def test_export_tflite_semantic_segmentation(self, experiment, quant_type, input_image_size): test_tfrecord_file = os.path.join(self.get_temp_dir(), 'seg_test.tfrecord') example = tfexample_utils.create_segmentation_test_example( image_height=input_image_size[0], image_width=input_image_size[1], image_channel=3) self._create_test_tfrecord(tfrecord_file=test_tfrecord_file, example=example, num_samples=10) params = exp_factory.get_exp_config(experiment) params.task.validation_data.input_path = test_tfrecord_file params.task.train_data.input_path = test_tfrecord_file temp_dir = self.get_temp_dir() module = semantic_segmentation_serving.SegmentationModule( params=params, batch_size=1, input_image_size=input_image_size, input_type='tflite') self._export_from_module(module=module, input_type='tflite', saved_model_dir=os.path.join( temp_dir, 'saved_model')) tflite_model = export_tflite_lib.convert_tflite_model( saved_model_dir=os.path.join(temp_dir, 'saved_model'), quant_type=quant_type, params=params, calibration_steps=5) self.assertIsInstance(tflite_model, bytes)
def _get_segmentation_module(self, input_type): params = exp_factory.get_exp_config('mnv2_deeplabv3_pascal') segmentation_module = semantic_segmentation.SegmentationModule( params, batch_size=1, input_image_size=[112, 112], input_type=input_type) return segmentation_module
def _get_segmentation_module(self, input_type, rescale_output, preserve_aspect_ratio, batch_size=1): params = exp_factory.get_exp_config('mnv2_deeplabv3_pascal') params.task.export_config.rescale_output = rescale_output params.task.train_data.preserve_aspect_ratio = preserve_aspect_ratio segmentation_module = semantic_segmentation.SegmentationModule( params, batch_size=batch_size, input_image_size=[112, 112], input_type=input_type) return segmentation_module
def test_export_tflite_semantic_segmentation(self, experiment, quant_type): params = exp_factory.get_exp_config(experiment) params.task.validation_data.input_path = self.test_tfrecord_file_seg params.task.train_data.input_path = self.test_tfrecord_file_seg params.task.train_data.shuffle_buffer_size = 10 temp_dir = self.get_temp_dir() module = semantic_segmentation_serving.SegmentationModule( params=params, batch_size=1, input_image_size=[512, 512], input_type='tflite') self._export_from_module( module=module, input_type='tflite', saved_model_dir=os.path.join(temp_dir, 'saved_model')) tflite_model = export_tflite_lib.convert_tflite_model( saved_model_dir=os.path.join(temp_dir, 'saved_model'), quant_type=quant_type, params=params, calibration_steps=5) self.assertIsInstance(tflite_model, bytes)
def export_inference_graph( input_type: str, batch_size: Optional[int], input_image_size: List[int], params: cfg.ExperimentConfig, checkpoint_path: str, export_dir: str, num_channels: Optional[int] = 3, export_module: Optional[export_base.ExportModule] = None, export_checkpoint_subdir: Optional[str] = None, export_saved_model_subdir: Optional[str] = None, save_options: Optional[tf.saved_model.SaveOptions] = None, log_model_flops_and_params: bool = False, checkpoint: Optional[tf.train.Checkpoint] = None, input_name: Optional[str] = None): """Exports inference graph for the model specified in the exp config. Saved model is stored at export_dir/saved_model, checkpoint is saved at export_dir/checkpoint, and params is saved at export_dir/params.yaml. Args: input_type: One of `image_tensor`, `image_bytes`, `tf_example` or `tflite`. batch_size: 'int', or None. input_image_size: List or Tuple of height and width. params: Experiment params. checkpoint_path: Trained checkpoint path or directory. export_dir: Export directory path. num_channels: The number of input image channels. export_module: Optional export module to be used instead of using params to create one. If None, the params will be used to create an export module. export_checkpoint_subdir: Optional subdirectory under export_dir to store checkpoint. export_saved_model_subdir: Optional subdirectory under export_dir to store saved model. save_options: `SaveOptions` for `tf.saved_model.save`. log_model_flops_and_params: If True, writes model FLOPs to model_flops.txt and model parameters to model_params.txt. checkpoint: An optional tf.train.Checkpoint. If provided, the export module will use it to read the weights. input_name: The input tensor name, default at `None` which produces input tensor name `inputs`. """ if export_checkpoint_subdir: output_checkpoint_directory = os.path.join(export_dir, export_checkpoint_subdir) else: output_checkpoint_directory = None if export_saved_model_subdir: output_saved_model_directory = os.path.join(export_dir, export_saved_model_subdir) else: output_saved_model_directory = export_dir # TODO(arashwan): Offers a direct path to use ExportModule with Task objects. if not export_module: if isinstance(params.task, configs.image_classification.ImageClassificationTask): export_module = image_classification.ClassificationModule( params=params, batch_size=batch_size, input_image_size=input_image_size, input_type=input_type, num_channels=num_channels, input_name=input_name) elif isinstance(params.task, configs.retinanet.RetinaNetTask) or isinstance( params.task, configs.maskrcnn.MaskRCNNTask): export_module = detection.DetectionModule( params=params, batch_size=batch_size, input_image_size=input_image_size, input_type=input_type, num_channels=num_channels, input_name=input_name) elif isinstance( params.task, configs.semantic_segmentation.SemanticSegmentationTask): export_module = semantic_segmentation.SegmentationModule( params=params, batch_size=batch_size, input_image_size=input_image_size, input_type=input_type, num_channels=num_channels, input_name=input_name) elif isinstance(params.task, configs.video_classification.VideoClassificationTask): export_module = video_classification.VideoClassificationModule( params=params, batch_size=batch_size, input_image_size=input_image_size, input_type=input_type, num_channels=num_channels, input_name=input_name) else: raise ValueError( 'Export module not implemented for {} task.'.format( type(params.task))) export_base.export(export_module, function_keys=[input_type], export_savedmodel_dir=output_saved_model_directory, checkpoint=checkpoint, checkpoint_path=checkpoint_path, timestamped=False, save_options=save_options) if output_checkpoint_directory: ckpt = tf.train.Checkpoint(model=export_module.model) ckpt.save(os.path.join(output_checkpoint_directory, 'ckpt')) train_utils.serialize_config(params, export_dir) if log_model_flops_and_params: inputs_kwargs = None if isinstance( params.task, (configs.retinanet.RetinaNetTask, configs.maskrcnn.MaskRCNNTask)): # We need to create inputs_kwargs argument to specify the input shapes for # subclass model that overrides model.call to take multiple inputs, # e.g., RetinaNet model. inputs_kwargs = { 'images': tf.TensorSpec([1] + input_image_size + [num_channels], tf.float32), 'image_shape': tf.TensorSpec([1, 2], tf.float32) } dummy_inputs = { k: tf.ones(v.shape.as_list(), tf.float32) for k, v in inputs_kwargs.items() } # Must do forward pass to build the model. export_module.model(**dummy_inputs) else: logging.info( 'Logging model flops and params not implemented for %s task.', type(params.task)) return train_utils.try_count_flops( export_module.model, inputs_kwargs, os.path.join(export_dir, 'model_flops.txt')) train_utils.write_model_params( export_module.model, os.path.join(export_dir, 'model_params.txt'))