def init_params(self): if not hasattr(self.params, "__len__"): print("hyper-parameters not given, random initialization...") my_params = get_params(self.use_kernels, self.use_means) mean_params = my_params["means"] std_params = my_params["stds"] use_log = my_params["use_log"] self.params = list(np.zeros_like(mean_params)) for k in range(len(self.params)): if use_log[k]: self.params[k] = scipy.stats.lognorm.rvs(1, loc=mean_params[ k], scale=std_params[k]) else: self.params[k] = scipy.stats.norm.rvs(loc=mean_params[k], scale=std_params[k]) self.update_scales() self.tune_hyperparameters()
def deepvision_search(query_path, fetch_limit): print "query_path :: ", query_path # Get the mentioned params params = get_params() # Read image lists dimension = params['dimension'] # Load featurs for the input image. E = Extractor(params) print "Extracting features for the input image." # Init empty np array of size 1 to store the input query features query_feats = np.zeros((1, dimension)) # Extract raw feature from cnn feat = E.extract_feat_image(query_path).squeeze() # Compose single feature vector feat = E.pool_feats(feat) query_feats[0, :] = feat query_feats = normalize(query_feats) print "Computing distances" distances = get_distances(query_feats, db_feats) final_scores = distances print "Distances :: ", final_scores # Reding the db images to form a map of image and their respective scores with open(params['frame_list'], 'r') as f: database_list = f.read().splitlines() ranking = np.array(database_list)[np.argsort(final_scores)] return ranking[0][:int(fetch_limit)]
def return_grad(test_params, input_x, truth_y): tmp = get_params(model_ft.models_stack[-1]) set_params(model_ft.models_stack[-1], test_params) result = numpy.concatenate( [numpy.array(i).flatten() for i in fun_grad(input_x, truth_y)]) set_params(model_ft.models_stack[-1], tmp) return result
def test_select(self): params = get_params("/data/zjy/csqa_data", "/home/zhangjingyao/preprocessed_data_10k") # ls = LuceneSearch(params["lucene_dir"]) # 读取知识库 # try: # print("loading...") # wikidata = pickle.load(open('/home/zhangjingyao/data/wikidata.pkl','rb')) # print("loading...") # item_data = pickle.load(open('/home/zhangjingyao/data/entity_items','rb')) # print("loading...") # prop_data = None # print("loading...") # child_par_dict = pickle.load(open('/home/zhangjingyao/data/type_kb.pkl','rb')) # except: # wikidata, item_data, prop_data, child_par_dict = load_wikidata(params["wikidata_dir"])# data for entity ,property, type # 读取qa文件集 qa_set = load_qadata("/home/zhangjingyao/preprocessed_data_10k/demo") question_parser = QuestionParser(params, True) f = open("log.txt", 'w+') for qafile in qa_set.itervalues(): for qid in range(len(qafile["context"])): # 得到一个qa数据 q = {k: v[qid] for k, v in qafile.items()} # 解析问句 qstring = q["context_utterance"] entities = question_parser.getNER(q) relations = question_parser.getRelations(q) types = question_parser.getTypes(q) # 得到操作序列 states = random.randint(1, 18) # 随机生成操作序列 seq2seq = Seq2Seq() symbolic_seq = seq2seq.simple(qstring, entities, relations, types, states) # 符号执行 time_start = time.time() symbolic_exe = symbolics.Symbolics(symbolic_seq) answer = symbolic_exe.executor() print("answer is :", answer) if (type(answer) == dict): for key in answer: print([v for v in answer[key]]) time_end = time.time() print('time cost:', time_end - time_start) print( "--------------------------------------------------------------------------------" ) print(0)
def deepvision_search(query_path, fetch_limit): # Get the mentioned params params = get_params() global pca, db_feats # Read image lists dataset = params['dataset'] image_path = params['database_images'] dimension = params['dimension'] pooling = params['pooling'] N_QE = params['N_QE'] stage = params['stage'] # Distance type dist_type = params['distance'] # Load features for the DB Images. db_feats = pickle.load(open(params['database_feats'], 'rb')) # Load featurs for the input image. E = Extractor(params) print "Extracting features for the input image." # Init empty np array of size 1 to store the input query features query_feats = np.zeros((1, dimension)) # Extract raw feature from cnn feat = E.extract_feat_image(query_path).squeeze() # Compose single feature vector feat = E.pool_feats(feat) query_feats[0, :] = feat query_feats = normalize(query_feats) print "Computing distances" distances = get_distances(query_feats, db_feats) final_scores = distances print "Distances :: ", final_scores # Reding the db images to form a map of image and their respective scores with open(params['frame_list'], 'r') as f: database_list = f.read().splitlines() ranking = np.array(database_list)[np.argsort(final_scores)] #return ranking[0][:int(fetch_limit)] # Temporary fix done for resolving the issue incurred when the number of images is less than 512. modified_lst = [] for image in ranking[0]: # In order to increase the image count to 512, copies of images with the suffix copy are created. The below condition filters these images. if "copy" in image: continue modified_lst.append(image) return modified_lst[:int(fetch_limit)]
def update_scales(self, nyquist_freq=0.5): print( "initial parameters updated with uniform drawn within nyquist frequency") params = get_params(self.use_kernels, self.use_means) for k in range(len(self.params)): curr_name = params["names"][k] if "period" in curr_name or "scale" in curr_name: freq = scipy.stats.uniform.rvs() * nyquist_freq self.params[k] = 1. / freq
def main(): params = get_params() datasetD = make_seq_2_seq_dataset(params) train_x = datasetD['train']['x'] train_y = datasetD['train']['y'] test_x = datasetD['test']['x'] test_y = datasetD['test']['y'] train_scenarios = datasetD['train']['scenarios'] test_scenarios = datasetD['test']['scenarios'] val_scenarios = datasetD['val']['scenarios'] params.scaleD = datasetD['scaleD'] input_window_samps = params.input_window_length_samples num_signals = params.num_signals output_window_samps = params.output_window_length_samples train_X = np.array(train_x, dtype=float) # train_X=np.reshape(train_X,(input_window_samps,-1)) # train_Y = np.array(train_y, dtype=float) nsamples, nx, ny = train_Y.shape # print(nsamples) # print(nx) # print(ny) train_Y = np.reshape(train_Y, (nsamples, output_window_samps * num_signals)) print(train_X.shape) #print(len(train_X[0,:])) print(train_Y.shape) print(train_Y) # print(input_window_samps) # print(num_signals) # print(output_window_samps) # train_x = Reshape((input_window_samps,num_signals))(train_x) # print(train_x.shape) # print(train_x[0,:]) # # train_y = Reshape((output_window_samps, num_signals))(train_y) # print(train_y.shape) # print(train_y[0,:]) model = SVR(kernel='rbf', degree=3) history = model.fit(train_X, train_Y) history_score = history.score(test_x, test_y) print("the score of linear is : %f" % history_score)
def __init__(self, dataset): self.dataset = dataset ################### # training params # ################### self.args = get_params(dataset) torch.manual_seed(self.args.random_seed) ################### # get dataloaders # ################### kwargs = {'num_workers': 8, 'pin_memory': True} self.train_loader, self.test_loader = get_dataloaders( dataset, **kwargs) ###################### # Initialize Network # ###################### self.net = get_classifier(dataset) if self.args.cuda: self.net = torch.nn.DataParallel(self.net, device_ids=[0]) self.net = self.net.cuda() ######################## # Initialize Optimizer # ######################## self.optimizer = optim.SGD(self.net.parameters(), lr=self.args.learning_rate, momentum=self.args.momentum) ##################### # Initialize Losses # ##################### self.train_losses = [] self.train_counter = [] self.test_losses = [] self.test_counter = [ i * len(self.train_loader.dataset) for i in range(self.args.n_epochs + 1) ] ########################## # Checkpoint data Losses # ########################## self.curr_best = 0.0 self.best_net_state = None self.best_optimizer_state = None
def main(): # tf.compat.v1.enable_v2_behavior() print("tensorflow version =", tf.__version__) # get and save params of this run params = get_params() # dataset = Seq2SeqDataset_copy( # input_path=params.input_dir, # input_window_length_samples =params.input_window_length_samples, # output_window_length_samples=params.output_window_length_samples, # ) # train_dataset = tf.data.Dataset.from_generator((train_x, train_y),output_types=(tf.float64,tf.float64)) # train_dataset = train_dataset.shuffle(buffer_size=100000) # train_dataset = train_dataset.repeat() datasetD = make_seq_2_seq_dataset(params) train_x = datasetD['train']['x'] train_y = datasetD['train']['y'] test_x = datasetD['test']['x'] test_y = datasetD['test']['y'] val_x = datasetD['val']['x'] val_y = datasetD['val']['y'] train_scenarios = datasetD['train']['scenarios'] test_scenarios = datasetD['test']['scenarios'] val_scenarios = datasetD['val']['scenarios'] params.scaleD = datasetD['scaleD'] # store scaleD in params_out.yml #model = create_model(params) #model.compile(optimizer=params.optimizer, # loss=params.loss, # metrics=get_metrics(params)) input_window_samps = params.input_window_length_samples num_signals = params.num_signals output_window_samps = params.output_window_length_samples train_x = tf.reshape(train_x, [input_window_samps, num_signals]) train_y = tf.reshape(train_y, [output_window_samps, num_signals]) test_x = tf.reshape(test_x, [input_window_samps, num_signals]) test_y = tf.reshape(test_y, [output_window_samps, num_signals]) model = SVR(kernel='rbf', degree=3) history = model.fit([train_x], [train_y]) history_score = history.score(test_x, test_y) print("the score of linear is : %f" % history_score)
def corrbin(argv): """ Function to correlate one source with all the receivers. Usage: python CorrelBinsSingleRotation.py --help to display help message" """ t0 = time.time() binfile = '' verbose = False params = get_params() nthreads = params['nthreads'] corrType = params['corrType'] try: opts, args = getopt.getopt(argv, "hp:d:s:c:t:v", [ "help", "path2bin=", "date=", "station=", "components", "threads=", "verbose" ]) except getopt.GetoptError, e: print e print "correlbins.py -p <path2bin> -d <date> -s <sourceName> -c <components> -t <nthreads> -v <verbose> -h <help>" sys.exit(2)
import tensorflow as tf from collections import deque from data import Data, Batch from data_utils import * from db_engine import DbEngine, QueryGenerator from evaluation import evaluate from itertools import chain from memn2n.memn2n_dialog_generator import MemN2NGeneratorDialog from operator import itemgetter from params import get_params, print_params from reward import calculate_reward from six.moves import range, reduce from sklearn import metrics #from tqdm import tqdm args = get_params() glob = {} class chatBot(object): def __init__(self): # Create Model Store Directory self.run_id = ("task" + str(args.task_id) + "_" + args.data_dir.split('/')[-2] + "_lr-" + str(args.learning_rate) + "_hops-" + str(args.hops) + "_emb-size-" + str(args.embedding_size) + "_sw-" + str(args.soft_weight) + "_wd-" + str(args.word_drop_prob) + "_pw-" + str(args.p_gen_loss_weight) + "_rlmode-" + str(args.rl_mode) + "_idx-" + str(args.model_index) + "_pi_b-" + str(args.pi_b))
def main(): """Balance of plant of a boiling water nuclear reactor. Attributes ---------- end_time: float End of the flow time in SI unit. time_step: float Size of the time step between port communications in SI unit. use_mpi: bool If set to `True` use MPI otherwise use Python multiprocessing. """ # Preamble end_time = 30.0 * unit.minute time_step = 30.0 # seconds show_time = (True, 5 * unit.minute) use_mpi = False # True for MPI; False for Python multiprocessing plot_results = True # True for enabling plotting section below params = get_params() # parameters for BoP BWR #***************************************************************************** # Define Cortix system # System top level plant = Cortix(use_mpi=use_mpi, splash=True) # Network plant_net = plant.network = Network() params['start-time'] = 0.0 params['end-time'] = end_time params['shutdown-time'] = 999.0 * unit.hour params['shutdown-mode'] = False #***************************************************************************** # Create reactor module reactor = BWR(params) reactor.name = 'BWR' reactor.save = True reactor.time_step = time_step reactor.end_time = end_time reactor.show_time = show_time reactor.RCIS = True # Add reactor module to network plant_net.module(reactor) #***************************************************************************** # Create turbine high pressure module params['turbine_inlet_pressure'] = 2 params['turbine_outlet_pressure'] = 0.5 params['high_pressure_turbine'] = True #params_turbine = reactor.params #params_turbine.inlet_pressure = 2 #params.turbine_outlet_pressure = 0.5 turbine_hp = Turbine(params) turbine_hp.name = 'High Pressure Turbine' turbine_hp.save = True turbine_hp.time_step = time_step turbine_hp.end_time = end_time # Add turbine high pressure module to network plant_net.module(turbine_hp) #***************************************************************************** # Create turbine low pressure module params['turbine_inlet_pressure'] = 0.5 params['turbine_outlet_pressure'] = 0.005 params['high_pressure_turbine'] = False params['steam flowrate'] = params['steam flowrate'] / 2 turbine_lp1 = Turbine(params) turbine_lp1.name = 'Low Pressure Turbine 1' turbine_lp1.save = True turbine_lp1.time_step = time_step turbine_lp1.end_time = end_time plant_net.module(turbine_lp1) #***************************************************************************** # Create turbine low pressure module params['turbine_inlet_pressure'] = 0.5 params['turbine_outlet_pressure'] = 0.005 params['high_pressure_turbine'] = False turbine_lp2 = Turbine(params) turbine_lp2.name = 'Low Pressure Turbine 2' turbine_lp2.save = True turbine_lp2.time_step = time_step turbine_lp2.end_time = end_time plant_net.module(turbine_lp2) #***************************************************************************** # Create condenser module params['steam flowrate'] = params['steam flowrate'] * 2 condenser = Condenser() condenser.name = 'Condenser' condenser.save = True condenser.time_step = time_step condenser.end_time = end_time plant_net.module(condenser) #***************************************************************************** params['RCIS-shutdown-time'] = 5 * unit.minute rcis = Cooler(params) rcis.name = 'RCIS' rcis.save = True rcis.time_step = time_step rcis.end_time = end_time plant_net.module(rcis) #***************************************************************************** # Create the BoP network connectivity plant_net.connect([reactor, 'coolant-outflow'], [turbine_hp, 'inflow']) plant_net.connect([turbine_hp, 'outflow-1'], [turbine_lp1, 'inflow']) plant_net.connect([turbine_hp, 'outflow-2'], [turbine_lp2, 'inflow']) plant_net.connect([turbine_lp1, 'outflow-1'], [condenser, 'inflow-1']) plant_net.connect([turbine_lp2, 'outflow-1'], [condenser, 'inflow-2']) plant_net.connect([condenser, 'outflow'], [reactor, 'coolant-inflow']) plant_net.connect([reactor, 'RCIS-outflow'], [rcis, 'coolant-inflow']) plant_net.connect([rcis, 'coolant-outflow'], [reactor, 'RCIS-inflow']) #plant_net.connect([rcis, 'signal-in'], [reactor, 'signal-out']) plant_net.draw(engine='dot', node_shape='folder') #***************************************************************************** # Run network dynamics simulation plant.run() #***************************************************************************** # Plot results if plot_results and (plant.use_multiprocessing or plant.rank == 0): # Reactor plots reactor = plant_net.modules[0] (quant, time_unit ) = reactor.neutron_phase.get_quantity_history('neutron-dens') quant.plot(x_scaling=1 / unit.minute, x_label='Time [m]', y_label=quant.latex_name + ' [' + quant.unit + ']') plt.grid() plt.savefig('startup-neutron-dens.png', dpi=300) (quant, time_unit ) = reactor.neutron_phase.get_quantity_history('delayed-neutrons-cc') quant.plot(x_scaling=1 / unit.minute, x_label='Time [m]', y_label=quant.latex_name + ' [' + quant.unit + ']') plt.grid() plt.savefig('startup-delayed-neutrons-cc.png', dpi=300) (quant, time_unit ) = reactor.coolant_outflow_phase.get_quantity_history('temp') quant.plot(x_scaling=1 / unit.minute, x_label='Time [m]', y_label=quant.latex_name + ' [' + quant.unit + ']') plt.grid() plt.savefig('startup-coolant-outflow-temp.png', dpi=300) (quant, time_unit) = reactor.reactor_phase.get_quantity_history('fuel-temp') quant.plot(x_scaling=1 / unit.minute, x_label='Time [m]', y_label=quant.latex_name + ' [' + quant.unit + ']') plt.grid() plt.savefig('startup-fuel-temp.png', dpi=300) # Turbine high pressure plots turbine_hp = plant_net.modules[1] (quant, time_unit) = turbine_hp.outflow_phase.get_quantity_history('power') quant.plot(x_scaling=1 / unit.minute, x_label='Time [m]', y_label=quant.latex_name + ' [' + quant.unit + ']', title='High Pressure Turbine Power') plt.grid() plt.savefig('startup-turbine-hp-power.png', dpi=300) (quant, time_unit) = turbine_hp.outflow_phase.get_quantity_history('temp') quant.plot(x_scaling=1 / unit.minute, x_label='Time [m]', y_label=quant.latex_name + ' [' + quant.unit + ']', title='High Pressure Turbine Outflow Temperature') plt.grid() plt.savefig('startup-turbine-hp-outflow-temp.png', dpi=300) # Turbine low pressure graphs turbine_lp1 = plant_net.modules[2] (quant, time_unit) = turbine_lp1.outflow_phase.get_quantity_history('power') quant.plot(x_scaling=1 / unit.minute, x_label='Time [m]', y_label=quant.latex_name + ' [' + quant.unit + ']', title='Lower Pressure Turbine 1 Power') plt.grid() plt.savefig('startup-turbine-lp1-power.png', dpi=300) (quant, time_unit) = turbine_lp1.outflow_phase.get_quantity_history('temp') quant.plot(x_scaling=1 / unit.minute, x_label='Time [m]', y_label=quant.latex_name + ' [' + quant.unit + ']', title='Lower Pressure Turbine 1 Outflow Temperature') plt.grid() plt.savefig('startup-turbine-lp1-outflow-temp.png', dpi=300) # Condenser graphs condenser = plant_net.modules[3] (quant, time_unit) = condenser.outflow_phase.get_quantity_history('temp') quant.plot(x_scaling=1 / unit.minute, x_label='Time [m]', y_label=quant.latex_name + ' [' + quant.unit + ']') plt.grid() plt.savefig('startup-condenser-outflow-temp.png', dpi=300) #setup initial values for simulation turbine1_outflow_temp = turbine_hp.outflow_phase.get_value( 'temp', end_time) turbine1_chi = turbine_hp.outflow_phase.get_value('quality', end_time) turbine1_power = turbine_hp.outflow_phase.get_value('power', end_time) turbine2_outflow_temp = turbine_lp1.outflow_phase.get_value( 'temp', end_time) turbine2_chi = turbine_lp1.outflow_phase.get_value('quality', end_time) turbine2_power = turbine_lp1.outflow_phase.get_value('power', end_time) condenser_runoff_temp = condenser.outflow_phase.get_value('temp', end_time) delayed_neutron_cc = reactor.neutron_phase.get_value( 'delayed-neutrons-cc', end_time) n_dens = reactor.neutron_phase.get_value('neutron-dens', end_time) fuel_temp = reactor.reactor_phase.get_value('fuel-temp', end_time) coolant_temp = reactor.coolant_outflow_phase.get_value('temp', end_time) # Values loaded into params when they are needed (module instantiation) # Properly shutdown simulation plant.close() # Now we run shutdown as a seperate simulation with starting parameters equal to the ending # values of the startup simulation #************************************************************************************************** # Preamble start_time = 0.0 * unit.minute end_time = 60 * unit.minute time_step = 30.0 # seconds show_time = (True, 5 * unit.minute) use_mpi = False # True for MPI; False for Python multiprocessing plot_results = True # True for enabling plotting section below params = get_params() # clear params, just to be safe #***************************************************************************** # Define Cortix system # System top level plant = Cortix(use_mpi=use_mpi, splash=True) # Network plant_net = plant.network = Network() params['start-time'] = start_time params['end-time'] = end_time params['shutdown time'] = 0.0 params['shutdown-mode'] = True #***************************************************************************** # Create reactor module params['delayed-neutron-cc'] = delayed_neutron_cc params['n-dens'] = n_dens params['fuel-temp'] = fuel_temp params['coolant-temp'] = coolant_temp params['operating-mode'] = 'shutdown' reactor = BWR(params) reactor.name = 'BWR' reactor.save = True reactor.time_step = time_step reactor.end_time = end_time reactor.show_time = show_time reactor.RCIS = False # Add reactor module to network plant_net.module(reactor) #***************************************************************************** # Create turbine high pressure module params['turbine_inlet_pressure'] = 2 params['turbine_outlet_pressure'] = 0.5 params['high_pressure_turbine'] = True params['turbine-outflow-temp'] = turbine1_outflow_temp params['turbine-chi'] = turbine1_chi params['turbine-work'] = turbine1_power params['turbine-inflow-temp'] = coolant_temp #params_turbine = reactor.params #params_turbine.inlet_pressure = 2 #params.turbine_outlet_pressure = 0.5 turbine_hp = Turbine(params) turbine_hp.name = 'High Pressure Turbine' turbine_hp.save = True turbine_hp.time_step = time_step turbine_hp.end_time = end_time # Add turbine high pressure module to network plant_net.module(turbine_hp) #***************************************************************************** # Create turbine low pressure 1 module params['turbine_inlet_pressure'] = 0.5 params['turbine_outlet_pressure'] = 0.005 params['high_pressure_turbine'] = False params['steam flowrate'] = params['steam flowrate'] / 2 params['turbine-outflow-temp'] = turbine2_outflow_temp params['turbine-inflow-temp'] = turbine1_outflow_temp params['turbine-chi'] = turbine2_chi params['turbine-work'] = turbine2_power turbine_lp1 = Turbine(params) turbine_lp1.name = 'Low Pressure Turbine 1' turbine_lp1.save = True turbine_lp1.time_step = time_step turbine_lp1.end_time = end_time plant_net.module(turbine_lp1) #***************************************************************************** # Create turbine low pressure 2 module params['turbine_inlet_pressure'] = 0.5 params['turbine_outlet_pressure'] = 0.005 params['high_pressure_turbine'] = False turbine_lp2 = Turbine(params) turbine_lp2.name = 'Low Pressure Turbine 2' turbine_lp2.save = True turbine_lp2.time_step = time_step turbine_lp2.end_time = end_time plant_net.module(turbine_lp2) #***************************************************************************** # Create condenser module params['steam flowrate'] = params['steam flowrate'] * 2 params['condenser-runoff-temp'] = condenser_runoff_temp condenser = Condenser() condenser.name = 'Condenser' condenser.save = True condenser.time_step = time_step condenser.end_time = end_time plant_net.module(condenser) #***************************************************************************** params['RCIS-shutdown-time'] = -1 * unit.minute rcis = Cooler(params) rcis.name = 'RCIS' rcis.save = True rcis.time_step = time_step rcis.end_time = end_time plant_net.module(rcis) #***************************************************************************** # Create the BoP network connectivity plant_net.connect([reactor, 'coolant-outflow'], [turbine_hp, 'inflow']) plant_net.connect([turbine_hp, 'outflow-1'], [turbine_lp1, 'inflow']) plant_net.connect([turbine_hp, 'outflow-2'], [turbine_lp2, 'inflow']) plant_net.connect([turbine_lp1, 'outflow-1'], [condenser, 'inflow-1']) plant_net.connect([turbine_lp2, 'outflow-1'], [condenser, 'inflow-2']) plant_net.connect([condenser, 'outflow'], [reactor, 'coolant-inflow']) plant_net.connect([reactor, 'RCIS-outflow'], [rcis, 'coolant-inflow']) plant_net.connect([rcis, 'coolant-outflow'], [reactor, 'RCIS-inflow']) #plant_net.connect([rcis, 'signal-in'], [reactor, 'signal-out']) plant_net.draw(engine='dot', node_shape='folder') #***************************************************************************** # Run network dynamics simulation plant.run() #***************************************************************************** # Plot results if plot_results and (plant.use_multiprocessing or plant.rank == 0): # Reactor plots reactor = plant_net.modules[0] (quant, time_unit ) = reactor.neutron_phase.get_quantity_history('neutron-dens') quant.plot(x_scaling=1 / unit.minute, x_label='Time [m]', y_label=quant.latex_name + ' [' + quant.unit + ']') plt.grid() plt.savefig('shutdown-neutron-dens.png', dpi=300) (quant, time_unit ) = reactor.neutron_phase.get_quantity_history('delayed-neutrons-cc') quant.plot(x_scaling=1 / unit.minute, x_label='Time [m]', y_label=quant.latex_name + ' [' + quant.unit + ']') plt.grid() plt.savefig('shutdown-delayed-neutrons-cc.png', dpi=300) (quant, time_unit ) = reactor.coolant_outflow_phase.get_quantity_history('temp') quant.plot(x_scaling=1 / unit.minute, x_label='Time [m]', y_label=quant.latex_name + ' [' + quant.unit + ']') plt.grid() plt.savefig('shutdown-coolant-outflow-temp.png', dpi=300) (quant, time_unit) = reactor.reactor_phase.get_quantity_history('fuel-temp') quant.plot(x_scaling=1 / unit.minute, x_label='Time [m]', y_label=quant.latex_name + ' [' + quant.unit + ']') plt.grid() plt.savefig('shutdown-fuel-temp.png', dpi=300) # Turbine high pressure plots turbine_hp = plant_net.modules[1] (quant, time_unit) = turbine_hp.outflow_phase.get_quantity_history('power') quant.plot(x_scaling=1 / unit.minute, x_label='Time [m]', y_label=quant.latex_name + ' [' + quant.unit + ']', title='High Pressure Turbine Power') plt.grid() plt.savefig('shutdown-turbine-hp-power.png', dpi=300) (quant, time_unit) = turbine_hp.outflow_phase.get_quantity_history('temp') quant.plot(x_scaling=1 / unit.minute, x_label='Time [m]', y_label=quant.latex_name + ' [' + quant.unit + ']', title='High Pressure Turbine Outflow Temperature') plt.grid() plt.savefig('shutdown-turbine-hp-outflow-temp.png', dpi=300) # Turbine low pressure graphs turbine_lp1 = plant_net.modules[2] (quant, time_unit) = turbine_lp1.outflow_phase.get_quantity_history('power') quant.plot(x_scaling=1 / unit.minute, x_label='Time [m]', y_label=quant.latex_name + ' [' + quant.unit + ']', title='Lower Pressure Turbine 1 Power') plt.grid() plt.savefig('shutdown-turbine-lp1-power.png', dpi=300) (quant, time_unit) = turbine_lp1.outflow_phase.get_quantity_history('temp') quant.plot(x_scaling=1 / unit.minute, x_label='Time [m]', y_label=quant.latex_name + ' [' + quant.unit + ']', title='Lower Pressure Turbine 1 Outflow Temperature') plt.grid() plt.savefig('shutdown-turbine-lp1-outflow-temp.png', dpi=300) # Condenser graphs condenser = plant_net.modules[4] (quant, time_unit) = condenser.outflow_phase.get_quantity_history('temp') quant.plot(x_scaling=1 / unit.minute, x_label='Time [m]', y_label=quant.latex_name + ' [' + quant.unit + ']') plt.grid() plt.savefig('shutdown-condenser-outflow-temp.png', dpi=300) # Shutdown The Simulation plant.close()
def simple_stack_bins(folder, compo='ZZ', stack_method='linear', df=20.): """ Stacking function to stack bins together The output file will be saved in bins/cc_average/ and sorted by stations. :param folder: The folder where are the cc bins (dayly?) :type folder: str :param compo: The component to compute :type compo: str :param stack_method: 'linear' or 'pws' :type stack_method: str :param df: sampling rate :type df: int, float """ params = get_params() if folder.endswith('/'): pass else: folder += '/' sourcesta = os.path.dirname(folder).split('/')[-1] fileout = params['corrType'] + '.' + sourcesta + '.' + compo folderout = '%s/bins/cc_average' % params['WORKDIR'] out = os.path.join(folderout, fileout) print(folder) try: os.makedirs(folderout) except: pass bins = sorted(glob.glob(folder + '*%s*' % compo)) print(len(bins), ' CC for component %s for station %s' % (compo, sourcesta)) for ibin, bin in enumerate(bins): day = os.path.basename(bin) try: matrix = np.load(bin) except: continue if ibin == 0.: divider = np.ones(np.shape(matrix)[0]) if glob.glob(out + '_*.npy') != []: print('>> One stack file already exist: continue.') stacker = np.load(bin, allow_pickle=True) else: print('>> New stacking...') stacker = matrix continue else: for icc, cc in enumerate(matrix): if np.all(cc == 0.): continue else: try: stacker[icc] = stack(np.vstack((stacker[icc], cc)), \ stack_method=stack_method, df=df) # divider[icc]+=1. except Exception as e: print(e) print(sourcesta, day) #for i in np.arange(len(stacker)): # stacker[i] /= divider[i] np.save(out + '.%s' % ibin, stacker) del matrix, stacker
#simple script to test the condenser from params import get_params from condenser import Condenser input = get_params() input['start-time'] = 0 input['end-time'] = 0 condenser = Condenser(input) condenser.tester()
from load_dataset import load_dataset from params import get_params, get_possible_configurations import traceback import tux params, hyperparams_list = get_params() configs = get_possible_configurations(hyperparams_list) print(params) print(hyperparams_list) df = load_dataset(params["nb_yes"]) params["dataset"] = df if len(configs) > 0: for config in configs: for k, v in config.items(): params["hyperparams"][k] = v try: ml = tux.TuxML(**params) except Exception as e: print(traceback.format_exc()) print(e) print("Starting") try:
import torchvision.utils as vutils from torch.autograd import Variable import logging ## Import GANs ## from GANs import * ## Import Classifiers ## from classifiers import * ## Import utility functions ## from utils import progress_bar, init_params, weights_init from params import get_params from dataset import get_dataset from plotter import Plotter ## Hyper parameters ## opt = get_params() ## Logger ## logger = logging.getLogger() file_log_handler = logging.FileHandler(opt.logfile) logger.addHandler(file_log_handler) stderr_log_handler = logging.StreamHandler(sys.stdout) logger.addHandler(stderr_log_handler) logger.setLevel('INFO') formatter = logging.Formatter() file_log_handler.setFormatter(formatter) stderr_log_handler.setFormatter(formatter) logger.info(opt)
T.grad( model_ft.models_stack[-1].cost() + model_ft.models_stack[-1].weightdecay(weightdecay), model_ft.models_stack[-1].params)) def return_grad(test_params, input_x, truth_y): tmp = get_params(model_ft.models_stack[-1]) set_params(model_ft.models_stack[-1], test_params) result = numpy.concatenate( [numpy.array(i).flatten() for i in fun_grad(input_x, truth_y)]) set_params(model_ft.models_stack[-1], tmp) return result p, g, numlinesearches = minimize(get_params(model_ft.models_stack[-1]), return_cost, return_grad, (train_x.get_value(), train_y.get_value()), logreg_epc, verbose=False) set_params(model_ft.models_stack[-1], p) save_params( model_ft, 'ZLIN_4000_1000_4000_1000_4000_1000_4000_10_normhid_nolinb_cae1_dropout.npy' ) print "***error rate: train: %f, test: %f" % (train_set_error_rate(), test_set_error_rate()) ############# # FINE-TUNE #
def main(): param = get_params("/data/zjy/csqa_data", "/home/zhangjingyao/preprocessed_data_10k") pre_process(param)
print f.name(), ':', f.stringValue(), ', ' if (f.name() == "wiki_id"): pids.append(f.stringValue()) print '' print '-------------------------------------\n' return pids if __name__ == "__main__": ls = LuceneSearch() # ls.search("United States") # ls.search("India")# Q15975440 Q2060630 Q1936198 Q668 Q274592 # ls.search("River")# Q20862204 Q20863315 Q7322321 Q11240974 Q2784912 pids = ls.search( "Yangtze") # Q5099535 Q3674754 Q3447500 Q1364589 Q19601344 params = get_params("/data/zjy/csqa_data", "/home/zhangjingyao/preprocessed_data_10k") wikidata, item_data, prop_data, child_par_dict = load_wikidata( params["wikidata_dir"]) # data for entity ,property, type for pid in pids: if (pid in wikidata.keys()): for prop in wikidata[pid]: if prop in prop_data: print(pid + ":" + item_data[pid], prop + ":" + prop_data[prop], [ e + ":" + item_data[e] for e in wikidata[pid][prop] ]) else: print(pid, "not in wikidata")
return StackedBeams def stackbeamfiles(list_beamfiles): for iff, f in enumerate(list_beamfiles): b = sio.loadmat(f)['beam'] if iff == 0: superstack = b else: superstack += b superstack /= iff+1 return superstack if __name__=='__main__': p = get_params() import scipy.io as sio binfile = np.load(p['datdir']+'daily.NL.2015.330.20sps.Z.npy') get_new_binfile(binfile, p['stations'], p['receivers']) freq = [0.5] for f in freq: g = glob.glob('out/beam_DA.2016.*_%s.mat'%f) superstack = stackbeamfiles(g) a = sio.loadmat(g[0]) theta = a['theta'] freqs = a['freqs'] slowness = a['slowness'] sio.savemat('superstackbeam_%s.mat'%freq[0], {'beam':superstack, 'theta':theta, 'freqs':freqs, 'slowness':slowness, 'f':freq[0]})
#=============================================================================== # Read the input and generate the plots #=============================================================================== data = [] data2 = defaultdict(lambda: defaultdict(list)) for j, file in enumerate(files): print file id = int(file[-8:-4]) params = get_params(id) if not params: continue run_id, nepochs, gamma_tot, \ rE_true, closest_star_approach, rE_sample, num_samples = params try: #if 1: vals = loadtxt(file) minL = argmin(vals[:,1]) maxL = argmax(vals[:,1]) b,e = vals[0], vals[-1] d = [rE_true,closest_star_approach,vals,b,e,minL,maxL] data2[nepochs][gamma_tot].append(d)
def optimize_hyperparameters(self, out=""): my_params = get_params(self.use_kernels, self.use_means) print("optimizing hyper-parameters (%i)..." % len(my_params['means'])) mean_params = my_params["means"] std_params = my_params["stds"] bounds = my_params["bounds"] use_log = my_params["use_log"] init_params = self.params print("initialization of parameters :") print(my_params["names"]) print(np.round(self.params, 2).tolist()) def get_neg_log_likelihood(params, *args, **kwargs): self.params = list(params) mu = self.compute_mu(Xtesting=self.X_training()) K = self.compute_K(XX=self.X_training()) Ycentered = self.Y_training() - mu L = np.linalg.cholesky(K) log_det_K = 2 * np.trace(np.log(L)) aux = np.linalg.solve(L, Ycentered.T) YcenteredTxK_inv = np.linalg.solve(L.T, aux).T log_likelihood = -0.5 * np.dot(YcenteredTxK_inv, Ycentered) - 0.5 * log_det_K neg_log_likelihood = -log_likelihood return neg_log_likelihood def get_neg_log_posterior(params, *args, **kwargs): log_likelihood = -np.array(get_neg_log_likelihood(params)) log_prior = 0 for i in range(len(params)): if use_log[i]: x = np.log(params[i]) mu = np.log(mean_params[i]) log_prior -= x else: x = params[i] mu = mean_params[i] log_prior += scipy.stats.norm.logpdf(x, loc=mu, scale=std_params[i]) log_posterior = log_likelihood + log_prior neg_log_posterior = -log_posterior return neg_log_posterior if self.estimator.lower() == "mle": fitness_function = get_neg_log_likelihood elif self.estimator.lower() == "map": fitness_function = get_neg_log_posterior else: raise ValueError("%s estimator is not implemented: should be 'MLE' or 'MAP'" % self.estimator) theta = scipy.optimize.fmin_l_bfgs_b(fitness_function, init_params, approx_grad=True, bounds=bounds, maxiter=300, disp=1) params_found = theta[0] if self.estimator == "MLE": score = get_neg_log_likelihood(params_found) else: score = get_neg_log_posterior(params_found) print('done') print('Parameters found:') for k in range(len(my_params["names"])): print(my_params["names"][k] + " : " + str(params_found[k])) print("Score found : " + str(score)) print('-' * 50) if out: with open(out, 'a', newline='') as csvfile: my_writer = csv.writer(csvfile, delimiter='\t', quoting=csv.QUOTE_MINIMAL) my_writer.writerow(['-' * 50]) my_writer.writerow([self.use_kernels, self.use_means, self.variable, self.estimator]) my_writer.writerow(list(my_params["names"])) my_writer.writerow(list(np.round(params_found, 4))) my_writer.writerow([self.estimator, score]) return params_found.tolist()
dw = 0.02 w = arange(-5.0, 5.0, dw) omega = 1.0 lamb = 1.0 alpha = sqrt(omega**2*lamb) g = alpha/sqrt(omega) idelta = 0.030j dens = 0.7 SC = 1 ''' Nw, Nk, beta, iwm, vn, dw, w, omega, lamb, alpha, g, idelta, dens, SC = params.get_params( int(sys.argv[1])) print('beta %1.3f' % beta) print('alpha = %1.3f' % alpha) print('omega = %1.3f' % omega) print('lamb = %1.3f' % lamb) print('g = %1.3f' % g) print('lamb correct = %1.3f' % (2 * g**2 / (8.0 * omega))) print('Nk = %d' % Nk) print('delta = %1.3f' % idelta.imag) folder = 'data2d/data_sc_renormalized_%db%d_lamb%1.1f_beta%1.1f_idelta%1.3f/' % ( Nk, Nk, lamb, beta, idelta.imag) if not os.path.exists(folder): os.mkdir(folder)
print "cmd:", cmd # execute os.system(cmd) ap = np.loadtxt("tmp.txt") dic_res[q_name+"_"+str(i)] = ap print ap print # append ap_list.append(ap) return ap_list if __name__ == "__main__": params = get_params() E = Evaluator(params) ap_list = E.run_evaluation() print "\n\n" print "=====" for ap in ap_list: print "ap:", ap print "=====" print "mAP:", np.mean(ap_list) print "\n\n"
import configparser import pandas as pd # Import custom modules import stt import tts import luis_scoring as luis import params as pa import helper as he import evaluate as eval ''' COMMAND EXAMPLES ''' # python .\src\glue.py --do_synthesize --input input/scoringfile.txt # Parse arguments parser = argparse.ArgumentParser() args = pa.get_params(parser) # Set arguments fname = args.input audio_files = args.audio do_synthesize = args.do_synthesize do_scoring = args.do_scoring do_transcribe = args.do_transcribe do_evaluate = args.do_evaluate # Get config from file pa.get_config() # Set logging level to INFO logging.getLogger().setLevel(logging.INFO)
def return_cost(test_params, input_x, truth_y): tmp = get_params(model_ft.models_stack[-1]) set_params(model_ft.models_stack[-1], test_params) result = fun_cost(input_x, truth_y) set_params(model_ft.models_stack[-1], tmp) return result
import numpy as np import astropy.units as u from cosmo import cosmo from params import get_params from schechterfn import SchechterLfn, SchechterMfn from dVols import dVols params = get_params() def visibilecut(x, xlim, type='mag'): ''' Function to return unity if M <= M_lim or L >= L_lim; Otherwise, zero. ''' if type == 'mag': return np.piecewise(x, [x > xlim, x <= xlim], [0., 1.]) elif type == 'lum': return np.piecewise(x, [x >= xlim, x < xlim], [1., 0.]) else: raise ValueError("Requested type is not available") def mlimitedM(z, mlim, M_standard=None, kcorr=True): ''' Return M_lim (L_lim) in units of M_standard (L_standard) for given redshift and apparent mag. limit. Here, M_standard is e.g. M* for the Schechter fn. '''
def main(): parser = argparse.ArgumentParser(description="Arg parser for Coal-HMM") parser.add_argument("-f", action="store", dest="f", type=str, required=False) parser.add_argument("-out", action="store", dest="out", type=str, required=True) parser.add_argument("-c", action="store", dest="chromosome", type=str, required=True) parser.add_argument("--rerun", action="store_true", required=False) parser.add_argument("--outgroup", action="store_true", required=False) args = parser.parse_args() intervals_file = args.out if args.rerun: sequences = get_multiple_alignments(args.chromosome) else: sequences = read_seqs(args.f) for align_index, alignments in enumerate(sequences): (s, u, v1, v2), init_ps, (a, b, c, a_t, b_t, c_t), mu = get_params(len(alignments[1][0])) print("Parameters: ", s, u, v1, v2, init_ps, (a, b, c, a_t, b_t, c_t)) transition_probabilities = { "HC1": { "HC1": np.log(1 - 3 * s), "HC2": np.log(s), "HG": np.log(s), "CG": np.log(s), }, "HC2": { "HC1": np.log(u), "HC2": np.log(1 - u - 2 * v1), "HG": np.log(v1), "CG": np.log(v1), }, "HG": { "HC1": np.log(u), "HC2": np.log(v1), "HG": np.log(1 - u - v1 - v2), "CG": np.log(v2), }, "CG": { "HC1": np.log(u), "HC2": np.log(v1), "HG": np.log(v2), "CG": np.log(1 - u - v1 - v2), }, } initial_probabilities = dict(zip(STATES, init_ps)) emission_probabilities = {} for i in range(4): st = STATES[i] if i == 0: emission_probabilities[st] = likelihood(i, a, b, c, mu) else: emission_probabilities[st] = likelihood(i, a_t, b_t, c_t, mu) # Viterbi sequence, p = viterbi( alignments[1], transition_probabilities, emission_probabilities, initial_probabilities, ) intervals = find_intervals(sequence) # Write intervals with open(intervals_file, "a") as f: for i in range(4): f.write("%s\n" % (STATES[i])) f.write("\n".join([("(%d,%d)" % (start, end)) for (start, end) in intervals[i]])) f.write("\n") print("{} Viterbi probability: {:.2f}".format(alignments[0], p)) # Compute posterior probs F, likelihood_f, B, likelihood_b, R, R_combined = forward_backward( alignments[1], transition_probabilities, emission_probabilities, initial_probabilities, ) # Save posterior probs # np.savetxt( # "posteriors.{}.csv".format(align_index), R, delimiter=",", fmt="%.4e" # ) print("{} Forward likelihood: {:.2f}".format(alignments[0], likelihood_f)) # get genealogy from divergent sites divergent_info = divergent_sites(alignments[1], args.outgroup) # Plot for i in range(4): plot( R[i], R_combined[i - 1], intervals, i, align_index, [int(i) for i in alignments[0][1:-1].split(",")], args.chromosome, divergent_info, )
def main(): recipe_file = "recipes/earth.json" params.get_params('params/params.ini', recipe_file) structure.structure(6371000.0)
if plot_nums: plot_title += '\n # trials plotted: ' + str(num_plotted) # Formatting... ax.set_xlabel('Time (ms)') ax.set_ylabel(y_label) plt.axvline(x=0, lw=0.5, color='0') plt.xlim((x[0], x[-1])) box = ax.get_position() ax.set_position([box.x0, box.y0, box.width * 0.9, box.height]) ax.legend(bbox_to_anchor=(1, 1.04), frameon=False) plt.title(plot_title) ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) plt.savefig(make_path(plot_fname, '.png', out_dir=out_dir, base_name=base_name), bbox_inches='tight', dpi=600) # TODO in the plot include info on how many trials were plotted. # TODO Plot a vertical line @ 0. if __name__ == '__main__': params = params.get_params(sys.argv) fname = select_files('.pkl')[0] params['out_dir'] = os.path.dirname(fname) print(fname) e = load_pkl(fname) plot_conds(e, **params)
compute_quantities = True # True -> needs compute_EIF_output set to True save_rate_mod = False # True to save linear rate response functions, # False is default to save memory save_EIF_output = True save_quantities = True plot_filters = False # True -> needs EIF_output plot_quantities = False # location for saving/loading folder = os.path.dirname(os.path.realpath(__file__)) # directory for the files # currently the same directory as for the script itself output_filename = 'EIF_output_for_cascade.h5' quantities_filename = 'quantities_cascade.h5' # PREPARE --------------------------------------------------------------------- params = get_params() # loads default parameter dictionary #params['t_ref'] = 0.0 # refractory period can be >0 (but not all reduced models # in the paper support this) # choose a plausible range of values for mu and sigma: # (which range is plausible depends on the neuron model parameter values) # e.g., for mu from -1 to 5 with spacing 0.025 mV/ms, # for sigma from 0.5 to 5 with spacing 0.1 mV/sqrt(ms) N_mu_vals = 350 #241 N_sigma_vals = 64 mu_vals = np.linspace(-1.0, 5.0, N_mu_vals) sigma_vals = np.linspace(0.5, 5.0, N_sigma_vals) # these values above were used to generate the files EIF_output_for_cascade.h5 # and quantities_cascade.h5 available on Github
def main(): start = time.clock() params = get_params() datasetD = make_seq_2_seq_dataset(params) train_x = datasetD['train']['x'] train_y = datasetD['train']['y'] test_x = datasetD['test']['x'] test_y = datasetD['test']['y'] input_window_samps = params.input_window_length_samples num_signals = params.num_signals output_window_samps = params.output_window_length_samples train_X = np.array(train_x, dtype=float) train_Y = np.array(train_y, dtype=float) nsamples, nx = train_X.shape print(nsamples) print(nx) train_Y = np.reshape(train_Y, (nsamples, output_window_samps * num_signals)) test_X = np.array(test_x, dtype=float) print(test_X.shape) test_Y = np.array(test_y, dtype=float) test_sample, test_nx = test_X.shape test_Y = np.reshape(test_Y, (test_sample, output_window_samps * num_signals)) print(test_Y.shape) train_Y_SVR = train_Y[:, 8:] test_Y_SVR = test_Y[:, 8:] model_SVR = MultiOutputRegressor(SVR(kernel='rbf', degree=3)) model_SVR.fit(train_X, train_Y_SVR) result_SVR = model_SVR.predict(test_X) score_SVR = metrics.mean_squared_error(test_Y_SVR, result_SVR) f = open( 'C:/Users/HD1047208/OneDrive - Bose Corporation/Desktop/data/Hang_SVR.pickle', 'wb') pickle.dump(model_SVR, f) f.close() print(score_SVR) plt.figure() plt.plot(np.arange(len(result_SVR)), result_SVR[:, 0], 'r-', label='predict value_x0') plt.plot(np.arange(len(result_SVR)), result_SVR[:, 1], 'b-', label='predict value_y0') plt.plot(np.arange(len(result_SVR)), result_SVR[:, 2], 'g-', label='predict value_z0') plt.plot(np.arange(len(result_SVR)), result_SVR[:, 3], 'y-', label='predict value_w0') plt.plot(np.arange(len(result_SVR)), test_Y_SVR[:, 0], 'k-', label='test value_x0') plt.plot(np.arange(len(result_SVR)), test_Y_SVR[:, 1], 'm-', label='test value_y0') plt.plot(np.arange(len(result_SVR)), test_Y_SVR[:, 2], 'c-', label='test value_z0') plt.plot(np.arange(len(result_SVR)), test_Y_SVR[:, 3], 'k-', label='test value_w0') plt.xlabel('length') plt.ylabel('result') plt.title('SVR prediction') plt.legend() plt.show() print(result_SVR.shape) print(test_Y.shape) print(time.clock() - start)
from loadecog import load_ecog from plotscatter import plot_scatter, plot_scatter_der from plotline import plot_line import time import numpy as np import pickle import scipy.io as spio from scipy.io import loadmat import os import matplotlib.pyplot as plots if __name__ == '__main__': t0 = time.time() params = get_params(sys.argv) all_channels = params['all_channels'] #select files pupil_path_raw = select_files('Select Pupil Data') pupil_path = pupil_path_raw[0] if all_channels: ecog_path = select_files('Select ECoG Data') print(ecog_path) else: folder = select_folder(prompt='Select your folder') file_names = [ f for f in os.listdir(folder) if ('mat' in f) and 'pupil' in f ] ecog_path = list()
set_params(model_ft.models_stack[-1], tmp) return result fun_grad = theano.function( [model_ft.varin, model_ft.models_stack[-1].vartruth], T.grad(model_ft.models_stack[-1].cost() + model_ft.models_stack[-1].weightdecay(weightdecay), model_ft.models_stack[-1].params) ) def return_grad(test_params, input_x, truth_y): tmp = get_params(model_ft.models_stack[-1]) set_params(model_ft.models_stack[-1], test_params) result = numpy.concatenate([numpy.array(i).flatten() for i in fun_grad(input_x, truth_y)]) set_params(model_ft.models_stack[-1], tmp) return result p, g, numlinesearches = minimize( get_params(model_ft.models_stack[-1]), return_cost, return_grad, (train_x.get_value(), train_y.get_value()), logreg_epc, verbose=False ) set_params(model_ft.models_stack[-1], p) save_params(model_ft, 'ZLIN_4000_1000_4000_1000_4000_1000_4000_10_normhid_nolinb_cae1_dropout.npy') print "***error rate: train: %f, test: %f" % ( train_set_error_rate(), test_set_error_rate() ) ############# # FINE-TUNE # ############# """ print "\n\n... fine-tuning the whole network" truth = T.lmatrix('truth')
import itertools import numpy as np import os import random import sys import tensorflow as tf import plotting import params import scipy from collections import deque, namedtuple from nn_utils import attention if "../" not in sys.path: sys.path.append("../") _config = params.get_params() _env = gym.envs.make(_config.env_name) # VALID_ACTIONS = [0, 1, 2, 3] VALID_ACTIONS = list(range(_env.action_space.n)) # Create directories if not os.path.exists(_config.checkpoint_dir): os.makedirs(_config.checkpoint_dir) if not os.path.exists(_config.monitor_path): os.makedirs(_config.monitor_path) vocabulary = [] with open(_config.vocab_path, 'r') as f: for index, line in enumerate(f):
def return_grad(test_params, input_x, truth_y): tmp = get_params(model_ft.models_stack[-1]) set_params(model_ft.models_stack[-1], test_params) result = numpy.concatenate([numpy.array(i).flatten() for i in fun_grad(input_x, truth_y)]) set_params(model_ft.models_stack[-1], tmp) return result
def test_file(root, f): params = get_params("/data/zjy/csqa_data", "/home/zhangjingyao/preprocessed_data_10k") qa_path = root + f qa_file = open(qa_path) qa_result = open(qa_path[:-4] + "_result.txt", "w+") qa_result.truncate() question_parser = QuestionParser(params, True) sym_seq = [] flag = 0 qa_id = 0 for line in qa_file: if line.startswith("symbolic_seq.append"): flag = 1 key = line[line.find("{") + 1:line.find('}')].split(':')[0].replace('\"', '').strip() val = line[line.find("{") + 1:line.find('}')].split(':')[1].strip() val = val.replace('[', '').replace(']', '').replace("\'", "").split(',') sym_seq.append({key: val}) if line.startswith("response_entities"): count = 0 answer_entities = line.replace("response_entities:", '').strip().split("|") if line.startswith("orig_response"): orig_response = line.replace("orig_response:", '').strip() if (line.startswith("-----------") and flag == 1): time_start = time.time() symbolic_exe = symbolics.Symbolics(sym_seq) answer = symbolic_exe.executor() if (type(answer) == dict): temp = [] for key, value in answer.items(): if (value): temp.extend(list(value)) answer = temp elif type(answer) == type([]) or type(answer) == type(set([])): answer = sorted((list(answer))) elif type(answer) == int: answer = [answer] else: answer = [answer] time_end = time.time() if (orig_response == "None") and answer == []: answer = ['None'] answer_entities = ['None'] if len(answer) > 500: print(("answer is :", list(answer)[:500]), end="", file=qa_result) else: print(("answer is :", list(answer)), end="", file=qa_result) print(('time cost:', time_end - time_start), end="", file=qa_result) for e in answer_entities: if (e in answer): count += 1 print(("orig:", len(answer_entities), "answer:", len(answer), "right:", count), end="", file=qa_result) print('===============================', end="", file=qa_result) flag = 0 sym_seq = [] if ("response" ) in line or line.startswith("context_utterance") or line.replace( "\n", "").isdigit() or "state" in line: print(( qa_result, line, ), end="", file=qa_result)
import params from ksptrack.siamese import train_autoencoder, train_dec, train_init_clst, train_siam def main(cfg): train_autoencoder.main(cfg) train_init_clst.main(cfg) train_siam.main(cfg) # train_dec.main(cfg) train_siam.main(cfg) if __name__ == "__main__": p = params.get_params() p.add('--out-root', required=True) p.add('--in-root', required=True) p.add('--train-dir', required=True) p.add('--run-dir', required=True) p.add('--init-cp-fname') cfg = p.parse_args() main(cfg)
# Do this so that we can have params.py in the current directory, but have # ml.py in a different one. sys.path.insert(0, ".") # --------------------------------------------------------------------------- # params.py is generated by run_ml.py. It contains all the parameter # combinations that will be explored. Each invocation of ml.py receives a # different id, which is passed to the get_params() function defined in # params.py to get the correct parameters. # --------------------------------------------------------------------------- from params import get_params get_params = __import__("params", globals(), locals(), ["get_params"], 0).get_params run_id, nepochs, gamma_tot, rE_true, closest_star_approach, rE_sample, num_samples = get_params(id) # --------------------------------------------------------------------------- # Global parameters. # --------------------------------------------------------------------------- beta = 0.20 # arcsec - Basis function normalization Nbases = 20 # sqrt(Number of basis functions) grid_phys = 2.0 # arcsec - Physical size across grid grid_radius = 35 # pixels grid_size = 2 * grid_radius + 1 # pixels cell_size = grid_phys / grid_size # arcsec/pixel star_mask_size = 1 * cell_size # arcsec