 / self.SS_CLOCK_FREQUENCY, domain="ss") def initialize_signals(self): """ Provide an opportunity for the test apparatus to initialize siganls. """ yield Signal() def traces_of_interest(self): """ Returns an interable of traces to include in any generated output. """ return () def simulate(self, *, vcd_suffix=None): """ Runs our core simulation. """ # If we're generating VCDs, run the test under a VCD writer. if os.getenv('GENERATE_VCDS', default=False): # Figure out the name of our VCD files... vcd_name = self.get_vcd_name() if vcd_suffix: vcd_name = "{}_{}".format(vcd_name, vcd_suffix) # ... and run the simulation while writing them. traces = self.traces_of_interest() with self.sim.write_vcd(vcd_name + ".vcd", vcd_name + ".gtkw", traces=traces): self.sim.run() else: self.sim.run() @staticmethod def pulse(signal, *, step_after=True): """ Helper method that asserts a signal for a cycle. """ yield signal.eq(1) yield yield signal.eq(0) if step_after: yield @staticmethod def advance_cycles(cycles): """ Helper methods that waits for a given number of cycles. """ for _ in range(cycles): yield @staticmethod def wait_until(strobe, *, timeout=None): """ Helper method that advances time until a strobe signal becomes true. """ cycles_passed = 0 while not (yield strobe): yield cycles_passed += 1 if timeout and cycles_passed > timeout: raise RuntimeError( f"Timeout waiting for '{strobe.name}' to go high!") def _ensure_clocks_present(self): """ Function that validates that a clock is present for our simulation domain. """ frequencies = { 'sync': self.SYNC_CLOCK_FREQUENCY, 'usb': self.USB_CLOCK_FREQUENCY, 'fast': self.FAST_CLOCK_FREQUENCY, 'ss': self.SS_CLOCK_FREQUENCY } self.assertIsNotNone( frequencies[self.domain], f"no frequency provied for `{self.domain}`-domain clock!") def wait(self, time): """ Helper method that waits for a given number of seconds in a *_test_case. """ # Figure out the period of the clock we want to work with... if self.domain == 'sync': period = 1 / self.SYNC_CLOCK_FREQUENCY elif self.domain == 'usb': period = 1 / self.USB_CLOCK_FREQUENCY elif self.domain == 'fast': period = 1 / self.FAST_CLOCK_FREQUENCY # ... and, accordingly, how many cycles we want to delay. cycles = math.ceil(time / period) print(cycles) # Finally, wait that many cycles. yield from self.advance_cycles(cycles)
from nmigen.back import verilog from nmigen.sim import Simulator from lfsr import Lfsr dut = Lfsr() def bench(): yield dut.en.eq(1) for _ in range(100): yield sim = Simulator(dut) sim.add_clock(1e-6) sim.add_sync_process(bench) with sim.write_vcd("lfsr.vcd"): sim.run() with open("lfsr.v", "w") as f: f.write(verilog.convert(dut, ports=[dut.out]))