Пример #1
0
def render_nusc_result(nusc, results, sample_token):
    from nuscenes.utils.data_classes import Box
    from pyquaternion import Quaternion
    annos = results[sample_token]
    sample = nusc.get("sample", sample_token)
    sd_rec = nusc.get('sample_data', sample['data']["LIDAR_TOP"])
    cs_record = nusc.get('calibrated_sensor',
                         sd_rec['calibrated_sensor_token'])
    pose_record = nusc.get('ego_pose', sd_rec['ego_pose_token'])
    boxes = []
    for anno in annos:
        rot = Quaternion(anno["rotation"])
        box = Box(anno["translation"],
                  anno["size"],
                  rot,
                  name=anno["detection_name"])
        box.translate(-np.array(pose_record['translation']))
        box.rotate(Quaternion(pose_record['rotation']).inverse)

        #  Move box to sensor coord system
        box.translate(-np.array(cs_record['translation']))
        box.rotate(Quaternion(cs_record['rotation']).inverse)

        boxes.append(box)
    nusc.explorer.render_sample_data(sample["data"]["LIDAR_TOP"],
                                     extern_boxes=boxes,
                                     nsweeps=10)
    nusc.explorer.render_sample_data(sample["data"]["LIDAR_TOP"], nsweeps=10)
Пример #2
0
    def box_nuscenes_to_kitti(box: Box, velo_to_cam_rot: Quaternion,
                              velo_to_cam_trans: np.ndarray,
                              r0_rect: Quaternion,
                              kitti_to_nu_lidar_inv: Quaternion = Quaternion(axis=(0, 0, 1), angle=np.pi / 2).inverse) \
            -> Box:
        """
        Transform from nuScenes lidar frame to KITTI reference frame.
        :param box: Instance in nuScenes lidar frame.
        :param velo_to_cam_rot: Quaternion to rotate from lidar to camera frame.
        :param velo_to_cam_trans: <np.float: 3>. Translate from lidar to camera frame.
        :param r0_rect: Quaternion to rectify camera frame.
        :param kitti_to_nu_lidar_inv: Quaternion to rotate nuScenes to KITTI LIDAR.
        :return: Box instance in KITTI reference frame.
        """
        # Copy box to avoid side-effects.
        box = box.copy()

        # Rotate to KITTI lidar.
        box.rotate(kitti_to_nu_lidar_inv)

        # Transform to KITTI camera.
        box.rotate(velo_to_cam_rot)
        box.translate(velo_to_cam_trans)

        # Rotate to KITTI rectified camera.
        box.rotate(r0_rect)

        # KITTI defines the box center as the bottom center of the object.
        # We use the true center, so we need to adjust half height in y direction.
        box.translate(np.array([0, box.wlh[2] / 2, 0]))

        return box
Пример #3
0
    def project_kitti_box_to_image(
            box: Box, p_left: np.ndarray,
            imsize: Tuple[int, int]) -> Tuple[int, int, int, int]:
        """
        Projects 3D box into KITTI image FOV.
        :param box: 3D box in KITTI reference frame.
        :param p_left: <np.float: 3, 4>. Projection matrix.
        :param imsize: (width , height). Image size.
        :return: (xmin, ymin, xmax, ymax). Bounding box in image plane.
        """

        # Create a new box.
        box = box.copy()

        # KITTI defines the box center as the bottom center of the object.
        # We use the true center, so we need to adjust half height in negative y direction.
        box.translate(np.array([0, -box.wlh[2] / 2, 0]))

        # Project corners to 2d to get bbox in pixel coords.
        corners = np.array(
            [corner for corner in box.corners().T if corner[2] > 0]).T
        imcorners = view_points(corners, p_left, normalize=True)[:2]
        bbox = (np.min(imcorners[0]), np.min(imcorners[1]),
                np.max(imcorners[0]), np.max(imcorners[1]))

        # Crop bbox to prevent it extending outside image
        bbox_crop = (max(0, bbox[0]), max(0, bbox[1]), min(imsize[0], bbox[2]),
                     min(imsize[1], bbox[3]))

        return bbox_crop
Пример #4
0
    def get_binimg(self, rec):
        egopose = self.nusc.get(
            'ego_pose',
            self.nusc.get('sample_data',
                          rec['data']['LIDAR_TOP'])['ego_pose_token'])
        trans = -np.array(egopose['translation'])
        rot = Quaternion(egopose['rotation']).inverse
        img = np.zeros((self.nx[0], self.nx[1]))
        for tok in rec['anns']:
            inst = self.nusc.get('sample_annotation', tok)
            # add category for lyft
            if not inst['category_name'].split('.')[0] == 'vehicle':
                continue
            box = Box(inst['translation'], inst['size'],
                      Quaternion(inst['rotation']))
            box.translate(trans)
            box.rotate(rot)

            pts = box.bottom_corners()[:2].T
            pts = np.round((pts - self.bx[:2] + self.dx[:2] / 2.) /
                           self.dx[:2]).astype(np.int32)
            pts[:, [1, 0]] = pts[:, [0, 1]]
            cv2.fillPoly(img, [pts], 1.0)

        return torch.Tensor(img).unsqueeze(0)
Пример #5
0
    def _get_poly_region_in_image(self, instance_annotation, ego_translation,
                                  ego_rotation):
        box = Box(instance_annotation['translation'],
                  instance_annotation['size'],
                  Quaternion(instance_annotation['rotation']))
        box.translate(ego_translation)
        box.rotate(ego_rotation)

        pts = box.bottom_corners()[:2].T
        pts = np.round(
            (pts - self.bev_start_position[:2] + self.bev_resolution[:2] / 2.0)
            / self.bev_resolution[:2]).astype(np.int32)
        pts[:, [1, 0]] = pts[:, [0, 1]]

        z = box.bottom_corners()[2, 0]
        return pts, z
Пример #6
0
    def project_kitti_box_to_image(
            box: Box, p_left: np.ndarray,
            imsize: Tuple[int, int]) -> Union[None, Tuple[int, int, int, int]]:
        """
        Projects 3D box into KITTI image FOV.
        :param box: 3D box in KITTI reference frame.
        :param p_left: <np.float: 3, 4>. Projection matrix.
        :param imsize: (width, height). Image size.
        :return: (xmin, ymin, xmax, ymax). Bounding box in image plane or None if box is not in the image.
        """

        # Create a new box.
        # box = box.copy()

        # KITTI defines the box center as the bottom center of the object.
        # We use the true center, so we need to adjust half height in negative y direction.
        box.translate(np.array([0, -box.wlh[2] / 2, 0]))

        # Check that some corners are inside the image.
        corners = np.array(
            [corner for corner in box.corners().T if corner[2] > 0]).T
        if len(corners) == 0:
            return None

        # Project corners that are in front of the camera to 2d to get bbox in pixel coords.
        imcorners = view_points(corners, p_left, normalize=True)[:2]
        bbox = (np.min(imcorners[0]), np.min(imcorners[1]),
                np.max(imcorners[0]), np.max(imcorners[1]))

        # Crop bbox to prevent it extending outside image.
        bbox_crop = tuple(max(0, b) for b in bbox)
        bbox_crop = (
            min(imsize[0], bbox_crop[0]),
            min(imsize[0], bbox_crop[1]),
            min(imsize[0], bbox_crop[2]),
            min(imsize[1], bbox_crop[3]),
        )

        # Detect if a cropped box is empty.
        if bbox_crop[0] >= bbox_crop[2] or bbox_crop[1] >= bbox_crop[3]:
            return None

        return bbox_crop
Пример #7
0
def get_boxes(nusc, rec):
    """Simplified version of nusc.get_boxes"""
    egopose = nusc.get(
        'ego_pose',
        nusc.get('sample_data', rec['data']['LIDAR_TOP'])['ego_pose_token'])
    trans = -np.array(egopose['translation'])
    rot = Quaternion(egopose['rotation']).inverse
    boxes = []
    for tok in rec['anns']:
        inst = nusc.get('sample_annotation', tok)

        box = Box(inst['translation'],
                  inst['size'],
                  Quaternion(inst['rotation']),
                  name=inst['category_name'])
        box.translate(trans)
        box.rotate(rot)

        boxes.append(box)

    return boxes
Пример #8
0
def boxes_to_sensor(boxes: List[Dict], pose_record: Dict, cs_record: Dict):
    """
    Map boxes from global coordinates to the vehicle's sensor coordinate system.
    :param boxes: The boxes in global coordinates.
    :param pose_record: The pose record of the vehicle at the current timestamp.
    :param cs_record: The calibrated sensor record of the sensor.
    :return: The transformed boxes.
    """
    boxes_out = []
    for box in boxes:
        # Create Box instance.
        box = Box(box['translation'], box['size'], Quaternion(box['rotation']))

        # Move box to ego vehicle coord system.
        box.translate(-np.array(pose_record['translation']))
        box.rotate(Quaternion(pose_record['rotation']).inverse)

        #  Move box to sensor coord system.
        box.translate(-np.array(cs_record['translation']))
        box.rotate(Quaternion(cs_record['rotation']).inverse)

        boxes_out.append(box)

    return boxes_out
Пример #9
0
    def convert_eval_format(self, results):
        ret = {
            'meta': {
                'use_camera': True,
                'use_lidar': False,
                'use_radar': self.opt.pointcloud,
                'use_map': False,
                'use_external': False
            },
            'results': {}
        }
        print('Converting nuscenes format...')
        for image_id in self.images:
            if not (image_id in results):
                continue
            image_info = self.coco.loadImgs(ids=[image_id])[0]
            sample_token = image_info['sample_token']
            trans_matrix = np.array(image_info['trans_matrix'], np.float32)
            velocity_mat = np.array(image_info['velocity_trans_matrix'],
                                    np.float32)
            sensor_id = image_info['sensor_id']
            sample_results = []
            for item in results[image_id]:
                class_name = self.class_name[int(item['class'] - 1)] \
                    if not ('detection_name' in item) else item['detection_name']
                if self.opt.tracking and class_name in self._tracking_ignored_class:
                    continue
                score = float(item['score']) if not (
                    'detection_score' in item) else item['detection_score']
                if 'size' in item:
                    size = item['size']
                else:
                    size = [float(item['dim'][1]), float(item['dim'][2]), \
                            float(item['dim'][0])]
                if 'translation' in item:
                    translation = item['translation']
                else:
                    translation = np.dot(
                        trans_matrix,
                        np.array([
                            item['loc'][0], item['loc'][1] - size[2],
                            item['loc'][2], 1
                        ], np.float32))

                det_id = item['det_id'] if 'det_id' in item else -1
                tracking_id = item[
                    'tracking_id'] if 'tracking_id' in item else 1

                if not ('rotation' in item):
                    rot_cam = Quaternion(axis=[0, 1, 0], angle=item['rot_y'])
                    loc = np.array(
                        [item['loc'][0], item['loc'][1], item['loc'][2]],
                        np.float32)
                    box = Box(loc, size, rot_cam, name='2', token='1')
                    box.translate(np.array([0, -box.wlh[2] / 2, 0]))
                    box.rotate(Quaternion(image_info['cs_record_rot']))
                    box.translate(np.array(image_info['cs_record_trans']))
                    box.rotate(Quaternion(image_info['pose_record_rot']))
                    box.translate(np.array(image_info['pose_record_trans']))
                    rotation = box.orientation
                    rotation = [float(rotation.w), float(rotation.x), \
                                float(rotation.y), float(rotation.z)]
                else:
                    rotation = item['rotation']

                nuscenes_att = np.array(item['nuscenes_att'], np.float32) \
                    if 'nuscenes_att' in item else np.zeros(8, np.float32)
                att = ''
                if class_name in self._cycles:
                    att = self.id_to_attribute[np.argmax(nuscenes_att[0:2]) +
                                               1]
                elif class_name in self._pedestrians:
                    att = self.id_to_attribute[np.argmax(nuscenes_att[2:5]) +
                                               3]
                elif class_name in self._vehicles:
                    att = self.id_to_attribute[np.argmax(nuscenes_att[5:8]) +
                                               6]
                if 'velocity' in item and len(item['velocity']) == 2:
                    velocity = item['velocity']
                else:
                    velocity = item['velocity'] if 'velocity' in item else [
                        0, 0, 0
                    ]

                    velocity = np.dot(
                        velocity_mat,
                        np.array([velocity[0], velocity[1], velocity[2], 0],
                                 np.float32))
                    # velocity = np.dot(trans_matrix, np.array(
                    #   [velocity[0], velocity[1], velocity[2], 0], np.float32))
                    velocity = [float(velocity[0]), float(velocity[1])]

                result = {
                    'sample_token': sample_token,
                    'translation': [float(translation[0]), float(translation[1]), \
                                    float(translation[2])],
                    'size': size,
                    'rotation': rotation,
                    'velocity': velocity,
                    'detection_name': class_name,
                    'attribute_name': att if not ('attribute_name' in item) else item['attribute_name'],
                    'detection_score': score,
                    'tracking_name': class_name,
                    'tracking_score': score,
                    'tracking_id': tracking_id,
                    'sensor_id': sensor_id,
                    'det_id': det_id}

                sample_results.append(result)
            if sample_token in ret['results']:
                ret['results'][sample_token] = ret['results'][
                    sample_token] + sample_results
            else:
                ret['results'][sample_token] = sample_results

        for sample_token in ret['results'].keys():
            confs = sorted([
                (-d['detection_score'], ind)
                for ind, d in enumerate(ret['results'][sample_token])
            ])
            ret['results'][sample_token] = [
                ret['results'][sample_token][ind]
                for _, ind in confs[:min(500, len(confs))]
            ]

        if self.opt.iou_thresh > 0:
            print("Applying BEV NMS...")
            n_removed = 0
            for sample_token, dets in tqdm(ret['results'].items()):
                ret['results'][sample_token], n = self.apply_bev_nms(
                    dets, self.opt.iou_thresh, dist_thresh=2)
                n_removed += n
            print("Removed {} detections with IOU > {}".format(
                n_removed, self.opt.iou_thresh))

        return ret
Пример #10
0
    def run(self, image_or_path_or_tensor, meta={}, image_info=None):
        load_time, pre_time, net_time, dec_time, post_time = 0, 0, 0, 0, 0
        merge_time, track_time, tot_time, display_time = 0, 0, 0, 0
        self.debugger.clear()
        start_time = time.time()

        # read image
        pre_processed = False
        if isinstance(image_or_path_or_tensor, np.ndarray):
            image = image_or_path_or_tensor
        elif type(image_or_path_or_tensor) == type(""):
            image = cv2.imread(image_or_path_or_tensor)
        else:
            image = image_or_path_or_tensor["image"][0].numpy()
            pre_processed_images = image_or_path_or_tensor
            pre_processed = True

        loaded_time = time.time()
        load_time += loaded_time - start_time

        detections = []

        # for multi-scale testing
        for scale in self.opt.test_scales:
            scale_start_time = time.time()
            if not pre_processed:
                # not prefetch testing or demo
                images, meta = self.pre_process(image, scale, meta)
            else:
                # prefetch testing
                images = pre_processed_images["images"][scale][0]
                meta = pre_processed_images["meta"][scale]
                meta = {k: v.numpy()[0] for k, v in meta.items()}
                if "pre_dets" in pre_processed_images["meta"]:
                    meta["pre_dets"] = pre_processed_images["meta"]["pre_dets"]
                if "cur_dets" in pre_processed_images["meta"]:
                    meta["cur_dets"] = pre_processed_images["meta"]["cur_dets"]

            images = images.to(self.opt.device,
                               non_blocking=self.opt.non_block_test)

            # initializing tracker
            pre_hms, pre_inds = None, None

            pre_process_time = time.time()
            pre_time += pre_process_time - scale_start_time

            # run the network
            # output: the output feature maps, only used for visualizing
            # dets: output tensors after extracting peaks
            output, dets, forward_time, FeatureMaps = self.process(
                images, self.pre_images, pre_hms, pre_inds, return_time=True)
            net_time += forward_time - pre_process_time
            decode_time = time.time()
            dec_time += decode_time - forward_time

            # convert the cropped and 4x downsampled output coordinate system
            # back to the input image coordinate system
            result = self.post_process(dets, meta, scale)
            post_process_time = time.time()
            post_time += post_process_time - decode_time

            detections.append(result)
            if self.opt.debug >= 2:
                self.debug(
                    self.debugger,
                    images,
                    result,
                    output,
                    scale,
                    pre_images=self.pre_images
                    if not self.opt.no_pre_img else None,
                    pre_hms=pre_hms,
                )

        # merge multi-scale testing results
        results = self.merge_outputs(detections)
        torch.cuda.synchronize()
        end_time = time.time()
        merge_time += end_time - post_process_time

        # public detection mode in MOT challenge
        if self.opt.public_det:
            results = (pre_processed_images["meta"]["cur_dets"]
                       if self.opt.public_det else None)

        if self.dataset == "nuscenes":
            trans_matrix = np.array(image_info["trans_matrix"], np.float32)

            results_by_class = {}
            ddd_boxes_by_class = {}
            depths_by_class = {}
            ddd_boxes_by_class2 = {}
            ddd_org_boxes_by_class = {}
            ddd_box_submission1 = {}
            ddd_box_submission2 = {}
            for class_name in NUSCENES_TRACKING_NAMES:
                results_by_class[class_name] = []
                ddd_boxes_by_class2[class_name] = []
                ddd_boxes_by_class[class_name] = []
                depths_by_class[class_name] = []
                ddd_org_boxes_by_class[class_name] = []
                ddd_box_submission1[class_name] = []
                ddd_box_submission2[class_name] = []
            for det in results:
                cls_id = int(det["class"])
                class_name = nuscenes_class_name[cls_id - 1]
                if class_name not in NUSCENES_TRACKING_NAMES:
                    continue

                if det["score"] < 0.3:
                    continue
                if class_name == "pedestrian" and det["score"] < 0.35:
                    continue
                results_by_class[class_name].append(det["bbox"].tolist() +
                                                    [det["score"]])
                size = [
                    float(det["dim"][1]),
                    float(det["dim"][2]),
                    float(det["dim"][0]),
                ]
                rot_cam = Quaternion(axis=[0, 1, 0], angle=det["rot_y"])
                translation_submission1 = np.dot(
                    trans_matrix,
                    np.array(
                        [
                            det["loc"][0], det["loc"][1] - size[2],
                            det["loc"][2], 1
                        ],
                        np.float32,
                    ),
                ).copy()

                loc = np.array([det["loc"][0], det["loc"][1], det["loc"][2]],
                               np.float32)
                depths_by_class[class_name].append([float(det["loc"][2])
                                                    ].copy())
                trans = [det["loc"][0], det["loc"][1], det["loc"][2]]

                ddd_org_boxes_by_class[class_name].append([
                    float(det["dim"][0]),
                    float(det["dim"][1]),
                    float(det["dim"][2])
                ] + trans + [det["rot_y"]])

                box = Box(loc, size, rot_cam, name="2", token="1")
                box.translate(np.array([0, -box.wlh[2] / 2, 0]))
                box.rotate(Quaternion(image_info["cs_record_rot"]))
                box.translate(np.array(image_info["cs_record_trans"]))
                box.rotate(Quaternion(image_info["pose_record_rot"]))
                box.translate(np.array(image_info["pose_record_trans"]))
                rotation = box.orientation
                rotation = [
                    float(rotation.w),
                    float(rotation.x),
                    float(rotation.y),
                    float(rotation.z),
                ]

                ddd_box_submission1[class_name].append([
                    float(translation_submission1[0]),
                    float(translation_submission1[1]),
                    float(translation_submission1[2]),
                ].copy() + size.copy() + rotation.copy())

                q = Quaternion(rotation)
                angle = q.angle if q.axis[2] > 0 else -q.angle

                ddd_boxes_by_class[class_name].append([
                    size[2],
                    size[0],
                    size[1],
                    box.center[0],
                    box.center[1],
                    box.center[2],
                    angle,
                ].copy())

            online_targets = []
            for class_name in NUSCENES_TRACKING_NAMES:
                if len(results_by_class[class_name]) > 0 and NMS:
                    boxess = torch.from_numpy(
                        np.array(results_by_class[class_name])[:, :4])
                    scoress = torch.from_numpy(
                        np.array(results_by_class[class_name])[:, -1])
                    if class_name == "bus" or class_name == "truck":
                        ovrlp = 0.7
                    else:
                        ovrlp = 0.8
                    keep, count = nms(boxess, scoress, overlap=ovrlp)

                    keep = keep.data.numpy().tolist()
                    keep = sorted(set(keep))
                    results_by_class[class_name] = np.array(
                        results_by_class[class_name])[keep]

                    ddd_boxes_by_class[class_name] = np.array(
                        ddd_boxes_by_class[class_name])[keep]
                    depths_by_class[class_name] = np.array(
                        depths_by_class[class_name])[keep]
                    ddd_org_boxes_by_class[class_name] = np.array(
                        ddd_org_boxes_by_class[class_name])[keep]
                    ddd_box_submission1[class_name] = np.array(
                        ddd_box_submission1[class_name])[keep]

                online_targets += self.tracker[class_name].update(
                    results_by_class[class_name],
                    FeatureMaps,
                    ddd_boxes=ddd_boxes_by_class[class_name],
                    depths_by_class=depths_by_class[class_name],
                    ddd_org_boxes=ddd_org_boxes_by_class[class_name],
                    submission=ddd_box_submission1[class_name],
                    classe=class_name,
                )

        else:

            online_targets = self.tracker.update(results, FeatureMaps)

        return online_targets
Пример #11
0
    def render(self, events: DataFrame, timestamp: int, frame_gt: List[TrackingBox], frame_pred: List[TrackingBox], points=None, pose_record=None, cs_record=None, ifplotgt=False,\
                threshold=0.1, ifpltsco=False, outscen_class=False,nusc=None, ifplthis=False, pltve=False) \
            -> None:
        """
        Render function for a given scene timestamp
        :param events: motmetrics events for that particular
        :param timestamp: timestamp for the rendering
        :param frame_gt: list of ground truth boxes
        :param frame_pred: list of prediction boxes
        """
        # Init.
        #print('Rendering {}'.format(timestamp))
        switches = events[events.Type == 'SWITCH']
        switch_ids = switches.HId.values  #对应frame_pred的tracking_id
        switch_gt_ids = switches.OId.values  #对应GT的tracking_id
        FN = events[events.Type == 'MISS']
        #FN = FN.HId.values
        FN = FN.OId.values  #对应GT的tracking_id
        FP = events[events.Type == 'FP']
        FP = FP.HId.values  #对应frame_pred的tracking_id

        fig, ax = plt.subplots()
        #plt.style.use('dark_background')         #  黑  背景颜色
        plt.style.use('classic')  #  白  背景颜色

        points.render_height(ax,
                             view=np.eye(4),
                             x_lim=(-50, 50),
                             y_lim=(-50, 50),
                             marker_size=0.1)  #BEV
        #points.render_height(ax, view=np.eye(4) )#BEV
        #points = points.rotate(Quaternion( pose_record["rotation"]).inverse)
        sam_anno = []
        if len(frame_gt) > 0:
            sample = nusc.get('sample', frame_gt[0].sample_token)
            sample_annotation_tokens = sample['anns']  #标注
            for anno_token in sample_annotation_tokens:
                sam_anno.append(
                    nusc.get('sample_annotation',
                             anno_token)["instance_token"])
        vislev = {'v0-40': 0, 'v40-60': 1, 'v60-80': 2, 'v80-100': 3}
        #points.render_intensity(ax)
        # Plot GT boxes.
        if ifplotgt:

            for i, b in enumerate(frame_gt):
                color = 'k'
                #qua = tuple(self.list_add(list(b.rotation),[0.924,0.0,0.0,0.383]))
                box = Box(np.array(b.ego_translation, dtype=float),
                          b.size,
                          Quaternion(b.rotation),
                          name=b.tracking_name,
                          token=b.tracking_id)
                #qua = tuple(self.list_add(list(pose_record["rotation"]),[ 0.831,0.0,0.0,0.556]))
                #box.translate(-np.array(pose_record["translation"]))
                box.rotate(Quaternion(pose_record["rotation"]).inverse)
                # move box to sensor coord system
                box.translate(-np.array(cs_record["translation"]))
                box.rotate(Quaternion(cs_record["rotation"]).inverse)
                if outscen_class:
                    #####TrackingRenderer.gt_ptsnumrange = {'0-5nums':0, '5-10nums':0, '10-50nums':0, '50-200nums':0, '>200nums': 0 }     #car lidar点云数
                    #####TrackingRenderer.gt_ptsnumrange =  {'0-5nums':0, '5-10nums':0, '10-20nums':0, '20-30nums':0, '>30nums': 0 }     #ped lidar点云数
                    num_pts = frame_gt[i].num_pts
                    #####car
                    if TrackingRenderer.outscen == 'car':
                        if num_pts > 0 and num_pts <= 5:
                            TrackingRenderer.gt_ptsnumrange['0-5nums'] += 1
                        elif num_pts > 5 and num_pts <= 10:
                            TrackingRenderer.gt_ptsnumrange['5-10nums'] += 1
                        elif num_pts > 10 and num_pts <= 50:
                            TrackingRenderer.gt_ptsnumrange['10-50nums'] += 1
                        elif num_pts > 50 and num_pts <= 200:
                            TrackingRenderer.gt_ptsnumrange['50-200nums'] += 1
                        elif num_pts > 200:
                            TrackingRenderer.gt_ptsnumrange['>200nums'] += 1
                    else:
                        ####ped
                        if num_pts > 0 and num_pts <= 5:
                            TrackingRenderer.gt_ptsnumrange['0-5nums'] += 1
                        elif num_pts > 5 and num_pts <= 10:
                            TrackingRenderer.gt_ptsnumrange['5-10nums'] += 1
                        elif num_pts > 10 and num_pts <= 20:
                            TrackingRenderer.gt_ptsnumrange['10-20nums'] += 1
                        elif num_pts > 20 and num_pts <= 30:
                            TrackingRenderer.gt_ptsnumrange['20-30nums'] += 1
                        elif num_pts > 30:
                            TrackingRenderer.gt_ptsnumrange['>30nums'] += 1
                    if box.token in FN:
                        #####distance
                        dis = math.sqrt(box.center[0]**2 + box.center[1]**2)
                        if dis > 0 and dis <= 15:
                            TrackingRenderer.fn_disrange[
                                '<15m'] = TrackingRenderer.fn_disrange[
                                    '<15m'] + 1
                        elif dis > 15 and dis <= 30:
                            TrackingRenderer.fn_disrange[
                                '15-30m'] = TrackingRenderer.fn_disrange[
                                    '15-30m'] + 1
                        elif dis > 30 and dis <= 45:
                            TrackingRenderer.fn_disrange[
                                '30-45m'] = TrackingRenderer.fn_disrange[
                                    '30-45m'] + 1
                        elif dis > 45 and dis <= 54:
                            TrackingRenderer.fn_disrange[
                                '45-54m'] = TrackingRenderer.fn_disrange[
                                    '45-54m'] + 1
                        else:
                            TrackingRenderer.fn_disrange[
                                '-1'] = TrackingRenderer.fn_disrange['-1'] + 1
                        #####ve TrackingRenderer.fn_verange = {'0-0.1m/s':0, '0.1-2.5m/s':0, '2.5-5m/s':0, '5-10m/s':0, '>10m/s': 0 }            #car 绝对速度
                        #####   TrackingRenderer.fn_verange = {'0-0.1m/s':0, '0.1-1.0m/s':0, '1.0-1.5m/s':0, '1.5-2m/s':0, '>2m/s': 0 }          #ped 绝对速度
                        ve = math.sqrt(frame_gt[i].velocity[0]**2 +
                                       frame_gt[i].velocity[1]**2)
                        if TrackingRenderer.outscen == 'car':
                            if ve > 0 and ve <= 0.1:
                                TrackingRenderer.fn_verange['0-0.1m/s'] += 1
                            elif ve > 0.1 and ve <= 2.5:
                                TrackingRenderer.fn_verange['0.1-2.5m/s'] += 1
                            elif ve > 2.5 and ve <= 5:
                                TrackingRenderer.fn_verange['2.5-5m/s'] += 1
                            elif ve > 5 and ve <= 10:
                                TrackingRenderer.fn_verange['5-10m/s'] += 1
                            else:
                                TrackingRenderer.fn_verange['>10m/s'] += 1
                        else:
                            if ve > 0 and ve <= 0.1:
                                TrackingRenderer.fn_verange['0-0.1m/s'] += 1
                            elif ve > 0.1 and ve <= 1.0:
                                TrackingRenderer.fn_verange['0.1-1.0m/s'] += 1
                            elif ve > 1.0 and ve <= 1.5:
                                TrackingRenderer.fn_verange['1.0-1.5m/s'] += 1
                            elif ve > 1.5 and ve <= 2:
                                TrackingRenderer.fn_verange['1.5-2m/s'] += 1
                            else:
                                TrackingRenderer.fn_verange['>2m/s'] += 1
                        #####num_pts TrackingRenderer.fn_ptsnumrange = {'0-5nums':0, '5-10nums':0, '10-50nums':0, '50-200nums':0, '>200nums': 0 }     #car lidar点云数 抽样参考比例:0.21 0.23 0.26,0.2,0.1
                        #############TrackingRenderer.fn_ptsnumrange = {'0-5nums':0, '5-10nums':0, '10-20nums':0, '20-30nums':0, '>30nums': 0 }      #ped lidar点云数
                        num_pts = frame_gt[i].num_pts
                        if TrackingRenderer.outscen == 'car':
                            if num_pts > 0 and num_pts <= 5:
                                TrackingRenderer.fn_ptsnumrange['0-5nums'] += 1
                            elif num_pts > 5 and num_pts <= 10:
                                TrackingRenderer.fn_ptsnumrange[
                                    '5-10nums'] += 1
                            elif num_pts > 10 and num_pts <= 50:
                                TrackingRenderer.fn_ptsnumrange[
                                    '10-50nums'] += 1
                            elif num_pts > 50 and num_pts <= 200:
                                TrackingRenderer.fn_ptsnumrange[
                                    '50-200nums'] += 1
                            elif num_pts > 200:
                                TrackingRenderer.fn_ptsnumrange[
                                    '>200nums'] += 1
                            else:
                                TrackingRenderer.fn_ptsnumrange['-1'] += 1
                        else:
                            if num_pts > 0 and num_pts <= 5:
                                TrackingRenderer.fn_ptsnumrange['0-5nums'] += 1
                            elif num_pts > 5 and num_pts <= 10:
                                TrackingRenderer.fn_ptsnumrange[
                                    '5-10nums'] += 1
                            elif num_pts > 10 and num_pts <= 20:
                                TrackingRenderer.fn_ptsnumrange[
                                    '10-20nums'] += 1
                            elif num_pts > 20 and num_pts <= 30:
                                TrackingRenderer.fn_ptsnumrange[
                                    '20-30nums'] += 1
                            elif num_pts > 200:
                                TrackingRenderer.fn_ptsnumrange['>30nums'] += 1
                            else:
                                TrackingRenderer.fn_ptsnumrange['-1'] += 1
                        ######读取
                        #sample = nusc.get('sample', frame_gt[i].sample_token)
                        #sample_annotation_tokens = sample['anns'] #标注
                        try:
                            ind = sam_anno.index(b.tracking_id)
                            sample_annotation = nusc.get(
                                'sample_annotation',
                                sample_annotation_tokens[ind])
                            ####TrackingRenderer.vis_ratio = {'0-0.4':0, '0.4-0.6':0,  '0.6-0.8':0, '0.8-1.0':0}                                 #相机视角  0-40%, 40-60%, 60-80% and 80-100%  The visibility of an instance is the fraction of annotation visible in all 6 images.
                            visibility = nusc.get(
                                'visibility',
                                sample_annotation['visibility_token'])
                            vis_level = vislev[visibility["level"]]
                            if vis_level == 0:
                                TrackingRenderer.vis_ratio['0-0.4'] += 1
                            elif vis_level == 1:
                                TrackingRenderer.vis_ratio['0.4-0.6'] += 1
                            elif vis_level == 2:
                                TrackingRenderer.vis_ratio['0.6-0.8'] += 1
                            elif vis_level == 3:
                                TrackingRenderer.vis_ratio['0.8-1.0'] += 1
                            ####TrackingRenderer.gt_ratio = {'ang_muta':0, 've_muta':0,  'aug_other':0, 've_other':0, 'firfn_trk':0, 'nonfirfn_trk':0}                            #仅包含与上一帧持续追踪的样本,角度和速度突变分别与other相并
                            pre_token = sample_annotation['prev']
                            if pre_token == '':  #仅作为first_FN
                                TrackingRenderer.gt_ratio['firfn_trk'] += 1

                            else:
                                TrackingRenderer.gt_ratio['nonfirfn_trk'] += 1
                                pre_annotation = nusc.get(
                                    'sample_annotation', pre_token)
                                vari_ang = abs(
                                    R.from_quat(list(frame_gt[i].rotation)).
                                    as_euler('zxy', degrees=False)[0] -
                                    R.from_quat(
                                        list(pre_annotation['rotation'])
                                    ).as_euler('zxy', degrees=False)[0])
                                if vari_ang > 0.52:  #30度
                                    TrackingRenderer.gt_ratio['angvar>30'] += 1
                                elif 0.52 > vari_ang and vari_ang > 0.35:
                                    TrackingRenderer.gt_ratio[
                                        '30>angvar>20'] += 1
                                elif 0.35 > vari_ang and vari_ang > 0.17:
                                    TrackingRenderer.gt_ratio[
                                        '20>angvar>10'] += 1
                                elif vari_ang < 0.17:
                                    TrackingRenderer.gt_ratio['10>angvar'] += 1
                                else:
                                    pass
                                pre_ve = nusc.box_velocity(
                                    pre_annotation['token'])
                                ve_varity = abs(ve - math.sqrt(pre_ve[0]**2 +
                                                               pre_ve[1]**2))
                                if ve_varity > TrackingRenderer.mutave_thr[0]:
                                    TrackingRenderer.gt_ratio[
                                        'vevari>%s' %
                                        (TrackingRenderer.mutave_thr[0])] += 1
                                elif ve_varity < TrackingRenderer.mutave_thr[
                                        0] and ve_varity >= TrackingRenderer.mutave_thr[
                                            1]:
                                    TrackingRenderer.gt_ratio[
                                        '%s<vevari<%s' %
                                        (TrackingRenderer.mutave_thr[1],
                                         TrackingRenderer.mutave_thr[0])] += 1
                                elif ve_varity < TrackingRenderer.mutave_thr[
                                        1] and ve_varity >= TrackingRenderer.mutave_thr[
                                            2]:
                                    TrackingRenderer.gt_ratio[
                                        '%s<vevari<%s' %
                                        (TrackingRenderer.mutave_thr[2],
                                         TrackingRenderer.mutave_thr[1])] += 1
                                else:
                                    TrackingRenderer.gt_ratio[
                                        'vevari<%s' %
                                        TrackingRenderer.mutave_thr[2]] += 1
                        except ValueError:  #标注错误
                            TrackingRenderer.fault_datas += 1
                box.render(ax,
                           view=np.eye(4),
                           colors=(color, color, color),
                           linewidth=1)
        else:
            pass

        # Plot predicted boxes.
        pred_trackid = []
        for i, b in enumerate(frame_pred):
            box = Box(
                b.ego_translation,
                b.size,
                Quaternion(b.rotation),
                name=b.tracking_name,
                token=b.tracking_id,
                score=b.tracking_score,
            )

            # move box to ego vehicle coord system  before has done the translation
            box.rotate(Quaternion(pose_record["rotation"]).inverse)
            # move box to sensor coord system
            box.translate(-np.array(cs_record["translation"]))
            box.rotate(Quaternion(cs_record["rotation"]).inverse)
            pred_trackid.append(b.tracking_id)
            if outscen_class:
                if b.tracking_id in FP:
                    #####distance  TrackingRenderer.fp_disrange = {'<15m':0, '15-30m':0, '30-45m':0, '45-54m':0}
                    dis = math.sqrt(box.center[0]**2 + box.center[1]**2)
                    if dis > 0 and dis <= 15:
                        TrackingRenderer.fp_disrange[
                            '<15m'] = TrackingRenderer.fp_disrange['<15m'] + 1
                    elif dis > 15 and dis <= 30:
                        TrackingRenderer.fp_disrange[
                            '15-30m'] = TrackingRenderer.fp_disrange[
                                '15-30m'] + 1
                    elif dis > 30 and dis <= 45:
                        TrackingRenderer.fp_disrange[
                            '30-45m'] = TrackingRenderer.fp_disrange[
                                '30-45m'] + 1
                    elif dis > 45 and dis <= 54:
                        TrackingRenderer.fp_disrange[
                            '45-54m'] = TrackingRenderer.fp_disrange[
                                '45-54m'] + 1
                    else:
                        TrackingRenderer.fp_disrange[
                            '-1'] = TrackingRenderer.fp_disrange['-1'] + 1
                    #####ve TrackingRenderer.fp_verange = {'0-0.1m/s':0, '0.1-2.5m/s':0, '2.5-5m/s':0, '5-10m/s':0, '>10m/s': 0 }            #car 绝对速度
                    #####TrackingRenderer.fp_verange = {'0-0.1m/s':0, '0.1-1.0m/s':0, '1.0-1.5m/s':0, '1.5-2m/s':0, '>2m/s': 0 }         #ped 绝对速度
                    ve = math.sqrt(frame_pred[i].velocity[0]**2 +
                                   frame_pred[i].velocity[1]**2)
                    if TrackingRenderer.outscen == 'car':
                        if ve > 0 and ve <= 0.1:
                            TrackingRenderer.fp_verange['0-0.1m/s'] += 1
                        elif ve > 0.1 and ve <= 2.5:
                            TrackingRenderer.fp_verange['0.1-2.5m/s'] += 1
                        elif ve > 2.5 and ve <= 5:
                            TrackingRenderer.fp_verange['2.5-5m/s'] += 1
                        elif ve > 5 and ve <= 10:
                            TrackingRenderer.fp_verange['5-10m/s'] += 1
                        else:
                            TrackingRenderer.fp_verange['>10m/s'] += 1
                    else:
                        if ve > 0 and ve <= 0.1:
                            TrackingRenderer.fp_verange['0-0.1m/s'] += 1
                        elif ve > 0.1 and ve <= 1.0:
                            TrackingRenderer.fp_verange['0.1-1.0m/s'] += 1
                        elif ve > 1.0 and ve <= 1.5:
                            TrackingRenderer.fp_verange['1.0-1.5m/s'] += 1
                        elif ve > 1.5 and ve <= 2:
                            TrackingRenderer.fp_verange['1.5-2m/s'] += 1
                        else:
                            TrackingRenderer.fp_verange['>2m/s'] += 1
                    #####num_pts TrackingRenderer.fp_ptsnumrange = {'0-5nums':0, '5-10nums':0, '10-50nums':0, '50-200nums':0, '>200nums': 0 }     #car lidar点云数 抽样参考比例:0.21 0.23 0.26,0.2,0.1
                    ########## TrackingRenderer.fp_ptsnumrange =  {'0-5nums':0, '5-10nums':0, '10-20nums':0, '20-30nums':0, '>30nums': 0 }     #ped lidar点云数
                    points_xyzr = np.stack(points.points, 1)
                    points_xyz = points_xyzr[:, :3]

                    points_mask = points_in_box(box, points.points[:3])
                    mask_indx = np.arange(points_mask.shape[0])
                    mask_indx = mask_indx[points_mask]
                    num_pts = mask_indx.shape[0]
                    if TrackingRenderer.outscen == 'car':
                        if num_pts > 0 and num_pts <= 5:
                            TrackingRenderer.fp_ptsnumrange['0-5nums'] += 1
                        elif num_pts > 5 and num_pts <= 10:
                            TrackingRenderer.fp_ptsnumrange['5-10nums'] += 1
                        elif num_pts > 10 and num_pts <= 50:
                            TrackingRenderer.fp_ptsnumrange['10-50nums'] += 1
                        elif num_pts > 50 and num_pts <= 200:
                            TrackingRenderer.fp_ptsnumrange['50-200nums'] += 1
                        elif num_pts > 200:
                            TrackingRenderer.fp_ptsnumrange['>200nums'] += 1
                    else:
                        if num_pts > 0 and num_pts <= 5:
                            TrackingRenderer.fp_ptsnumrange['0-5nums'] += 1
                        elif num_pts > 5 and num_pts <= 10:
                            TrackingRenderer.fp_ptsnumrange['5-10nums'] += 1
                        elif num_pts > 10 and num_pts <= 20:
                            TrackingRenderer.fp_ptsnumrange['10-20nums'] += 1
                        elif num_pts > 20 and num_pts <= 30:
                            TrackingRenderer.fp_ptsnumrange['20-30nums'] += 1
                        elif num_pts > 30:
                            TrackingRenderer.fp_ptsnumrange['>30nums'] += 1
                    #####TrackingRenderer.fpscorrange = {'0-0.1':0, '0.2-0.4':0, '0.4-0.6':0,'0.6-1.0':0}
                    score = box.score
                    if score >= 0 and score <= 0.1:
                        TrackingRenderer.fpscorrange['0-0.1'] += 1
                    if score >= 0.2 and score <= 0.4:
                        TrackingRenderer.fpscorrange['0.2-0.4'] += 1
                    if score >= 0.4 and score <= 0.6:
                        TrackingRenderer.fpscorrange['0.4-0.6'] += 1
                    if score >= 0.6 and score <= 1.0:
                        TrackingRenderer.fpscorrange['0.6-1.0'] += 1
                    #####TrackingRenderer.trk_ratio = {'ang_muta':0, 've_muta':0, 'aug_other':0, 've_other':0}                            #仅包含与上一帧持续追踪的样本,角度和速度突变分别与other相并
                    if box.token in TrackingRenderer.his_trackid:
                        pre_box = TrackingRenderer.his_track[
                            TrackingRenderer.his_trackid.index(box.token)]
                        vari_ang = abs(
                            (R.from_quat(list(frame_pred[i].rotation)).
                             as_euler('zxy', degrees=False)[0]) -
                            (R.from_quat(list(pre_box.rotation)).as_euler(
                                'zxy', degrees=False)[0]))
                        if vari_ang > 0.52:  #30度
                            TrackingRenderer.trk_ratio['angvar>30'] += 1
                        elif 0.52 > vari_ang > 0.35:
                            TrackingRenderer.trk_ratio['30>angvar>20'] += 1
                        elif 0.35 > vari_ang > 0.17:
                            TrackingRenderer.trk_ratio['20>angvar>10'] += 1
                        elif vari_ang < 0.17:
                            TrackingRenderer.trk_ratio['10>angvar'] += 1
                        pre_ve = pre_box.velocity
                        ve = frame_pred[i].velocity
                        ve_varity = abs(
                            math.sqrt(ve[0]**2 + ve[1]**2) -
                            math.sqrt(pre_ve[0]**2 + pre_ve[1]**2))
                        if ve_varity > TrackingRenderer.mutave_thr[
                                0]:  # car均匀加速度为2.778m/s^2  3*0.5s=1.5
                            TrackingRenderer.trk_ratio[
                                'vevari>%s' %
                                TrackingRenderer.mutave_thr[0]] += 1
                        elif ve_varity < TrackingRenderer.mutave_thr[
                                0] and ve_varity >= TrackingRenderer.mutave_thr[
                                    1]:
                            TrackingRenderer.trk_ratio[
                                '%s<vevari<%s' %
                                (TrackingRenderer.mutave_thr[1],
                                 TrackingRenderer.mutave_thr[0])] += 1
                        elif ve_varity < TrackingRenderer.mutave_thr[
                                1] and ve_varity >= TrackingRenderer.mutave_thr[
                                    2]:
                            TrackingRenderer.trk_ratio[
                                '%s<vevari<%s' %
                                (TrackingRenderer.mutave_thr[2],
                                 TrackingRenderer.mutave_thr[1])] += 1
                        else:
                            TrackingRenderer.trk_ratio[
                                'vevari<%s' %
                                TrackingRenderer.mutave_thr[2]] += 1

            # Determine color for this tracking id.
            if b.tracking_id not in self.id2color.keys():
                self.id2color[b.tracking_id] = (
                    float(hash(b.tracking_id + 'r') % 256) / 255,
                    float(hash(b.tracking_id + 'g') % 256) / 255,
                    float(hash(b.tracking_id + 'b') % 256) / 255)

            if ifplthis:
                box_for_path = copy.deepcopy(box)
                box_for_path.rotate(Quaternion(cs_record["rotation"]))
                box_for_path.translate(np.array(cs_record["translation"]))

                box_for_path.rotate(Quaternion(pose_record["rotation"]))
                box_for_path.translate(np.array(
                    pose_record["translation"]))  #到全局
                # 记录轨迹坐标
                if b.tracking_id in self.track_path.keys():
                    self.track_path[b.tracking_id].append(box_for_path)
                else:
                    self.track_path[b.tracking_id] = [box_for_path]

            # Render box. Highlight identity switches in red.
            if b.tracking_id in switch_ids:
                color = self.id2color[b.tracking_id]
                box.render(ax, view=np.eye(4), colors=('r', 'r', color))
                if outscen_class:
                    ###TrackingRenderer.ids_verange = {'0-0.1m/s':0, '0.1-2.5m/s':0, '2.5-5m/s':0, '5-10m/s':0, '>10m/s': 0 }           #car 绝对速度
                    ###TrackingRenderer.ids_verange = {'0-0.1m/s':0, '0.1-1.0m/s':0, '1.0-1.5m/s':0, '1.5-2m/s':0, '>2m/s': 0 }        #ped 绝对速度
                    ve = math.sqrt(frame_pred[i].velocity[0]**2 +
                                   frame_pred[i].velocity[1]**2)
                    if TrackingRenderer.outscen == 'car':
                        if ve > 0 and ve <= 0.1:
                            TrackingRenderer.ids_verange['0-0.1m/s'] += 1
                        elif ve > 0.1 and ve <= 2.5:
                            TrackingRenderer.ids_verange['0.1-2.5m/s'] += 1
                        elif ve > 2.5 and ve <= 5:
                            TrackingRenderer.ids_verange['2.5-5m/s'] += 1
                        elif ve > 5 and ve <= 10:
                            TrackingRenderer.ids_verange['5-10m/s'] += 1
                        else:
                            TrackingRenderer.ids_verange['>10m/s'] += 1
                    else:
                        if ve > 0 and ve <= 0.1:
                            TrackingRenderer.ids_verange['0-0.1m/s'] += 1
                        elif ve > 0.1 and ve <= 1.0:
                            TrackingRenderer.ids_verange['0.1-1.0m/s'] += 1
                        elif ve > 1.0 and ve <= 1.5:
                            TrackingRenderer.ids_verange['1.0-1.5m/s'] += 1
                        elif ve > 1.5 and ve <= 2:
                            TrackingRenderer.ids_verange['1.5-2m/s'] += 1
                        else:
                            TrackingRenderer.ids_verange['>2m/s'] += 1
                    ####TrackingRenderer.ids_factratio = {'delay_trk':0, 'del_oth_trk':0, 'reappear':0, 'reapother':0, 've_muta':0, 've_other':0, 'reapdeltrk':0 }
                    indx = np.where(switch_ids == b.tracking_id)
                    gt_id = switch_gt_ids[indx]
                    try:
                        x = sam_anno.index(gt_id)
                        #sample = nusc.get('sample', frame_gt[x].sample_token)
                        #sample_annotation_tokens = sample['anns'] #标注
                        sample_annotation = nusc.get(
                            'sample_annotation', sample_annotation_tokens[x])
                        if sample_annotation['prev'] == '':  #参考意义不大
                            TrackingRenderer.ids_factratio['del_oth_trk'] += 1
                        else:
                            TrackingRenderer.ids_factratio['delay_trk'] += 1
                            visibility = nusc.get(
                                'visibility',
                                sample_annotation['visibility_token'])
                            vis_level = vislev[visibility["level"]]
                            pre_annotation = nusc.get(
                                "sample_annotation", sample_annotation['prev'])
                            pre_vis = nusc.get(
                                'visibility',
                                pre_annotation['visibility_token'])
                            pre_vislevel = vislev[pre_vis["level"]]
                            if vis_level > pre_vislevel or (vis_level
                                                            == pre_vislevel
                                                            and vis_level < 3):
                                TrackingRenderer.ids_factratio['reappear'] += 1
                            elif vis_level == pre_vislevel:
                                TrackingRenderer.ids_factratio[
                                    'reapdeltrk'] += 1
                            else:
                                TrackingRenderer.ids_factratio[
                                    'reapother'] += 1
                            pre_ve = nusc.box_velocity(pre_annotation['token'])
                            ve = nusc.box_velocity(sample_annotation['token'])
                            ve_varity = abs(
                                math.sqrt(ve[0]**2 + ve[1]**2) -
                                math.sqrt(pre_ve[0]**2 + pre_ve[1]**2))
                            if ve_varity > TrackingRenderer.mutave_thr[
                                    0]:  # car均匀加速度为2.778m/s^2  3*0.5s=1.5
                                TrackingRenderer.ids_factratio[
                                    'vevari>%s' %
                                    (TrackingRenderer.mutave_thr[0])] += 1
                            elif ve_varity < TrackingRenderer.mutave_thr[
                                    0] and ve_varity >= TrackingRenderer.mutave_thr[
                                        1]:
                                TrackingRenderer.ids_factratio[
                                    '%s<vevari<%s' %
                                    (TrackingRenderer.mutave_thr[1],
                                     TrackingRenderer.mutave_thr[0])] += 1
                            elif ve_varity < TrackingRenderer.mutave_thr[
                                    1] and ve_varity >= TrackingRenderer.mutave_thr[
                                        2]:
                                TrackingRenderer.ids_factratio[
                                    '%s<vevari<%s' %
                                    (TrackingRenderer.mutave_thr[2],
                                     TrackingRenderer.mutave_thr[1])] += 1
                            else:
                                TrackingRenderer.ids_factratio[
                                    'vevari<%s' %
                                    TrackingRenderer.mutave_thr[2]] += 1
                    except:  #标注错误
                        pass
            else:
                color = self.id2color[b.tracking_id]
                box.render(ax, view=np.eye(4), colors=(color, color, color))

            # Render other infos
            if ifpltsco:
                corners = view_points(box.corners(),
                                      view=np.eye(4),
                                      normalize=False)[:2, :]

                # ax.text(4,5,"hhaa0.8", fontsize=5)
                # ax.text(4,5,"%.2f\n%.2f,%.2f"%(b.tracking_score,b.velocity[0],b.velocity[1]), fontsize=5)

                ax.text(box.center[0],
                        box.center[1],
                        "%.2f\nvx=%.2f,vy=%.2f" %
                        (b.tracking_score, b.velocity[0], b.velocity[1]),
                        fontdict={
                            'size': '6',
                            'color': 'b'
                        })
                #ax.text(box.center[0],box.center[1],"%.2f\n%.2f,%.2f"%(b.tracking_score,b.velocity[0],b.velocity[1]), fontsize=5)
            #if pltve:

        #删去当前帧多余轨迹线
        keys = list(self.track_path.keys())
        for key in keys:
            if key not in pred_trackid:
                self.track_path.pop(key)
        # 画历史轨迹线:
        if ifplthis:
            for id in self.track_path.keys():
                color = self.id2color[id]
                for box_path in self.track_path[id]:
                    #转到当前帧局部
                    # move box to ego vehicle coord system  before has done the translation
                    box_path.translate(-np.array(pose_record["translation"]))
                    box_path.rotate(
                        Quaternion(pose_record["rotation"]).inverse)
                    # move box to sensor coord system
                    box_path.translate(-np.array(cs_record["translation"]))
                    box_path.rotate(Quaternion(cs_record["rotation"]).inverse)

                    ax.scatter(box_path.center[0], box_path.center[1], 10,
                               color)
                    #转回全局
                    box_path.rotate(Quaternion(cs_record["rotation"]))
                    box_path.translate(np.array(cs_record["translation"]))

                    box_path.rotate(Quaternion(pose_record["rotation"]))
                    box_path.translate(np.array(pose_record["translation"]))

        TrackingRenderer.his_track = frame_pred
        TrackingRenderer.his_trackid = pred_trackid
        # Plot MOTA metrics. ly
        # 目标位置 左上角,距离 Y 轴 0.01 倍距离,距离 X 轴 0.95倍距离
        self.cursumfp += len(FP)  #当前场景累积值
        self.cursumfn += len(FN)

        #print("FN=%d,FP=%d,switch_ids=%d,cursumfp=%d,cursumfn=%d" % ( len(FN), len(FP), len(switch_ids), self.cursumfp, self.cursumfn ))
        #ax.text(0.01, 0.95, "IDS:%d\nFP:%d\nFN:%d\ncur_sce sumfp:%d sumfn:%d\nthreshold:%f"%(len(switch_ids),len(FP),len(FN),self.cursumfp,self.cursumfn,threshold), transform=ax.transAxes, fontdict={'size': '10', 'color': 'b'})

        # Plot ego pose.
        plt.scatter(0, 0, s=96, facecolors='none', edgecolors='k', marker='o')
        plt.xlim(-50, 50)
        plt.ylim(-50, 50)
        plt.axis('off')
        # Save to disk and close figure.
        fig.savefig(os.path.join(self.save_path, '{}.png'.format(timestamp)))
        plt.close(fig)
Пример #12
0
    def convert_eval_format(self, results):
        from nuscenes.utils.data_classes import Box

        ret = {
            "meta": {
                "use_camera": True,
                "use_lidar": False,
                "use_radar": False,
                "use_map": False,
                "use_external": False,
            },
            "results": {},
        }
        print("Converting nuscenes format...")
        for image_id in self.images:
            if not (image_id in results):
                continue
            image_info = self.coco.loadImgs(ids=[image_id])[0]
            sample_token = image_info["sample_token"]
            trans_matrix = np.array(image_info["trans_matrix"], np.float32)
            sensor_id = image_info["sensor_id"]
            sample_results = []
            for item in results[image_id]:
                class_name = (
                    self.class_name[int(item["class"] - 1)]
                    if not ("detection_name" in item)
                    else item["detection_name"]
                )
                if self.opt.tracking and class_name in self._tracking_ignored_class:
                    continue
                score = (
                    float(item["score"])
                    if not ("detection_score" in item)
                    else item["detection_score"]
                )
                if "size" in item:
                    size = item["size"]
                else:
                    size = [
                        float(item["dim"][1]),
                        float(item["dim"][2]),
                        float(item["dim"][0]),
                    ]
                if "translation" in item:
                    translation = item["translation"]
                else:
                    translation = np.dot(
                        trans_matrix,
                        np.array(
                            [
                                item["loc"][0],
                                item["loc"][1] - size[2],
                                item["loc"][2],
                                1,
                            ],
                            np.float32,
                        ),
                    )

                det_id = item["det_id"] if "det_id" in item else -1
                tracking_id = item["tracking_id"] if "tracking_id" in item else 1

                if not ("rotation" in item):
                    rot_cam = Quaternion(axis=[0, 1, 0], angle=item["rot_y"])
                    loc = np.array(
                        [item["loc"][0], item["loc"][1], item["loc"][2]], np.float32
                    )
                    box = Box(loc, size, rot_cam, name="2", token="1")
                    box.translate(np.array([0, -box.wlh[2] / 2, 0]))
                    box.rotate(Quaternion(image_info["cs_record_rot"]))
                    box.translate(np.array(image_info["cs_record_trans"]))
                    box.rotate(Quaternion(image_info["pose_record_rot"]))
                    box.translate(np.array(image_info["pose_record_trans"]))
                    rotation = box.orientation
                    rotation = [
                        float(rotation.w),
                        float(rotation.x),
                        float(rotation.y),
                        float(rotation.z),
                    ]
                else:
                    rotation = item["rotation"]

                nuscenes_att = (
                    np.array(item["nuscenes_att"], np.float32)
                    if "nuscenes_att" in item
                    else np.zeros(8, np.float32)
                )
                att = ""
                if class_name in self._cycles:
                    att = self.id_to_attribute[np.argmax(nuscenes_att[0:2]) + 1]
                elif class_name in self._pedestrians:
                    att = self.id_to_attribute[np.argmax(nuscenes_att[2:5]) + 3]
                elif class_name in self._vehicles:
                    att = self.id_to_attribute[np.argmax(nuscenes_att[5:8]) + 6]
                if "velocity" in item and len(item["velocity"]) == 2:
                    velocity = item["velocity"]
                else:
                    velocity = item["velocity"] if "velocity" in item else [0, 0, 0]
                    velocity = np.dot(
                        trans_matrix,
                        np.array(
                            [velocity[0], velocity[1], velocity[2], 0], np.float32
                        ),
                    )
                    velocity = [float(velocity[0]), float(velocity[1])]
                result = {
                    "sample_token": sample_token,
                    "translation": [
                        float(translation[0]),
                        float(translation[1]),
                        float(translation[2]),
                    ],
                    "size": size,
                    "rotation": rotation,
                    "velocity": velocity,
                    "detection_name": class_name,
                    "attribute_name": att
                    if not ("attribute_name" in item)
                    else item["attribute_name"],
                    "detection_score": score,
                    "tracking_name": class_name,
                    "tracking_score": score,
                    "tracking_id": tracking_id,
                    "sensor_id": sensor_id,
                    "det_id": det_id,
                }

                sample_results.append(result)
            if sample_token in ret["results"]:
                ret["results"][sample_token] = (
                    ret["results"][sample_token] + sample_results
                )
            else:
                ret["results"][sample_token] = sample_results

        for sample_token in ret["results"].keys():
            confs = sorted(
                [
                    (-d["detection_score"], ind)
                    for ind, d in enumerate(ret["results"][sample_token])
                ]
            )
            ret["results"][sample_token] = [
                ret["results"][sample_token][ind]
                for _, ind in confs[: min(500, len(confs))]
            ]

        return ret
Пример #13
0
    def get_boxes(self,
                  token: str,
                  filter_classes: List[str] = None,
                  max_dist: float = None) -> List[Box]:
        """
        Load up all the boxes associated with a sample.
        Boxes are in nuScenes lidar frame.
        :param token: KittiDB unique id.
        :param filter_classes: List of Kitti classes to use or None to use all.
        :param max_dist: Maximum distance in m to still draw a box.
        :return: Boxes in nuScenes lidar reference frame.
        """
        # Get transforms for this sample
        transforms = self.get_transforms(token, root=self.root)

        boxes = []
        if token.startswith('test_'):
            # No boxes to return for the test set.
            return boxes

        with open(KittiDB.get_filepath(token, 'label_2', root=self.root),
                  'r') as f:
            for line in f:
                # Parse this line into box information.
                parsed_line = self.parse_label_line(line)

                if parsed_line['name'] in {'DontCare', 'Misc'}:
                    continue

                center = parsed_line['xyz_camera']
                wlh = parsed_line['wlh']
                yaw_camera = parsed_line['yaw_camera']
                name = parsed_line['name']
                score = parsed_line['score']

                # Optional: Filter classes.
                if filter_classes is not None and name not in filter_classes:
                    continue

                # The Box class coord system is oriented the same way as as KITTI LIDAR: x forward, y left, z up.
                # For orientation confer: http://www.cvlibs.net/datasets/kitti/setup.php.

                # 1: Create box in Box coordinate system with center at origin.
                # The second quaternion in yaw_box transforms the coordinate frame from the object frame
                # to KITTI camera frame. The equivalent cannot be naively done afterwards, as it's a rotation
                # around the local object coordinate frame, rather than the camera frame.
                quat_box = Quaternion(axis=(0, 1, 0),
                                      angle=yaw_camera) * Quaternion(
                                          axis=(1, 0, 0), angle=np.pi / 2)
                box = Box([0.0, 0.0, 0.0], wlh, quat_box, name=name)

                # 2: Translate: KITTI defines the box center as the bottom center of the vehicle. We use true center,
                # so we need to add half height in negative y direction, (since y points downwards), to adjust. The
                # center is already given in camera coord system.
                box.translate(center + np.array([0, -wlh[2] / 2, 0]))

                # 3: Transform to KITTI LIDAR coord system. First transform from rectified camera to camera, then
                # camera to KITTI lidar.
                box.rotate(Quaternion(matrix=transforms['r0_rect']).inverse)
                box.translate(-transforms['velo_to_cam']['T'])
                box.rotate(
                    Quaternion(matrix=transforms['velo_to_cam']['R']).inverse)

                # 4: Transform to nuScenes LIDAR coord system.
                box.rotate(self.kitti_to_nu_lidar)

                # Set score or NaN.
                box.score = score

                # Set dummy velocity.
                box.velocity = np.array((0.0, 0.0, 0.0))

                # Optional: Filter by max_dist
                if max_dist is not None:
                    dist = np.sqrt(np.sum(box.center[:2]**2))
                    if dist > max_dist:
                        continue

                boxes.append(box)

        return boxes
Пример #14
0
    def get_binimg(self, rec):
        egopose = self.nusc.get(
            'ego_pose',
            self.nusc.get('sample_data',
                          rec['data']['LIDAR_TOP'])['ego_pose_token'])
        trans = -np.array(egopose['translation'])
        rot = Quaternion(egopose['rotation']).inverse

        #vehicle label
        img_vehicle = np.zeros((self.nx[0], self.nx[1]))
        for tok in rec['anns']:
            inst = self.nusc.get('sample_annotation', tok)
            # add category for lyft
            if not inst['category_name'].split('.')[0] == 'vehicle':
                continue
            box = Box(inst['translation'], inst['size'],
                      Quaternion(inst['rotation']))
            box.translate(trans)
            box.rotate(rot)
            pts = box.bottom_corners()[:2].T
            pts = np.round((pts - self.bx[:2] + self.dx[:2] / 2.) /
                           self.dx[:2]).astype(np.int32)
            pts[:, [1, 0]] = pts[:, [0, 1]]
            cv2.fillPoly(img_vehicle, [pts], 1.0)

        # cv2.imwrite('./output/vehicle{}.png'.format(rec['timestamp']),img_vehicle*255)

        #map label
        map_name = self.scene2map[self.nusc.get('scene',
                                                rec['scene_token'])['name']]
        rot_map = Quaternion(egopose['rotation']).rotation_matrix
        rot_map = np.arctan2(rot_map[1, 0], rot_map[0, 0])
        center = np.array([
            egopose['translation'][0], egopose['translation'][1],
            np.cos(rot_map),
            np.sin(rot_map)
        ])
        lmap = get_local_map(self.nusc_maps[map_name], center, 50.0,
                             ['road_segment', 'lane'],
                             ['lane_divider', 'road_divider'])
        #road_segment
        img_road_segment = np.zeros((self.nx[0], self.nx[1]))
        arr_pts = []
        for pts in lmap['road_segment']:
            pts = np.round((pts - self.bx[:2] + self.dx[:2] / 2.) /
                           self.dx[:2]).astype(np.int32)
            pts[:, [1, 0]] = pts[:, [0, 1]]
            arr_pts.append(pts)
        cv2.fillPoly(img_road_segment, arr_pts, 1.0)
        #lane
        #lane = np.zeros((self.nx[0], self.nx[1]))
        arr_pts = []
        for pts in lmap['lane']:
            pts = np.round((pts - self.bx[:2] + self.dx[:2] / 2.) /
                           self.dx[:2]).astype(np.int32)
            pts[:, [1, 0]] = pts[:, [0, 1]]
            arr_pts.append(pts)
        # cv2.fillPoly(lane,arr_pts,1.0)
        cv2.fillPoly(img_road_segment, arr_pts, 1.0)
        #road_divider
        # img_road_divider = np.zeros((self.nx[0], self.nx[1]))
        # arr_pts=[]
        # for pts in lmap['road_divider']:
        #     pts = np.round(
        #             (pts - self.bx[:2] + self.dx[:2]/2.) / self.dx[:2]
        #             ).astype(np.int32)
        #     pts[:, [1, 0]] = pts[:, [0, 1]]
        #     arr_pts.append(pts)

        # cv2.polylines(img_road_divider,arr_pts,False,1.0,1)
        #lane_divider

        img_lane_divider = np.zeros((self.nx[0], self.nx[1]))
        arr_pts = []
        for pts in lmap['lane_divider']:
            pts = np.round((pts - self.bx[:2] + self.dx[:2] / 2.) /
                           self.dx[:2]).astype(np.int32)
            pts[:, [1, 0]] = pts[:, [0, 1]]
            arr_pts.append(pts)

        cv2.polylines(img_lane_divider, arr_pts, False, 1.0, 2)

        # cv2.imwrite('./output/lane_divider{}.png'.format(rec['timestamp']),img_lane_divider*255)
        #plt.plot(pts[:, 1], pts[:, 0], c=(159./255., 0.0, 1.0), alpha=0.5)

        return torch.Tensor(
            np.stack([img_vehicle, img_road_segment, img_lane_divider]))
Пример #15
0
    def evaluation(self, det_annos, class_names, **kwargs):

        eval_det_annos = copy.deepcopy(det_annos)

        # Create NuScenes JSON output file
        nusc_annos = {}
        for sample in eval_det_annos:
            try:
                sample_idx = sample['sample_idx'][0]
            except:
                continue

            sample_results = []

            calib = self.get_calib(sample_idx)

            sample['boxes_lidar'] = np.array(sample['boxes_lidar'])
            positions = sample['boxes_lidar'][:, :3]
            dimensions = sample['boxes_lidar'][:, 3:6]
            rotations = sample['boxes_lidar'][:, 6]

            for center, dimension, yaw, label, score in zip(
                    positions, dimensions, rotations, sample['name'],
                    sample['score']):

                quaternion = Quaternion(axis=[0, 0, 1], radians=yaw)

                box = Box(center, dimension, quaternion)
                # Move box to ego vehicle coord system
                box.rotate(Quaternion(calib.lidar_calibrated['rotation']))
                box.translate(np.array(calib.lidar_calibrated['translation']))
                # Move box to global coord system
                box.rotate(Quaternion(calib.ego_pose['rotation']))
                box.translate(np.array(calib.ego_pose['translation']))

                if (float(score) < 0):
                    score = 0
                if (float(score) > 1):
                    score = 1
                if (label == 'Cyclist'):
                    label = 'bicycle'
                sample_results.append({
                    "sample_token":
                    sample_idx,
                    "translation":
                    box.center.tolist(),
                    "size":
                    box.wlh.tolist(),
                    "rotation":
                    box.orientation.elements.tolist(),
                    "lidar_yaw":
                    float(yaw),
                    "velocity": (0, 0),
                    "detection_name":
                    label.lower(),
                    "detection_score":
                    float(score),
                    "attribute_name":
                    self.DefaultAttribute[label.lower()],
                })

            nusc_annos[sample_idx] = sample_results

        for sample_id in self.sample_id_list:
            if sample_id not in nusc_annos:
                nusc_annos[sample_id] = []

        nusc_submission = {
            "meta": {
                "use_camera": False,
                "use_lidar": True,
                "use_radar": False,
                "use_map": False,
                "use_external": False,
            },
            "results": nusc_annos,
        }
        eval_file = os.path.join(kwargs['output_dir'], 'nusc_results.json')
        with open(eval_file, "w") as f:
            json.dump(nusc_submission, f, indent=2)

        # Call NuScenes evaluation
        cfg = config_factory('detection_cvpr_2019')
        nusc_eval = DetectionEval(self.nusc,
                                  config=cfg,
                                  result_path=eval_file,
                                  eval_set=self.split,
                                  output_dir=kwargs['output_dir'],
                                  verbose=True)
        metric_summary = nusc_eval.main(plot_examples=10, render_curves=True)

        # Reformat the metrics summary a bit for the tensorboard logger
        err_name_mapping = {
            'trans_err': 'mATE',
            'scale_err': 'mASE',
            'orient_err': 'mAOE',
            'vel_err': 'mAVE',
            'attr_err': 'mAAE'
        }
        result = {}
        result['mean_ap'] = metric_summary['mean_ap']
        for tp_name, tp_val in metric_summary['tp_errors'].items():
            result[tp_name] = tp_val

        class_aps = metric_summary['mean_dist_aps']
        class_tps = metric_summary['label_tp_errors']
        for class_name in class_aps.keys():
            result['mAP_' + class_name] = class_aps[class_name]
            for key, val in err_name_mapping.items():
                result[val + '_' + class_name] = class_tps[class_name][key]

        return str(result), result
Пример #16
0
    def _get_bboxes(self, anns, image_info=None):
        bboxes, track_ids, classes = [], [], []
        if self.dataset == "nuscenes":
            for ann in anns:
                trans_matrix = np.array(image_info["trans_matrix"], np.float32)
                cls_id = int(self.cat_ids[ann["category_id"]])
                class_name = self.class_name[cls_id - 1]
                if class_name not in NUSCENES_TRACKING_NAMES:
                    continue
                center_location = ann["location"]
                wlh = ann["dim"]
                rotation = ann["rotation_y"]
                size = [float(wlh[1]), float(wlh[2]), float(wlh[0])]

                rot_cam = Quaternion(axis=[0, 1, 0], angle=rotation)
                loc = np.array(
                    [
                        center_location[0], center_location[1],
                        center_location[2]
                    ],
                    np.float32,
                ).copy()

                translation = np.dot(
                    trans_matrix,
                    np.array(
                        [
                            center_location[0],
                            center_location[1] - size[2] / 2,
                            center_location[2],
                            1,
                        ],
                        np.float32,
                    ),
                ).copy()
                box = Box(loc, size, rot_cam, name="2", token="1")
                box.translate(np.array([0, -box.wlh[2] / 2, 0]))
                box.rotate(Quaternion(image_info["cs_record_rot"]))
                box.translate(np.array(image_info["cs_record_trans"]))
                box.rotate(Quaternion(image_info["pose_record_rot"]))
                box.translate(np.array(image_info["pose_record_trans"]))
                rotation = box.orientation
                rotation = [
                    float(rotation.w),
                    float(rotation.x),
                    float(rotation.y),
                    float(rotation.z),
                ]
                q = Quaternion(rotation)
                angle = q.angle if q.axis[2] > 0 else -q.angle

                bboxes.append([
                    size[2],
                    size[0],
                    size[1],
                    box.center[0],
                    box.center[1],
                    box.center[2],
                    angle,
                ].copy())
                track_ids.append(ann["track_id"])
                classes.append(class_name)

        else:

            for ann in anns:
                cls_id = int(self.cat_ids[ann["category_id"]])
                if (cls_id > self.opt.num_classes or cls_id <= -99
                        or ("iscrowd" in ann and ann["iscrowd"] > 0)):
                    continue
                bbox = self._coco_box_to_bbox(ann["bbox"])
                h, w = bbox[3] - bbox[1], bbox[2] - bbox[0]
                if h > 0 and w > 0:
                    bboxes.append([bbox[0], bbox[1], bbox[2], bbox[3]].copy())

                    track_ids.append(ann["track_id"] if "track_id" in
                                     ann else -1)

        return bboxes, track_ids, classes