def test_export_tflite_semantic_segmentation(self, experiment, quant_type,
                                                 input_image_size):
        test_tfrecord_file = os.path.join(self.get_temp_dir(),
                                          'seg_test.tfrecord')
        example = tfexample_utils.create_segmentation_test_example(
            image_height=input_image_size[0],
            image_width=input_image_size[1],
            image_channel=3)
        self._create_test_tfrecord(tfrecord_file=test_tfrecord_file,
                                   example=example,
                                   num_samples=10)
        params = exp_factory.get_exp_config(experiment)
        params.task.validation_data.input_path = test_tfrecord_file
        params.task.train_data.input_path = test_tfrecord_file
        temp_dir = self.get_temp_dir()
        module = semantic_segmentation_serving.SegmentationModule(
            params=params,
            batch_size=1,
            input_image_size=input_image_size,
            input_type='tflite')
        self._export_from_module(module=module,
                                 input_type='tflite',
                                 saved_model_dir=os.path.join(
                                     temp_dir, 'saved_model'))

        tflite_model = export_tflite_lib.convert_tflite_model(
            saved_model_dir=os.path.join(temp_dir, 'saved_model'),
            quant_type=quant_type,
            params=params,
            calibration_steps=5)

        self.assertIsInstance(tflite_model, bytes)
 def _get_segmentation_module(self, input_type):
     params = exp_factory.get_exp_config('mnv2_deeplabv3_pascal')
     segmentation_module = semantic_segmentation.SegmentationModule(
         params,
         batch_size=1,
         input_image_size=[112, 112],
         input_type=input_type)
     return segmentation_module
 def _get_segmentation_module(self,
                              input_type,
                              rescale_output,
                              preserve_aspect_ratio,
                              batch_size=1):
   params = exp_factory.get_exp_config('mnv2_deeplabv3_pascal')
   params.task.export_config.rescale_output = rescale_output
   params.task.train_data.preserve_aspect_ratio = preserve_aspect_ratio
   segmentation_module = semantic_segmentation.SegmentationModule(
       params,
       batch_size=batch_size,
       input_image_size=[112, 112],
       input_type=input_type)
   return segmentation_module
Пример #4
0
  def test_export_tflite_semantic_segmentation(self, experiment, quant_type):

    params = exp_factory.get_exp_config(experiment)
    params.task.validation_data.input_path = self.test_tfrecord_file_seg
    params.task.train_data.input_path = self.test_tfrecord_file_seg
    params.task.train_data.shuffle_buffer_size = 10
    temp_dir = self.get_temp_dir()
    module = semantic_segmentation_serving.SegmentationModule(
        params=params,
        batch_size=1,
        input_image_size=[512, 512],
        input_type='tflite')
    self._export_from_module(
        module=module,
        input_type='tflite',
        saved_model_dir=os.path.join(temp_dir, 'saved_model'))

    tflite_model = export_tflite_lib.convert_tflite_model(
        saved_model_dir=os.path.join(temp_dir, 'saved_model'),
        quant_type=quant_type,
        params=params,
        calibration_steps=5)

    self.assertIsInstance(tflite_model, bytes)
Пример #5
0
def export_inference_graph(
        input_type: str,
        batch_size: Optional[int],
        input_image_size: List[int],
        params: cfg.ExperimentConfig,
        checkpoint_path: str,
        export_dir: str,
        num_channels: Optional[int] = 3,
        export_module: Optional[export_base.ExportModule] = None,
        export_checkpoint_subdir: Optional[str] = None,
        export_saved_model_subdir: Optional[str] = None,
        save_options: Optional[tf.saved_model.SaveOptions] = None,
        log_model_flops_and_params: bool = False,
        checkpoint: Optional[tf.train.Checkpoint] = None,
        input_name: Optional[str] = None):
    """Exports inference graph for the model specified in the exp config.

  Saved model is stored at export_dir/saved_model, checkpoint is saved
  at export_dir/checkpoint, and params is saved at export_dir/params.yaml.

  Args:
    input_type: One of `image_tensor`, `image_bytes`, `tf_example` or `tflite`.
    batch_size: 'int', or None.
    input_image_size: List or Tuple of height and width.
    params: Experiment params.
    checkpoint_path: Trained checkpoint path or directory.
    export_dir: Export directory path.
    num_channels: The number of input image channels.
    export_module: Optional export module to be used instead of using params
      to create one. If None, the params will be used to create an export
      module.
    export_checkpoint_subdir: Optional subdirectory under export_dir
      to store checkpoint.
    export_saved_model_subdir: Optional subdirectory under export_dir
      to store saved model.
    save_options: `SaveOptions` for `tf.saved_model.save`.
    log_model_flops_and_params: If True, writes model FLOPs to model_flops.txt
      and model parameters to model_params.txt.
    checkpoint: An optional tf.train.Checkpoint. If provided, the export module
      will use it to read the weights.
    input_name: The input tensor name, default at `None` which produces input
      tensor name `inputs`.
  """

    if export_checkpoint_subdir:
        output_checkpoint_directory = os.path.join(export_dir,
                                                   export_checkpoint_subdir)
    else:
        output_checkpoint_directory = None

    if export_saved_model_subdir:
        output_saved_model_directory = os.path.join(export_dir,
                                                    export_saved_model_subdir)
    else:
        output_saved_model_directory = export_dir

    # TODO(arashwan): Offers a direct path to use ExportModule with Task objects.
    if not export_module:
        if isinstance(params.task,
                      configs.image_classification.ImageClassificationTask):
            export_module = image_classification.ClassificationModule(
                params=params,
                batch_size=batch_size,
                input_image_size=input_image_size,
                input_type=input_type,
                num_channels=num_channels,
                input_name=input_name)
        elif isinstance(params.task,
                        configs.retinanet.RetinaNetTask) or isinstance(
                            params.task, configs.maskrcnn.MaskRCNNTask):
            export_module = detection.DetectionModule(
                params=params,
                batch_size=batch_size,
                input_image_size=input_image_size,
                input_type=input_type,
                num_channels=num_channels,
                input_name=input_name)
        elif isinstance(
                params.task,
                configs.semantic_segmentation.SemanticSegmentationTask):
            export_module = semantic_segmentation.SegmentationModule(
                params=params,
                batch_size=batch_size,
                input_image_size=input_image_size,
                input_type=input_type,
                num_channels=num_channels,
                input_name=input_name)
        elif isinstance(params.task,
                        configs.video_classification.VideoClassificationTask):
            export_module = video_classification.VideoClassificationModule(
                params=params,
                batch_size=batch_size,
                input_image_size=input_image_size,
                input_type=input_type,
                num_channels=num_channels,
                input_name=input_name)
        else:
            raise ValueError(
                'Export module not implemented for {} task.'.format(
                    type(params.task)))

    export_base.export(export_module,
                       function_keys=[input_type],
                       export_savedmodel_dir=output_saved_model_directory,
                       checkpoint=checkpoint,
                       checkpoint_path=checkpoint_path,
                       timestamped=False,
                       save_options=save_options)

    if output_checkpoint_directory:
        ckpt = tf.train.Checkpoint(model=export_module.model)
        ckpt.save(os.path.join(output_checkpoint_directory, 'ckpt'))
    train_utils.serialize_config(params, export_dir)

    if log_model_flops_and_params:
        inputs_kwargs = None
        if isinstance(
                params.task,
            (configs.retinanet.RetinaNetTask, configs.maskrcnn.MaskRCNNTask)):
            # We need to create inputs_kwargs argument to specify the input shapes for
            # subclass model that overrides model.call to take multiple inputs,
            # e.g., RetinaNet model.
            inputs_kwargs = {
                'images':
                tf.TensorSpec([1] + input_image_size + [num_channels],
                              tf.float32),
                'image_shape':
                tf.TensorSpec([1, 2], tf.float32)
            }
            dummy_inputs = {
                k: tf.ones(v.shape.as_list(), tf.float32)
                for k, v in inputs_kwargs.items()
            }
            # Must do forward pass to build the model.
            export_module.model(**dummy_inputs)
        else:
            logging.info(
                'Logging model flops and params not implemented for %s task.',
                type(params.task))
            return
        train_utils.try_count_flops(
            export_module.model, inputs_kwargs,
            os.path.join(export_dir, 'model_flops.txt'))
        train_utils.write_model_params(
            export_module.model, os.path.join(export_dir, 'model_params.txt'))