def fitScf(self): """Function to run scf and fit a system of diffuse charges to resulting density. """ basisChanged = psi4.has_option_changed("BASIS") ribasisChanged = psi4.has_option_changed("DF_BASIS_SCF") scftypeChanged = psi4.has_option_changed("SCF_TYPE") basis = psi4.get_option("BASIS") ribasis = psi4.get_option("DF_BASIS_SCF") scftype = psi4.get_option("SCF_TYPE") psi4.print_out(" => Diffuse SCF (Determines Da) <=\n\n") activate(self.molecule) psi4.set_global_option("BASIS", self.basisname) psi4.set_global_option("DF_BASIS_SCF", self.ribasisname) psi4.set_global_option("SCF_TYPE", "DF") energy('scf') psi4.print_out("\n") self.fitGeneral() psi4.clean() psi4.set_global_option("BASIS", basis) psi4.set_global_option("DF_BASIS_SCF", ribasis) psi4.set_global_option("SCF_TYPE", scftype) if not basisChanged: psi4.revoke_option_changed("BASIS") if not ribasisChanged: psi4.revoke_option_changed("DF_BASIS_SCF") if not scftypeChanged: psi4.revoke_option_changed("SCF_TYPE")
# SCF energy and update FH = F.clone() FH.add(H) SCF_E = FH.vector_dot(D) + Enuc dRMS = diis_e.rms() psi4.core.print_out('SCF Iteration %3d: Energy = %4.16f dE = % 1.5E dRMS = %1.5E\n' % (SCF_ITER, SCF_E, (SCF_E - Eold), dRMS)) if (abs(SCF_E - Eold) < E_conv) and (dRMS < D_conv): break Eold = SCF_E # DIIS extrapolate F = diis_obj.extrapolate() # Diagonalize Fock matrix C, Cocc, D = build_orbitals(F) if SCF_ITER == maxiter: psi4.clean() raise Exception("Maximum number of SCF cycles exceeded.\n") psi4.core.print_out('Total time for SCF iterations: %.3f seconds \n\n' % (time.time() - t)) #print(psi4.energy("SCF")) psi4.core.print_out('Final SCF energy: %.8f hartree\n' % SCF_E) psi4.compare_values(-76.0033389840197202, SCF_E, 6, 'SCF Energy')
def run_gaussian_2(name, **kwargs): # throw an exception for open-shells if (psi4.get_option('SCF','REFERENCE') != 'RHF' ): raise ValidationError("""g2 computations require "reference rhf".""") # stash user options: optstash = p4util.OptionsState( ['FNOCC','COMPUTE_TRIPLES'], ['FNOCC','COMPUTE_MP4_TRIPLES'], ['FREEZE_CORE'], ['MP2_TYPE'], ['SCF','SCF_TYPE']) # override default scf_type psi4.set_local_option('SCF','SCF_TYPE','PK') # optimize geometry at scf level psi4.clean() psi4.set_global_option('BASIS',"6-31G(D)") driver.optimize('scf') psi4.clean() # scf frequencies for zpe # NOTE This line should not be needed, but without it there's a seg fault scf_e, ref = driver.frequency('scf', return_wfn=True) # thermodynamic properties du = psi4.get_variable('INTERNAL ENERGY CORRECTION') dh = psi4.get_variable('ENTHALPY CORRECTION') dg = psi4.get_variable('GIBBS FREE ENERGY CORRECTION') freqs = ref.frequencies() nfreq = freqs.dim(0) freqsum = 0.0 for i in range(0, nfreq): freqsum += freqs.get(i) zpe = freqsum / p4const.psi_hartree2wavenumbers * 0.8929 * 0.5 psi4.clean() # optimize geometry at mp2 (no frozen core) level # note: freeze_core isn't an option in MP2 psi4.set_global_option('FREEZE_CORE',"FALSE") psi4.set_global_option('MP2_TYPE', 'CONV') driver.optimize('mp2') psi4.clean() # qcisd(t) psi4.set_local_option('FNOCC','COMPUTE_MP4_TRIPLES',"TRUE") psi4.set_global_option('FREEZE_CORE',"TRUE") psi4.set_global_option('BASIS',"6-311G(D_P)") ref = driver.proc.run_fnocc('qcisd(t)', return_wfn=True, **kwargs) # HLC: high-level correction based on number of valence electrons nirrep = ref.nirrep() frzcpi = ref.frzcpi() nfzc = 0 for i in range (0,nirrep): nfzc += frzcpi[i] nalpha = ref.nalpha() - nfzc nbeta = ref.nbeta() - nfzc # hlc of gaussian-2 hlc = -0.00481 * nalpha -0.00019 * nbeta # hlc of gaussian-1 hlc1 = -0.00614 * nalpha eqci_6311gdp = psi4.get_variable("QCISD(T) TOTAL ENERGY") emp4_6311gd = psi4.get_variable("MP4 TOTAL ENERGY") emp2_6311gd = psi4.get_variable("MP2 TOTAL ENERGY") psi4.clean() # correction for diffuse functions psi4.set_global_option('BASIS',"6-311+G(D_P)") driver.energy('mp4') emp4_6311pg_dp = psi4.get_variable("MP4 TOTAL ENERGY") emp2_6311pg_dp = psi4.get_variable("MP2 TOTAL ENERGY") psi4.clean() # correction for polarization functions psi4.set_global_option('BASIS',"6-311G(2DF_P)") driver.energy('mp4') emp4_6311g2dfp = psi4.get_variable("MP4 TOTAL ENERGY") emp2_6311g2dfp = psi4.get_variable("MP2 TOTAL ENERGY") psi4.clean() # big basis mp2 psi4.set_global_option('BASIS',"6-311+G(3DF_2P)") #run_fnocc('_mp2',**kwargs) driver.energy('mp2') emp2_big = psi4.get_variable("MP2 TOTAL ENERGY") psi4.clean() eqci = eqci_6311gdp e_delta_g2 = emp2_big + emp2_6311gd - emp2_6311g2dfp - emp2_6311pg_dp e_plus = emp4_6311pg_dp - emp4_6311gd e_2df = emp4_6311g2dfp - emp4_6311gd eg2 = eqci + e_delta_g2 + e_plus + e_2df eg2_mp2_0k = eqci + (emp2_big - emp2_6311gd) + hlc + zpe psi4.print_out('\n') psi4.print_out(' ==> G1/G2 Energy Components <==\n') psi4.print_out('\n') psi4.print_out(' QCISD(T): %20.12lf\n' % eqci) psi4.print_out(' E(Delta): %20.12lf\n' % e_delta_g2) psi4.print_out(' E(2DF): %20.12lf\n' % e_2df) psi4.print_out(' E(+): %20.12lf\n' % e_plus) psi4.print_out(' E(G1 HLC): %20.12lf\n' % hlc1) psi4.print_out(' E(G2 HLC): %20.12lf\n' % hlc) psi4.print_out(' E(ZPE): %20.12lf\n' % zpe) psi4.print_out('\n') psi4.print_out(' ==> 0 Kelvin Results <==\n') psi4.print_out('\n') eg2_0k = eg2 + zpe + hlc psi4.print_out(' G1: %20.12lf\n' % (eqci + e_plus + e_2df + hlc1 + zpe)) psi4.print_out(' G2(MP2): %20.12lf\n' % eg2_mp2_0k) psi4.print_out(' G2: %20.12lf\n' % eg2_0k) psi4.set_variable("G1 TOTAL ENERGY",eqci + e_plus + e_2df + hlc1 + zpe) psi4.set_variable("G2 TOTAL ENERGY",eg2_0k) psi4.set_variable("G2(MP2) TOTAL ENERGY",eg2_mp2_0k) psi4.print_out('\n') T = psi4.get_global_option('T') psi4.print_out(' ==> %3.0lf Kelvin Results <==\n'% T) psi4.print_out('\n') internal_energy = eg2_mp2_0k + du - zpe / 0.8929 enthalpy = eg2_mp2_0k + dh - zpe / 0.8929 gibbs = eg2_mp2_0k + dg - zpe / 0.8929 psi4.print_out(' G2(MP2) energy: %20.12lf\n' % internal_energy ) psi4.print_out(' G2(MP2) enthalpy: %20.12lf\n' % enthalpy) psi4.print_out(' G2(MP2) free energy: %20.12lf\n' % gibbs) psi4.print_out('\n') psi4.set_variable("G2(MP2) INTERNAL ENERGY",internal_energy) psi4.set_variable("G2(MP2) ENTHALPY",enthalpy) psi4.set_variable("G2(MP2) FREE ENERGY",gibbs) internal_energy = eg2_0k + du - zpe / 0.8929 enthalpy = eg2_0k + dh - zpe / 0.8929 gibbs = eg2_0k + dg - zpe / 0.8929 psi4.print_out(' G2 energy: %20.12lf\n' % internal_energy ) psi4.print_out(' G2 enthalpy: %20.12lf\n' % enthalpy) psi4.print_out(' G2 free energy: %20.12lf\n' % gibbs) psi4.set_variable("CURRENT ENERGY",eg2_0k) psi4.set_variable("G2 INTERNAL ENERGY",internal_energy) psi4.set_variable("G2 ENTHALPY",enthalpy) psi4.set_variable("G2 FREE ENERGY",gibbs) psi4.clean() optstash.restore() # return 0K g2 results return eg2_0k
diis.add(F, diis_e) # SCF energy and update FH = F.clone() FH.add(H) SCF_E = FH.vector_dot(D) + Enuc dRMS = diis_e.rms() print('SCF Iteration %3d: Energy = %4.16f dE = % 1.5E dRMS = %1.5E' % (SCF_ITER, SCF_E, (SCF_E - Eold), dRMS)) if (abs(SCF_E - Eold) < E_conv) and (dRMS < D_conv): break Eold = SCF_E Dold = D F = psi4.core.Matrix.from_array(diis.extrapolate()) # Diagonalize Fock matrix C, Cocc, D = build_orbitals(F) if SCF_ITER == maxiter: psi4.clean() raise Exception("Maximum number of SCF cycles exceeded.\n") print('Total time for SCF iterations: %.3f seconds \n\n' % (time.time() - t)) print('Final SCF energy: %.8f hartree\n' % SCF_E) psi4.compare_values(-230.7277181465556453, SCF_E, 6, 'SCF Energy')
def _nbody_gufunc(func, method_string, **kwargs): """ Computes the nbody interaction energy, gradient, or Hessian depending on input. Parameters ---------- func : python function Python function that accepts method_string and a molecule and returns a energy, gradient, or Hessian. method_string : str Lowername to be passed to function molecule : psi4.Molecule (default: Global Molecule) Molecule to use in all computations return_wfn : bool (default: False) Return a wavefunction or not bsse_type : str or list (default: None, this function is not called) Type of BSSE correction to compute: CP, NoCP, or VMFC. The first in this list is returned by this function. max_nbody : int Maximum n-body to compute, cannot exceede the number of fragments in the moleucle ptype : str Type of the procedure passed in return_total_data : bool (default: False) If True returns the total data (energy/gradient/etc) of the system otherwise returns interaction data Returns ------- data : return type of func The interaction data wfn : psi4.Wavefunction (optional) A wavefunction with energy/gradient/hessian set appropriotely. This wavefunction also contains Notes ----- This is a generalized univeral function for compute interaction quantities. Examples -------- """ ### ==> Parse some kwargs <== kwargs = p4util.kwargs_lower(kwargs) return_wfn = kwargs.pop('return_wfn', False) ptype = kwargs.pop('ptype', None) return_total_data = kwargs.pop('return_total_data', False) molecule = kwargs.pop('molecule', psi4.get_active_molecule()) molecule.update_geometry() psi4.clean_variables() if ptype not in ['energy', 'gradient', 'hessian']: raise ValidationError("""N-Body driver: The ptype '%s' is not regonized.""" % ptype) # Figure out BSSE types do_cp = False do_nocp = False do_vmfc = False return_method = False # Must be passed bsse_type bsse_type_list = kwargs.pop('bsse_type') if bsse_type_list is None: raise ValidationError("N-Body GUFunc: Must pass a bsse_type") if not isinstance(bsse_type_list, list): bsse_type_list = [bsse_type_list] for num, btype in enumerate(bsse_type_list): if btype.lower() == 'cp': do_cp = True if (num == 0): return_method = 'cp' elif btype.lower() == 'nocp': do_nocp = True if (num == 0): return_method = 'nocp' elif btype.lower() == 'vmfc': do_vmfc = True if (num == 0): return_method = 'vmfc' else: raise ValidationError("N-Body GUFunc: bsse_type '%s' is not recognized" % btype.lower()) max_nbody = kwargs.get('max_nbody', -1) max_frag = molecule.nfragments() if max_nbody == -1: max_nbody = molecule.nfragments() else: max_nbody = min(max_nbody, max_frag) # What levels do we need? nbody_range = range(1, max_nbody + 1) fragment_range = range(1, max_frag + 1) # If we are doing CP lets save them integrals if 'cp' in bsse_type_list and (len(bsse_type_list) == 1): # Set to save RI integrals for repeated full-basis computations ri_ints_io = psi4.get_global_option('DF_INTS_IO') # inquire if above at all applies to dfmp2 or just scf psi4.set_global_option('DF_INTS_IO', 'SAVE') psioh = psi4.IOManager.shared_object() psioh.set_specific_retention(97, True) bsse_str = bsse_type_list[0] if len(bsse_type_list) >1: bsse_str = str(bsse_type_list) psi4.print_out("\n\n") psi4.print_out(" ===> N-Body Interaction Abacus <===\n") psi4.print_out(" BSSE Treatment: %s\n" % bsse_str) cp_compute_list = {x:set() for x in nbody_range} nocp_compute_list = {x:set() for x in nbody_range} vmfc_compute_list = {x:set() for x in nbody_range} vmfc_level_list = {x:set() for x in nbody_range} # Need to sum something slightly different # Build up compute sets if do_cp: # Everything is in dimer basis basis_tuple = tuple(fragment_range) for nbody in nbody_range: for x in it.combinations(fragment_range, nbody): cp_compute_list[nbody].add( (x, basis_tuple) ) if do_nocp: # Everything in monomer basis for nbody in nbody_range: for x in it.combinations(fragment_range, nbody): nocp_compute_list[nbody].add( (x, x) ) if do_vmfc: # Like a CP for all combinations of pairs or greater for nbody in nbody_range: for cp_combos in it.combinations(fragment_range, nbody): basis_tuple = tuple(cp_combos) for interior_nbody in nbody_range: for x in it.combinations(cp_combos, interior_nbody): combo_tuple = (x, basis_tuple) vmfc_compute_list[interior_nbody].add( combo_tuple ) vmfc_level_list[len(basis_tuple)].add( combo_tuple ) # Build a comprehensive compute_range compute_list = {x:set() for x in nbody_range} for n in nbody_range: compute_list[n] |= cp_compute_list[n] compute_list[n] |= nocp_compute_list[n] compute_list[n] |= vmfc_compute_list[n] psi4.print_out(" Number of %d-body computations: %d\n" % (n, len(compute_list[n]))) # Build size and slices dictionaries fragment_size_dict = {frag: molecule.extract_subsets(frag).natom() for frag in range(1, max_frag+1)} start = 0 fragment_slice_dict = {} for k, v in fragment_size_dict.items(): fragment_slice_dict[k] = slice(start, start + v) start += v molecule_total_atoms = sum(fragment_size_dict.values()) # Now compute the energies energies_dict = {} ptype_dict = {} for n in compute_list.keys(): psi4.print_out("\n ==> N-Body: Now computing %d-body complexes <==\n\n" % n) print("\n ==> N-Body: Now computing %d-body complexes <==\n" % n) total = len(compute_list[n]) for num, pair in enumerate(compute_list[n]): psi4.print_out("\n N-Body: Computing complex (%d/%d) with fragments %s in the basis of fragments %s.\n\n" % (num + 1, total, str(pair[0]), str(pair[1]))) ghost = list(set(pair[1]) - set(pair[0])) current_mol = molecule.extract_subsets(list(pair[0]), ghost) ptype_dict[pair] = func(method_string, molecule=current_mol, **kwargs) energies_dict[pair] = psi4.get_variable("CURRENT ENERGY") psi4.print_out("\n N-Body: Complex Energy (fragments = %s, basis = %s: %20.14f)\n" % (str(pair[0]), str(pair[1]), energies_dict[pair])) if 'cp' in bsse_type_list and (len(bsse_type_list) == 1): psi4.set_global_option('DF_INTS_IO', 'LOAD') psi4.clean() # Final dictionaries cp_energy_by_level = {n: 0.0 for n in nbody_range} nocp_energy_by_level = {n: 0.0 for n in nbody_range} cp_energy_body_dict = {n: 0.0 for n in nbody_range} nocp_energy_body_dict = {n: 0.0 for n in nbody_range} vmfc_energy_body_dict = {n: 0.0 for n in nbody_range} # Build out ptype dictionaries if needed if ptype != 'energy': if ptype == 'gradient': arr_shape = (molecule_total_atoms, 3) elif ptype == 'hessian': arr_shape = (molecule_total_atoms * 3, molecule_total_atoms * 3) else: raise KeyError("N-Body: ptype '%s' not recognized" % ptype) cp_ptype_by_level = {n: np.zeros(arr_shape) for n in nbody_range} nocp_ptype_by_level = {n: np.zeros(arr_shape) for n in nbody_range} cp_ptype_body_dict = {n: np.zeros(arr_shape) for n in nbody_range} nocp_ptype_body_dict = {n: np.zeros(arr_shape) for n in nbody_range} vmfc_ptype_body_dict = {n: np.zeros(arr_shape) for n in nbody_range} else: cp_ptype_by_level, cp_ptype_body_dict = None, None nocp_ptype_by_level, nocp_ptype_body_dict = None, None vmfc_ptype_by_level= None # Sum up all of the levels for n in nbody_range: # Energy cp_energy_by_level[n] = sum(energies_dict[v] for v in cp_compute_list[n]) nocp_energy_by_level[n] = sum(energies_dict[v] for v in nocp_compute_list[n]) # Special vmfc case if n > 1: vmfc_energy_body_dict[n] = vmfc_energy_body_dict[n - 1] for tup in vmfc_level_list[n]: vmfc_energy_body_dict[n] += ((-1) ** (n - len(tup[0]))) * energies_dict[tup] # Do ptype if ptype != 'energy': _sum_cluster_ptype_data(ptype, ptype_dict, cp_compute_list[n], fragment_slice_dict, fragment_size_dict, cp_ptype_by_level[n]) _sum_cluster_ptype_data(ptype, ptype_dict, nocp_compute_list[n], fragment_slice_dict, fragment_size_dict, nocp_ptype_by_level[n]) _sum_cluster_ptype_data(ptype, ptype_dict, vmfc_level_list[n], fragment_slice_dict, fragment_size_dict, vmfc_ptype_by_level[n], vmfc=True) # Compute cp energy and ptype if do_cp: for n in nbody_range: if n == max_frag: cp_energy_body_dict[n] = cp_energy_by_level[n] if ptype != 'energy': cp_ptype_body_dict[n][:] = cp_ptype_by_level[n] continue for k in range(1, n + 1): take_nk = nCr(max_frag - k - 1, n - k) sign = ((-1) ** (n - k)) value = cp_energy_by_level[k] cp_energy_body_dict[n] += take_nk * sign * value if ptype != 'energy': value = cp_ptype_by_level[k] cp_ptype_body_dict[n] += take_nk * sign * value _print_nbody_energy(cp_energy_body_dict, "Counterpoise Corrected (CP)") cp_interaction_energy = cp_energy_body_dict[max_nbody] - cp_energy_body_dict[1] psi4.set_variable('Counterpoise Corrected Total Energy', cp_energy_body_dict[max_nbody]) psi4.set_variable('Counterpoise Corrected Interaction Energy', cp_interaction_energy) for n in nbody_range[1:]: var_key = 'CP-CORRECTED %d-BODY INTERACTION ENERGY' % n psi4.set_variable(var_key, cp_energy_body_dict[n] - cp_energy_body_dict[1]) # Compute nocp energy and ptype if do_nocp: for n in nbody_range: if n == max_frag: nocp_energy_body_dict[n] = nocp_energy_by_level[n] if ptype != 'energy': nocp_ptype_body_dict[n][:] = nocp_ptype_by_level[n] continue for k in range(1, n + 1): take_nk = nCr(max_frag - k - 1, n - k) sign = ((-1) ** (n - k)) value = nocp_energy_by_level[k] nocp_energy_body_dict[n] += take_nk * sign * value if ptype != 'energy': value = nocp_ptype_by_level[k] nocp_ptype_body_dict[n] += take_nk * sign * value _print_nbody_energy(nocp_energy_body_dict, "Non-Counterpoise Corrected (NoCP)") nocp_interaction_energy = nocp_energy_body_dict[max_nbody] - nocp_energy_body_dict[1] psi4.set_variable('Non-Counterpoise Corrected Total Energy', nocp_energy_body_dict[max_nbody]) psi4.set_variable('Non-Counterpoise Corrected Interaction Energy', nocp_interaction_energy) for n in nbody_range[1:]: var_key = 'NOCP-CORRECTED %d-BODY INTERACTION ENERGY' % n psi4.set_variable(var_key, nocp_energy_body_dict[n] - nocp_energy_body_dict[1]) # Compute vmfc energy and ptype if do_vmfc: _print_nbody_energy(vmfc_energy_body_dict, "Valiron-Mayer Function Couterpoise (VMFC)") vmfc_interaction_energy = vmfc_energy_body_dict[max_nbody] - vmfc_energy_body_dict[1] psi4.set_variable('Valiron-Mayer Function Couterpoise Total Energy', vmfc_energy_body_dict[max_nbody]) psi4.set_variable('Valiron-Mayer Function Couterpoise Interaction Energy', vmfc_interaction_energy) for n in nbody_range[1:]: var_key = 'VMFC-CORRECTED %d-BODY INTERACTION ENERGY' % n psi4.set_variable(var_key, vmfc_energy_body_dict[n] - vmfc_energy_body_dict[1]) if return_method == 'cp': ptype_body_dict = cp_ptype_body_dict energy_body_dict = cp_energy_body_dict elif return_method == 'nocp': ptype_body_dict = nocp_ptype_body_dict energy_body_dict = nocp_energy_body_dict elif return_method == 'vmfc': ptype_body_dict = vmfc_ptype_body_dict energy_body_dict = vmfc_energy_body_dict else: raise ValidationError("N-Body Wrapper: Invalid return type. Should never be here, please post this error on github.") # Figure out and build return types if return_total_data: ret_energy = energy_body_dict[max_nbody] else: ret_energy = energy_body_dict[max_nbody] ret_energy -= energy_body_dict[1] if ptype != 'energy': if return_total_data: np_final_ptype = ptype_body_dict[max_nbody].copy() else: np_final_ptype = ptype_body_dict[max_nbody].copy() np_final_ptype -= ptype_body_dict[1] ret_ptype = psi4.Matrix(*np_cp_final_ptype.shape) ret_ptype_view = np.asarray(final_ptype) ret_ptype_view[:] = np_final_ptype else: ret_ptype = ret_energy # Build and set a wavefunction wfn = psi4.new_wavefunction(molecule, 'sto-3g') wfn.nbody_energy = energies_dict wfn.nbody_ptype = ptype_dict wfn.nbody_body_energy = energy_body_dict wfn.nbody_body_ptype = ptype_body_dict if ptype == 'gradient': wfn.set_gradient(ret_ptype) elif ptype == 'hessian': wfn.set_hessian(ret_ptype) psi4.set_variable("CURRENT ENERGY", ret_energy) if return_wfn: return (ret_ptype, wfn) else: return ret_ptype
def __init__(self, mol, rhf_e, rhf_wfn, numpy_memory=2): print("\nInitalizing CCSD object...\n") time_init = time.time() # RHF from Psi4 self.rhf_e = rhf_e self.wfn = rhf_wfn self.mints = psi4.core.MintsHelper(self.wfn.basisset()) self.H = np.asarray(self.mints.ao_kinetic()) + np.asarray( self.mints.ao_potential()) self.ndocc = self.wfn.doccpi()[0] self.nmo = self.wfn.nmo() self.nmo = self.H.shape[0] self.memory = numpy_memory self.C = self.wfn.Ca() self.npC = np.asarray(self.C) self.SCF_E = self.wfn.energy() # Update H, transform to MO basis self.H = np.einsum('uj,vi,uv', self.npC, self.npC, self.H) print('Starting AO -> MO transformation...') ERI_Size = (self.nmo**4) * 8 / (1024**3) memory_footprint = ERI_Size * 5 if memory_footprint > self.memory: psi4.clean() raise Exception( "Estimated memory utilization (%4.2f GB) exceeds numpy_memory \ limit of %4.2f GB." % (memory_footprint, self.memory)) # Integral generation from Psi4's MintsHelper self.MO = np.asarray(self.mints.mo_eri(self.C, self.C, self.C, self.C)) # Physicist notation self.MO = self.MO.swapaxes(1, 2) print("Size of the ERI tensor is %4.2f GB, %d basis functions." % (ERI_Size, self.nmo)) # single-precision MO integrals self.MOsp = np.float32(self.MO) # Update nocc and nvirt self.nocc = self.ndocc self.nvirt = self.nmo - self.nocc # Make slices self.slice_o = slice(0, self.nocc) self.slice_v = slice(self.nocc, self.nmo) self.slice_a = slice(0, self.nmo) self.slice_dict = { 'o': self.slice_o, 'v': self.slice_v, 'a': self.slice_a } # Compute Fock matrix self.F = self.H + 2.0 * np.einsum( 'pmqm->pq', self.MO[:, self.slice_o, :, self.slice_o]) self.F -= np.einsum('pmmq->pq', self.MO[:, self.slice_o, self.slice_o, :]) # Single-precision F self.Fsp = np.float32(self.F) # Compute AO density self.P = self.get_P() # Occupied and Virtual orbital energies for the denominators Focc = np.diag(self.Fsp)[self.slice_o] Fvir = np.diag(self.Fsp)[self.slice_v] # Denominator self.Dia = Focc.reshape(-1, 1) - Fvir self.Dijab = Focc.reshape(-1, 1, 1, 1) + Focc.reshape( -1, 1, 1) - Fvir.reshape(-1, 1) - Fvir # Construct initial guess of t1, t2 (t1, t2 at t=0) print('Building initial guess...') # t^a_i self.t1 = np.zeros((self.nocc, self.nvirt)) # t^{ab}_{ij} self.t2 = self.MO[self.slice_o, self.slice_o, self.slice_v, self.slice_v] / self.Dijab # single-precision t1, t2 self.t1_sp = np.float32(self.t1) self.t2_sp = np.float32(self.t2) print('\n..initialized CCSD in %.3f seconds.\n' % (time.time() - time_init))
def run_gaussian_2(name, **kwargs): # throw an exception for open-shells if (psi4.get_option('SCF', 'REFERENCE') != 'RHF'): raise ValidationError("""g2 computations require "reference rhf".""") # stash user options: optstash = p4util.OptionsState(['FNOCC', 'COMPUTE_TRIPLES'], ['FNOCC', 'COMPUTE_MP4_TRIPLES'], ['FREEZE_CORE'], ['MP2_TYPE'], ['SCF', 'SCF_TYPE']) # override default scf_type psi4.set_local_option('SCF', 'SCF_TYPE', 'PK') # optimize geometry at scf level psi4.clean() psi4.set_global_option('BASIS', "6-31G(D)") driver.optimize('scf') psi4.clean() # scf frequencies for zpe # NOTE This line should not be needed, but without it there's a seg fault scf_e, ref = driver.frequency('scf', return_wfn=True) # thermodynamic properties du = psi4.get_variable('INTERNAL ENERGY CORRECTION') dh = psi4.get_variable('ENTHALPY CORRECTION') dg = psi4.get_variable('GIBBS FREE ENERGY CORRECTION') freqs = ref.frequencies() nfreq = freqs.dim(0) freqsum = 0.0 for i in range(0, nfreq): freqsum += freqs.get(i) zpe = freqsum / p4const.psi_hartree2wavenumbers * 0.8929 * 0.5 psi4.clean() # optimize geometry at mp2 (no frozen core) level # note: freeze_core isn't an option in MP2 psi4.set_global_option('FREEZE_CORE', "FALSE") psi4.set_global_option('MP2_TYPE', 'CONV') driver.optimize('mp2') psi4.clean() # qcisd(t) psi4.set_local_option('FNOCC', 'COMPUTE_MP4_TRIPLES', "TRUE") psi4.set_global_option('FREEZE_CORE', "TRUE") psi4.set_global_option('BASIS', "6-311G(D_P)") ref = driver.proc.run_fnocc('qcisd(t)', return_wfn=True, **kwargs) # HLC: high-level correction based on number of valence electrons nirrep = ref.nirrep() frzcpi = ref.frzcpi() nfzc = 0 for i in range(0, nirrep): nfzc += frzcpi[i] nalpha = ref.nalpha() - nfzc nbeta = ref.nbeta() - nfzc # hlc of gaussian-2 hlc = -0.00481 * nalpha - 0.00019 * nbeta # hlc of gaussian-1 hlc1 = -0.00614 * nalpha eqci_6311gdp = psi4.get_variable("QCISD(T) TOTAL ENERGY") emp4_6311gd = psi4.get_variable("MP4 TOTAL ENERGY") emp2_6311gd = psi4.get_variable("MP2 TOTAL ENERGY") psi4.clean() # correction for diffuse functions psi4.set_global_option('BASIS', "6-311+G(D_P)") driver.energy('mp4') emp4_6311pg_dp = psi4.get_variable("MP4 TOTAL ENERGY") emp2_6311pg_dp = psi4.get_variable("MP2 TOTAL ENERGY") psi4.clean() # correction for polarization functions psi4.set_global_option('BASIS', "6-311G(2DF_P)") driver.energy('mp4') emp4_6311g2dfp = psi4.get_variable("MP4 TOTAL ENERGY") emp2_6311g2dfp = psi4.get_variable("MP2 TOTAL ENERGY") psi4.clean() # big basis mp2 psi4.set_global_option('BASIS', "6-311+G(3DF_2P)") #run_fnocc('_mp2',**kwargs) driver.energy('mp2') emp2_big = psi4.get_variable("MP2 TOTAL ENERGY") psi4.clean() eqci = eqci_6311gdp e_delta_g2 = emp2_big + emp2_6311gd - emp2_6311g2dfp - emp2_6311pg_dp e_plus = emp4_6311pg_dp - emp4_6311gd e_2df = emp4_6311g2dfp - emp4_6311gd eg2 = eqci + e_delta_g2 + e_plus + e_2df eg2_mp2_0k = eqci + (emp2_big - emp2_6311gd) + hlc + zpe psi4.print_out('\n') psi4.print_out(' ==> G1/G2 Energy Components <==\n') psi4.print_out('\n') psi4.print_out(' QCISD(T): %20.12lf\n' % eqci) psi4.print_out(' E(Delta): %20.12lf\n' % e_delta_g2) psi4.print_out(' E(2DF): %20.12lf\n' % e_2df) psi4.print_out(' E(+): %20.12lf\n' % e_plus) psi4.print_out(' E(G1 HLC): %20.12lf\n' % hlc1) psi4.print_out(' E(G2 HLC): %20.12lf\n' % hlc) psi4.print_out(' E(ZPE): %20.12lf\n' % zpe) psi4.print_out('\n') psi4.print_out(' ==> 0 Kelvin Results <==\n') psi4.print_out('\n') eg2_0k = eg2 + zpe + hlc psi4.print_out(' G1: %20.12lf\n' % (eqci + e_plus + e_2df + hlc1 + zpe)) psi4.print_out(' G2(MP2): %20.12lf\n' % eg2_mp2_0k) psi4.print_out(' G2: %20.12lf\n' % eg2_0k) psi4.set_variable("G1 TOTAL ENERGY", eqci + e_plus + e_2df + hlc1 + zpe) psi4.set_variable("G2 TOTAL ENERGY", eg2_0k) psi4.set_variable("G2(MP2) TOTAL ENERGY", eg2_mp2_0k) psi4.print_out('\n') T = psi4.get_global_option('T') psi4.print_out(' ==> %3.0lf Kelvin Results <==\n' % T) psi4.print_out('\n') internal_energy = eg2_mp2_0k + du - zpe / 0.8929 enthalpy = eg2_mp2_0k + dh - zpe / 0.8929 gibbs = eg2_mp2_0k + dg - zpe / 0.8929 psi4.print_out(' G2(MP2) energy: %20.12lf\n' % internal_energy) psi4.print_out(' G2(MP2) enthalpy: %20.12lf\n' % enthalpy) psi4.print_out(' G2(MP2) free energy: %20.12lf\n' % gibbs) psi4.print_out('\n') psi4.set_variable("G2(MP2) INTERNAL ENERGY", internal_energy) psi4.set_variable("G2(MP2) ENTHALPY", enthalpy) psi4.set_variable("G2(MP2) FREE ENERGY", gibbs) internal_energy = eg2_0k + du - zpe / 0.8929 enthalpy = eg2_0k + dh - zpe / 0.8929 gibbs = eg2_0k + dg - zpe / 0.8929 psi4.print_out(' G2 energy: %20.12lf\n' % internal_energy) psi4.print_out(' G2 enthalpy: %20.12lf\n' % enthalpy) psi4.print_out(' G2 free energy: %20.12lf\n' % gibbs) psi4.set_variable("CURRENT ENERGY", eg2_0k) psi4.set_variable("G2 INTERNAL ENERGY", internal_energy) psi4.set_variable("G2 ENTHALPY", enthalpy) psi4.set_variable("G2 FREE ENERGY", gibbs) psi4.clean() optstash.restore() # return 0K g2 results return eg2_0k
def _nbody_gufunc(func, method_string, **kwargs): """ Computes the nbody interaction energy, gradient, or Hessian depending on input. Parameters ---------- func : python function Python function that accepts method_string and a molecule and returns a energy, gradient, or Hessian. method_string : str Lowername to be passed to function molecule : psi4.Molecule (default: Global Molecule) Molecule to use in all computations return_wfn : bool (default: False) Return a wavefunction or not bsse_type : str or list (default: None, this function is not called) Type of BSSE correction to compute: CP, NoCP, or VMFC. The first in this list is returned by this function. max_nbody : int Maximum n-body to compute, cannot exceede the number of fragments in the moleucle ptype : str Type of the procedure passed in return_total_data : bool (default: False) If True returns the total data (energy/gradient/etc) of the system otherwise returns interaction data Returns ------- data : return type of func The interaction data wfn : psi4.Wavefunction (optional) A wavefunction with energy/gradient/hessian set appropriotely. This wavefunction also contains Notes ----- This is a generalized univeral function for compute interaction quantities. Examples -------- """ ### ==> Parse some kwargs <== kwargs = p4util.kwargs_lower(kwargs) return_wfn = kwargs.pop('return_wfn', False) ptype = kwargs.pop('ptype', None) return_total_data = kwargs.pop('return_total_data', False) molecule = kwargs.pop('molecule', psi4.get_active_molecule()) molecule.update_geometry() psi4.clean_variables() if ptype not in ['energy', 'gradient', 'hessian']: raise ValidationError( """N-Body driver: The ptype '%s' is not regonized.""" % ptype) # Figure out BSSE types do_cp = False do_nocp = False do_vmfc = False return_method = False # Must be passed bsse_type bsse_type_list = kwargs.pop('bsse_type') if bsse_type_list is None: raise ValidationError("N-Body GUFunc: Must pass a bsse_type") if not isinstance(bsse_type_list, list): bsse_type_list = [bsse_type_list] for num, btype in enumerate(bsse_type_list): if btype.lower() == 'cp': do_cp = True if (num == 0): return_method = 'cp' elif btype.lower() == 'nocp': do_nocp = True if (num == 0): return_method = 'nocp' elif btype.lower() == 'vmfc': do_vmfc = True if (num == 0): return_method = 'vmfc' else: raise ValidationError( "N-Body GUFunc: bsse_type '%s' is not recognized" % btype.lower()) max_nbody = kwargs.get('max_nbody', -1) max_frag = molecule.nfragments() if max_nbody == -1: max_nbody = molecule.nfragments() else: max_nbody = min(max_nbody, max_frag) # What levels do we need? nbody_range = range(1, max_nbody + 1) fragment_range = range(1, max_frag + 1) # Flip this off for now, needs more testing # If we are doing CP lets save them integrals #if 'cp' in bsse_type_list and (len(bsse_type_list) == 1): # # Set to save RI integrals for repeated full-basis computations # ri_ints_io = psi4.get_global_option('DF_INTS_IO') # # inquire if above at all applies to dfmp2 or just scf # psi4.set_global_option('DF_INTS_IO', 'SAVE') # psioh = psi4.IOManager.shared_object() # psioh.set_specific_retention(97, True) bsse_str = bsse_type_list[0] if len(bsse_type_list) > 1: bsse_str = str(bsse_type_list) psi4.print_out("\n\n") psi4.print_out(" ===> N-Body Interaction Abacus <===\n") psi4.print_out(" BSSE Treatment: %s\n" % bsse_str) cp_compute_list = {x: set() for x in nbody_range} nocp_compute_list = {x: set() for x in nbody_range} vmfc_compute_list = {x: set() for x in nbody_range} vmfc_level_list = {x: set() for x in nbody_range } # Need to sum something slightly different # Build up compute sets if do_cp: # Everything is in dimer basis basis_tuple = tuple(fragment_range) for nbody in nbody_range: for x in it.combinations(fragment_range, nbody): cp_compute_list[nbody].add((x, basis_tuple)) if do_nocp: # Everything in monomer basis for nbody in nbody_range: for x in it.combinations(fragment_range, nbody): nocp_compute_list[nbody].add((x, x)) if do_vmfc: # Like a CP for all combinations of pairs or greater for nbody in nbody_range: for cp_combos in it.combinations(fragment_range, nbody): basis_tuple = tuple(cp_combos) for interior_nbody in nbody_range: for x in it.combinations(cp_combos, interior_nbody): combo_tuple = (x, basis_tuple) vmfc_compute_list[interior_nbody].add(combo_tuple) vmfc_level_list[len(basis_tuple)].add(combo_tuple) # Build a comprehensive compute_range compute_list = {x: set() for x in nbody_range} for n in nbody_range: compute_list[n] |= cp_compute_list[n] compute_list[n] |= nocp_compute_list[n] compute_list[n] |= vmfc_compute_list[n] psi4.print_out(" Number of %d-body computations: %d\n" % (n, len(compute_list[n]))) # Build size and slices dictionaries fragment_size_dict = { frag: molecule.extract_subsets(frag).natom() for frag in range(1, max_frag + 1) } start = 0 fragment_slice_dict = {} for k, v in fragment_size_dict.items(): fragment_slice_dict[k] = slice(start, start + v) start += v molecule_total_atoms = sum(fragment_size_dict.values()) # Now compute the energies energies_dict = {} ptype_dict = {} for n in compute_list.keys(): psi4.print_out( "\n ==> N-Body: Now computing %d-body complexes <==\n\n" % n) print("\n ==> N-Body: Now computing %d-body complexes <==\n" % n) total = len(compute_list[n]) for num, pair in enumerate(compute_list[n]): psi4.print_out( "\n N-Body: Computing complex (%d/%d) with fragments %s in the basis of fragments %s.\n\n" % (num + 1, total, str(pair[0]), str(pair[1]))) ghost = list(set(pair[1]) - set(pair[0])) current_mol = molecule.extract_subsets(list(pair[0]), ghost) ptype_dict[pair] = func(method_string, molecule=current_mol, **kwargs) energies_dict[pair] = psi4.get_variable("CURRENT ENERGY") psi4.print_out( "\n N-Body: Complex Energy (fragments = %s, basis = %s: %20.14f)\n" % (str(pair[0]), str(pair[1]), energies_dict[pair])) # Flip this off for now, needs more testing #if 'cp' in bsse_type_list and (len(bsse_type_list) == 1): # psi4.set_global_option('DF_INTS_IO', 'LOAD') psi4.clean() # Final dictionaries cp_energy_by_level = {n: 0.0 for n in nbody_range} nocp_energy_by_level = {n: 0.0 for n in nbody_range} cp_energy_body_dict = {n: 0.0 for n in nbody_range} nocp_energy_body_dict = {n: 0.0 for n in nbody_range} vmfc_energy_body_dict = {n: 0.0 for n in nbody_range} # Build out ptype dictionaries if needed if ptype != 'energy': if ptype == 'gradient': arr_shape = (molecule_total_atoms, 3) elif ptype == 'hessian': arr_shape = (molecule_total_atoms * 3, molecule_total_atoms * 3) else: raise KeyError("N-Body: ptype '%s' not recognized" % ptype) cp_ptype_by_level = {n: np.zeros(arr_shape) for n in nbody_range} nocp_ptype_by_level = {n: np.zeros(arr_shape) for n in nbody_range} cp_ptype_body_dict = {n: np.zeros(arr_shape) for n in nbody_range} nocp_ptype_body_dict = {n: np.zeros(arr_shape) for n in nbody_range} vmfc_ptype_body_dict = {n: np.zeros(arr_shape) for n in nbody_range} else: cp_ptype_by_level, cp_ptype_body_dict = None, None nocp_ptype_by_level, nocp_ptype_body_dict = None, None vmfc_ptype_body_dict = None # Sum up all of the levels for n in nbody_range: # Energy cp_energy_by_level[n] = sum(energies_dict[v] for v in cp_compute_list[n]) nocp_energy_by_level[n] = sum(energies_dict[v] for v in nocp_compute_list[n]) # Special vmfc case if n > 1: vmfc_energy_body_dict[n] = vmfc_energy_body_dict[n - 1] for tup in vmfc_level_list[n]: vmfc_energy_body_dict[n] += ( (-1)**(n - len(tup[0]))) * energies_dict[tup] # Do ptype if ptype != 'energy': _sum_cluster_ptype_data(ptype, ptype_dict, cp_compute_list[n], fragment_slice_dict, fragment_size_dict, cp_ptype_by_level[n]) _sum_cluster_ptype_data(ptype, ptype_dict, nocp_compute_list[n], fragment_slice_dict, fragment_size_dict, nocp_ptype_by_level[n]) _sum_cluster_ptype_data(ptype, ptype_dict, vmfc_level_list[n], fragment_slice_dict, fragment_size_dict, vmfc_ptype_by_level[n], vmfc=True) # Compute cp energy and ptype if do_cp: for n in nbody_range: if n == max_frag: cp_energy_body_dict[n] = cp_energy_by_level[n] if ptype != 'energy': cp_ptype_body_dict[n][:] = cp_ptype_by_level[n] continue for k in range(1, n + 1): take_nk = nCr(max_frag - k - 1, n - k) sign = ((-1)**(n - k)) value = cp_energy_by_level[k] cp_energy_body_dict[n] += take_nk * sign * value if ptype != 'energy': value = cp_ptype_by_level[k] cp_ptype_body_dict[n] += take_nk * sign * value _print_nbody_energy(cp_energy_body_dict, "Counterpoise Corrected (CP)") cp_interaction_energy = cp_energy_body_dict[ max_nbody] - cp_energy_body_dict[1] psi4.set_variable('Counterpoise Corrected Total Energy', cp_energy_body_dict[max_nbody]) psi4.set_variable('Counterpoise Corrected Interaction Energy', cp_interaction_energy) for n in nbody_range[1:]: var_key = 'CP-CORRECTED %d-BODY INTERACTION ENERGY' % n psi4.set_variable(var_key, cp_energy_body_dict[n] - cp_energy_body_dict[1]) # Compute nocp energy and ptype if do_nocp: for n in nbody_range: if n == max_frag: nocp_energy_body_dict[n] = nocp_energy_by_level[n] if ptype != 'energy': nocp_ptype_body_dict[n][:] = nocp_ptype_by_level[n] continue for k in range(1, n + 1): take_nk = nCr(max_frag - k - 1, n - k) sign = ((-1)**(n - k)) value = nocp_energy_by_level[k] nocp_energy_body_dict[n] += take_nk * sign * value if ptype != 'energy': value = nocp_ptype_by_level[k] nocp_ptype_body_dict[n] += take_nk * sign * value _print_nbody_energy(nocp_energy_body_dict, "Non-Counterpoise Corrected (NoCP)") nocp_interaction_energy = nocp_energy_body_dict[ max_nbody] - nocp_energy_body_dict[1] psi4.set_variable('Non-Counterpoise Corrected Total Energy', nocp_energy_body_dict[max_nbody]) psi4.set_variable('Non-Counterpoise Corrected Interaction Energy', nocp_interaction_energy) for n in nbody_range[1:]: var_key = 'NOCP-CORRECTED %d-BODY INTERACTION ENERGY' % n psi4.set_variable( var_key, nocp_energy_body_dict[n] - nocp_energy_body_dict[1]) # Compute vmfc energy and ptype if do_vmfc: _print_nbody_energy(vmfc_energy_body_dict, "Valiron-Mayer Function Couterpoise (VMFC)") vmfc_interaction_energy = vmfc_energy_body_dict[ max_nbody] - vmfc_energy_body_dict[1] psi4.set_variable('Valiron-Mayer Function Couterpoise Total Energy', vmfc_energy_body_dict[max_nbody]) psi4.set_variable( 'Valiron-Mayer Function Couterpoise Interaction Energy', vmfc_interaction_energy) for n in nbody_range[1:]: var_key = 'VMFC-CORRECTED %d-BODY INTERACTION ENERGY' % n psi4.set_variable( var_key, vmfc_energy_body_dict[n] - vmfc_energy_body_dict[1]) if return_method == 'cp': ptype_body_dict = cp_ptype_body_dict energy_body_dict = cp_energy_body_dict elif return_method == 'nocp': ptype_body_dict = nocp_ptype_body_dict energy_body_dict = nocp_energy_body_dict elif return_method == 'vmfc': ptype_body_dict = vmfc_ptype_body_dict energy_body_dict = vmfc_energy_body_dict else: raise ValidationError( "N-Body Wrapper: Invalid return type. Should never be here, please post this error on github." ) # Figure out and build return types if return_total_data: ret_energy = energy_body_dict[max_nbody] else: ret_energy = energy_body_dict[max_nbody] ret_energy -= energy_body_dict[1] if ptype != 'energy': if return_total_data: np_final_ptype = ptype_body_dict[max_nbody].copy() else: np_final_ptype = ptype_body_dict[max_nbody].copy() np_final_ptype -= ptype_body_dict[1] ret_ptype = psi4.Matrix(*np_cp_final_ptype.shape) ret_ptype_view = np.asarray(final_ptype) ret_ptype_view[:] = np_final_ptype else: ret_ptype = ret_energy # Build and set a wavefunction wfn = psi4.new_wavefunction(molecule, 'sto-3g') wfn.nbody_energy = energies_dict wfn.nbody_ptype = ptype_dict wfn.nbody_body_energy = energy_body_dict wfn.nbody_body_ptype = ptype_body_dict if ptype == 'gradient': wfn.set_gradient(ret_ptype) elif ptype == 'hessian': wfn.set_hessian(ret_ptype) psi4.set_variable("CURRENT ENERGY", ret_energy) if return_wfn: return (ret_ptype, wfn) else: return ret_ptype