Пример #1
0
    def infer(node: Node):
        """
        Infers shape of convolution node as it is done in ONNX.
        It is very similar to one that Caffe does, but slightly different.
        We made a complete fork of this function because they are supposed to be
        supported differently by different people.
        Args:
            node: graph convolution node
        """
        input_shape = node.in_port(0).data.get_shape()
        if input_shape is None:
            raise Error('Input data shape is None for node {}'.format(
                node.soft_get('name', node.id)))

        # bias_term cannot be deduced earlier for frameworks that represent
        # convolution weights/biases as regular inputs; so the number of inputs
        # is being checked here and restore correct value for bias_term to
        # have the rest of the code unchanged. It will be used after we merge
        # several infer functions for convolution in different FWs to a single one.
        if not node.has_valid('bias_term'):
            node['bias_term'] = len(node.in_nodes()) == 3

        weights_index = node.weights_index if node.has_valid(
            'weights_index') else 1
        # Reshape weights kernel to original shape
        # In case of caffe or MXNet framework, values for weights have no structured shape like OIHW
        # so we have to reshape weights to normal shape
        # For this case, Convolution node should have attribute reshape_kernel = True
        if node.has_valid('reshape_kernel') and node.reshape_kernel:
            if not (node.has_valid('output') and node.has_valid('channel_dims')
                    and node.has_valid('group')
                    and node.has_valid('kernel_spatial')):
                log.error(
                    'Cannot reshape kernel due to not all required attrs was set to {} node'
                    .format(node.id))
                return
            # layout for Convolution weights is OIHW
            kernel_shape = shape_array([
                node.output,
                input_shape[node.channel_dims].item() / node.group, *[
                    node.kernel_spatial[i]
                    for i in range(len(node.kernel_spatial))
                ]
            ])
            if node.type == 'Deconvolution':  # layout for Deconvolution weights is IOHW
                kernel_shape[[0, 1]] = kernel_shape[[1, 0]]

            if is_fully_defined(
                    kernel_shape) and np.prod(kernel_shape) != np.prod(
                        node.in_node(weights_index).value.shape):
                log.error(
                    "Size of weights {} does not match kernel shape: {}\n"
                    "".format(np.prod(node.in_node(weights_index).value.shape),
                              kernel_shape) +
                    "    Possible reason is wrong channel number in input shape\n"
                )
                raise Error("Cannot reshape weights to kernel shape")

            if not is_fully_defined(kernel_shape):
                num_undefined = np.count_nonzero(kernel_shape.mask is True)  # pylint: disable=no-member
                if num_undefined > 1:
                    raise Error(
                        'Too many undefined dimensions of the kernel shape for node {}. Use --input_shape '
                        'command line parameter to specify model input shapes'.
                        format(node.soft_get('name', node.id)))
                kernel_size = np.prod(node.in_node(weights_index).value.shape)
                # calculate undefined dimension using fully defined shape of the weights input and known kernel_shape
                # dimensions
                kernel_shape[np.where(kernel_shape == np.ma.masked)[0]
                             [0]] = kernel_size // np.prod(kernel_shape)

            node.in_node(weights_index).shape = shape_array(kernel_shape)
            node.in_node(weights_index).value = np.reshape(
                node.in_node(weights_index).value, kernel_shape)
            node.reshape_kernel = False

        # Pass weights shape to node attribute kernel_shape
        kernel_shape = node.in_node(weights_index).shape
        node['kernel_shape'] = kernel_shape
        # Calculate kernel_spatial_idx and spatial_dims if it is not specified
        # It is necessary for ONNX dut to convolution can be 1D/2D/3D
        if not node.has_valid('kernel_spatial_idx'):
            node['kernel_spatial_idx'] = np.delete(
                [x for x in range(len(kernel_shape))],
                (node.input_feature_channel, node.output_feature_channel))

        if not node.has_valid('spatial_dims'):
            node['spatial_dims'] = np.delete(
                [x for x in range(len(input_shape))],
                (node.channel_dims[0], node.batch_dims[0]))

        node['kernel_spatial'] = kernel_shape[node.kernel_spatial_idx]

        if not node.has_valid('output'):
            # restore the number of output feature maps from the second argument that is weights
            if node.type in [
                    'Convolution', 'Deconvolution', 'DeformableConvolution',
                    'BinaryConvolution'
            ]:
                node['output'] = kernel_shape[node.output_feature_channel]
            else:
                raise Error(
                    'Convolution infer function was called for a node {} with unsupported type {}',
                    node.soft_get('name'), node.type)

        # Set default values for dilation, strides and pads if not set
        if not node.has_valid('dilation'):
            node['dilation'] = np.full([len(input_shape)], 1, dtype=np.int64)
        if not node.has_valid('stride'):
            node['stride'] = np.full([len(input_shape)], 1, dtype=np.int64)
        if not node.has_valid('pad'):
            node['pad'] = int64_array([[0, 0]] * len(input_shape))
        node['pad_spatial_shape'] = node.pad[node.spatial_dims]

        if not node.has_valid('output_padding'):
            node['output_padding'] = np.full([len(input_shape)],
                                             0,
                                             dtype=np.int64)

        if node.has_valid('output_padding') and len(input_shape) > len(
                node['output_padding']):
            output_padding = np.zeros(len(input_shape), dtype=np.int64)
            for i in range(len(node['output_padding'])):
                output_padding[i] = node['output_padding'][i]
            node['output_padding'] = output_padding

        input_spatial_shape = input_shape[node.spatial_dims]
        stride_spatial_shape = node.stride[node.spatial_dims]

        kernel_extent = node.dilation[node.spatial_dims] * (
            node.kernel_spatial - 1) + 1
        # TensorFlow always has auto_pad attribute that can be either valid or same_upper
        # In ONNX auto_pad attribute is deprecated but appears in some models (could be valid, same_upper or same_lower)
        # Caffe do not use auto_pad attribute
        if node.has_valid(
                'auto_pad'
        ) and node.auto_pad != 'explicit' and not node.has_valid(
                'output_spatial_shape'):
            node['pad_spatial_shape'], node[
                'output_spatial_shape'] = tf_window_op_pad_infer(
                    input_spatial_shape, kernel_extent, stride_spatial_shape,
                    node.auto_pad, node.type == 'Deconvolution')

            pad = np.zeros((len(input_shape), 2), dtype=np.int64)
            pad[node.spatial_dims] = node.pad_spatial_shape
            node.pad = pad
        else:
            pad_spatial_shape = np.add.reduce(node.pad_spatial_shape, axis=1)
            if node.type in ('Convolution', 'BinaryConvolution'):
                float_spatial = Convolution.calc_convolution(
                    input_spatial_shape, stride_spatial_shape,
                    pad_spatial_shape, kernel_extent)
                node['output_spatial_shape'] = shape_array(float_spatial)
            elif node.type == 'Deconvolution':
                # In case of given output_spatial_shape we calculate pads spatial
                if node.has_valid('output_spatial_shape'):
                    if node.has_valid('get_pad'):
                        node['pad'] = node.get_pad(node, input_shape,
                                                   kernel_shape)
                    else:
                        log.debug(
                            'Can\'t calculate paddings due to missing lambda get_pad in {} node'
                            .format(node.id))
                        return
                else:
                    output_padding = node.output_padding[
                        node.spatial_dims] if node.has_valid(
                            'output_padding') else None
                    if output_padding is not None and any(output_padding):
                        pad_spatial_shape -= output_padding
                        for dim in range(len(pad_spatial_shape)):
                            node.pad_spatial_shape[dim][
                                1] -= pad_spatial_shape[dim]

                    float_spatial = Convolution.calc_deconvolution(
                        node, input_spatial_shape, pad_spatial_shape,
                        kernel_extent)
                    node['output_spatial_shape'] = shape_array(float_spatial)
            elif node.type == 'DeformableConvolution':
                # get the output spatial shape from the second input with offsets
                node['output_spatial_shape'] = int64_array(
                    [node.in_node(1).shape[2:4]])
            else:
                assert 'Unsupported layer type "{}"'.format(node.type)

        # For cases when group attribute wasn't set in extractor we should specify get_group attribute
        # this attribute should store lambda node: ... (check tf convolution extractor)
        if node.has_valid('get_group'):
            node['group'] = node.get_group(node)
        output_shape = shape_array(
            [dynamic_dimension_value for _ in range(len(input_shape))])
        output_shape[node.batch_dims] = input_shape[node.batch_dims]  # pylint: disable=unsupported-assignment-operation
        output_shape[node.spatial_dims] = node.output_spatial_shape  # pylint: disable=unsupported-assignment-operation

        # For cases when output attribute wasn't set in extractor we should specify get_output_feature_dim attribute
        # this attribute should store lambda node: ... (check tf convolution extractor)
        if node.has_valid('get_output_feature_dim'):
            node['output'] = node.get_output_feature_dim(node)
        output_shape[node.channel_dims] = node.output  # pylint: disable=unsupported-assignment-operation
        node['output_shape'] = output_shape

        node.out_port(0).data.set_shape(output_shape)

        # bin attribute is used for pre-processing, but it will be deleted in BlobNormalizer transformation
        # and the blobs (weights, biases) will be represented as inputs to the node
        mark_input_bins(
            node, start_port=1 if node.type != 'DeformableConvolution' else 2)
        assign_dims_to_weights(node.in_node(weights_index),
                               node.kernel_spatial_idx,
                               node.input_feature_channel,
                               node.output_feature_channel, len(kernel_shape))

        PermuteAttrs.create_permute_attrs(
            node,
            attrs=[
                ('pad', 'input:0'),
                ('stride', 'input:0'),
                ('dilation', 'input:0'),
                ('output_shape', 'input:0'),
                ('batch_dims', 'input:0'),
                ('channel_dims', 'input:0'),
                ('spatial_dims', 'input:0'),
                ('kernel_shape', 'input:{}'.format(weights_index)),
                ('kernel_spatial_idx', 'input:{}'.format(weights_index)),
                ('input_feature_channel', 'input:{}'.format(weights_index)),
                ('output_feature_channel', 'input:{}'.format(weights_index)),
            ])

        # is needed to permute Conv weights from the original TF [H, W, C_IN, C_OUT] into IE [C_OUT, C_IN, H, W]
        # but for other nodes in weights subgraph permutations must turned off
        # by marking with MarkSubGraphsWithCorrectLayout even if graph layout is NCHW.
        PermuteAttrs.set_permutation(
            node.in_node(weights_index), node,
            node.soft_get('get_weights_permute', None))
        PermuteInputs().set_input_permutation(node.in_node(weights_index),
                                              node,
                                              'input:{}'.format(weights_index),
                                              'transpose')
Пример #2
0
    def infer(node: Node):
        """
        Deconvolution has an input argument that explicitly determines output shape, so in contrast
        to the forward Conv2d we shouldn't infer output shape. We just use this output shape as
        an input shape and pass it to our utilities that computes numeric values for padding.
        They also deliver output shape that is interpreted here as input shape for convolution.
        We need to check that the real input shape and shape inferred by those utility functions match.
        """
        output_shape = shape_array(node.in_node(2).value)
        output_shape[0] = node.in_port(0).data.get_shape()[0]
        kernel_shape = node.in_port(1).data.get_shape()
        node['kernel_shape'] = kernel_shape
        if output_shape is None or kernel_shape is None or node.spatial_dims is None or node.stride is None:
            return

        if not node.has_valid('kernel_spatial_idx'):
            node['kernel_spatial_idx'] = np.delete(
                [x for x in range(len(kernel_shape))],
                (node.input_feature_channel, node.output_feature_channel))

        if not node.has_valid('dilation'):
            node['dilation'] = np.full([len(output_shape)], 1, dtype=np.int64)

        if node.has_valid('get_group'):
            node['group'] = node.get_group(node)

        spatial_dims = node.spatial_dims
        output_spatial = shape_array(output_shape[spatial_dims])
        stride_spatial = shape_array(node.stride[spatial_dims])
        node['kernel_spatial'] = shape_array(
            kernel_shape[node.kernel_spatial_idx])
        node.pad_spatial_shape, input_spatial_for_check = tf_window_op_pad_infer(
            output_spatial, node.kernel_spatial, stride_spatial, node.auto_pad)

        assert compatible_shapes(input_spatial_for_check,
                                 node.in_node(0).shape[spatial_dims])

        pad = np.zeros((len(output_shape), 2), dtype=np.int64)
        pad[spatial_dims] = node.pad_spatial_shape
        node.pad = pad

        node.output = output_shape[node.channel_dims][0]
        node.output_shape = output_shape
        node.out_port(0).data.set_shape(output_shape)

        mark_input_bins(node, ['weights'], 1)
        assign_dims_to_weights(node.in_node(1), node.kernel_spatial_idx,
                               node.input_feature_channel,
                               node.output_feature_channel, len(kernel_shape))

        # OK, now we are sure this is a supported Deconvolution layer
        node.type = 'Deconvolution'
        node.op = 'Deconv2D'

        # Add permute_attrs
        PermuteAttrs.create_permute_attrs(
            node,
            attrs=[
                ('pad', 'input:0'),
                ('stride', 'input:0'),
                ('output_shape', 'input:0'),
                ('batch_dims', 'input:0'),
                ('channel_dims', 'input:0'),
                ('spatial_dims', 'input:0'),
                ('kernel_shape', 'input:1'),
                ('kernel_spatial_idx', 'input:1'),
                ('input_feature_channel', 'input:1'),
                ('output_feature_channel', 'input:1'),
            ])

        # is needed to permute Deconv weights from the original TF [H, W, C_OUT, C_IN] into IE [C_IN, C_OUT, H, W]
        # but for other nodes in weights subgraph permutations must turned off
        # by marking with MarkSubGraphsWithCorrectLayout even if graph layout is NCHW.
        PermuteAttrs.set_permutation(
            node.in_node(1), node, node.soft_get('get_weights_permute', None))
        PermuteInputs().set_input_permutation(node.in_node(1), node, 'input:1',
                                              'transpose')
        PermuteInputs().set_input_permutation(node.in_node(2), node, 'input:0',
                                              'shape')

        node['force_precision_in_ports'] = {2: 'int64'}