Пример #1
0
def _pcolormesh(radar, field, sweep=0, cmap=None, norm=None, fig=None, ax=None):
    """
    """

    # Parse figure and axis
    if fig is None:
        fig = plt.gcf()
    if ax is None:
        ax = plt.gca()

    # Parse radar coordinates
    # Convert angles to radians and range to kilometers
    _range = radar.range["data"] / 1000.0
    azimuth = np.radians(radar.get_azimuth(sweep))

    # Compute radar sweep coordinates
    AZI, RNG = np.meshgrid(azimuth, _range, indexing="ij")
    X = RNG * np.sin(AZI)
    Y = RNG * np.cos(AZI)

    # Parse radar data
    data = radar.get_field(sweep, field)

    # Create quadmesh
    qm = ax.pcolormesh(X, Y, data, cmap=cmap, norm=norm, shading="flat", alpha=None, rasterized=True)

    # Create title
    s0, sf = radar.get_start_end(sweep)
    sweep_time = datetimes_from_radar(radar)[(s0 + sf) / 2]
    title = "{} {:.1f} deg\n{}Z\n{}".format(
        radar.metadata["instrument_name"], radar.fixed_angle["data"][sweep], sweep_time.isoformat(), field
    )
    ax.set_title(title)

    return qm
Пример #2
0
def _parse_datastreams(radar, filename, version='-9999'):
    """
    """

    time = os.path.basename(filename).split('.')[0]
    date = datetimes_from_radar(radar).min().date().strftime('%Y%m%d')
    datastream = 'sgpcsaprsur{}.00 : {} : {}.{}'.format(
        FN, version, date, time)

    return datastream
Пример #3
0
def _pcolormesh(
        radar, field, sweep=0, cmap=None, norm=None, fig=None, ax=None):
    """
    """

    # Parse axis and figure parameters
    if fig is None:
        fig = plt.gcf()
    if ax is None:
        ax = plt.gca()

    # Parse radar coordinates
    # Convert angles to radians and range to kilometers
    _range = radar.range['data'] / 1000.0
    azimuth = np.radians(radar.get_azimuth(sweep))

    # Compute index of maximum range
    rf = np.abs(_range - MAX_RANGE).argmin()

    # Compute radar sweep coordinates
    AZI, RNG = np.meshgrid(azimuth, _range[:rf+1], indexing='ij')
    X = RNG * np.sin(AZI)
    Y = RNG * np.cos(AZI)

    # Parse radar data
    data = radar.get_field(sweep, field)[:,:rf+1]

    # Create quadmesh
    qm = ax.pcolormesh(
        X, Y, data, cmap=cmap, norm=norm, shading='flat', alpha=None,
        rasterized=True)

    # Create title
    s0, sf = radar.get_start_end(sweep)
    sweep_time = datetimes_from_radar(radar)[(s0 + sf) / 2]
    title = '{} {:.1f} deg\n{}Z\n{}'.format(
            radar.metadata['instrument_name'],
            radar.fixed_angle['data'][sweep],
            sweep_time.isoformat(), field)
    ax.set_title(title)

    return qm
Пример #4
0
def process_radar(radar, domain, weight, outdir, gatefilter=None, debug=False,
                  verbose=False):
    """
    """

    if verbose:
        print('Processing file: {}'.format(os.path.basename(filename)))

    # Read radar data
    radar = read(filename, exclude_fields=EXCLUDE_FIELDS)

    # Create gatefilter from significant detection
    gf = GateFilter(radar)
    gf.exclude_below(SD_FIELD, 1, op='or', inclusive=False)

    if debug:
        print('Number of sweeps: {}'.format(radar.nsweeps))

    # Grid radar data
    grid = grid_radar(
        radar, domain, weight=weight, fields=FIELDS, gatefilter=gf, toa=TOA,
        max_range=MAX_RANGE, gqi_field=None, legacy=True, debug=debug,
        verbose=verbose)

    # Add new metadata
    _add_metadata(grid, filename)

    # ARM file name protocols
    date_stamp = datetimes_from_radar(radar).min().strftime('%Y%m%d.%H%M%S')
    fname = 'nexradwsr88d{}{}.{}.{}.cdf'.format(QF, FN, DL, date_stamp)

    # Write MMCG NetCDF file
    grid_io.write_grid(
        os.path.join(outdir, fname), grid, format=FORMAT,
        write_proj_coord_sys=False, proj_coord_sys=None,
        arm_time_variables=True, write_point_x_y_z=False,
        write_point_lon_lat_alt=False)

    return
Пример #5
0
def multipanel(radar, outdir, dpi=90, debug=False, verbose=False):
    """
    """

    # Create figure instance
    subs = {'xlim': (-100, 100), 'ylim': (-100, 100)}
    fig, axes = plt.subplots(nrows=len(SWEEPS), ncols=9, subplot_kw=subs)
    fig.subplots_adjust(wspace=0.4, hspace=0.6)

    if debug:
        print 'Number of sweeps: {}'.format(radar.nsweeps)

    # Loop over specified sweeps
    for i, sweep in enumerate(SWEEPS):

        if verbose:
            print 'Plotting sweep index: {}'.format(sweep)

        # (a) Reflectivity
        qma = _pcolormesh(
            radar, REFL_FIELD, sweep=sweep, cmap=CMAP_REFL, norm=NORM_REFL,
            fig=fig, ax=axes[i,0])

        # (b) Doppler velocity
        qmb = _pcolormesh(
            radar, VDOP_FIELD, sweep=sweep, cmap=CMAP_VDOP, norm=NORM_VDOP,
            fig=fig, ax=axes[i,1])

        # (c) Corrected Doppler velocity
        qmc = _pcolormesh(
            radar, VDOP_CORR_FIELD, sweep=sweep, cmap=CMAP_VDOP,
            norm=NORM_VDOP, fig=fig, ax=axes[i,2])

        # (d) Spectrum width
        qmd = _pcolormesh(
            radar, SPW_FIELD, sweep=sweep, cmap=CMAP_SPW, norm=NORM_SPW,
            fig=fig, ax=axes[i,3])

        # (e) Copolar correlation coefficient
        qme = _pcolormesh(
            radar, RHOHV_FIELD, sweep=sweep, cmap=CMAP_RHOHV, norm=NORM_RHOHV,
            fig=fig, ax=axes[i,4])

        # (f) Differential reflectivity
        qmf = _pcolormesh(
            radar, ZDR_FIELD, sweep=sweep, cmap=CMAP_ZDR, norm=NORM_ZDR,
            fig=fig, ax=axes[i,5])

        # (g) Differential phase
        qmg = _pcolormesh(
            radar, PHIDP_FIELD, sweep=sweep, cmap=CMAP_PHIDP, norm=NORM_PHIDP,
            fig=fig, ax=axes[i,6])

        # (h) Normalized coherent power
        qmh = _pcolormesh(
            radar, NCP_FIELD, sweep=sweep, cmap=CMAP_NCP, norm=NORM_NCP,
            fig=fig, ax=axes[i,7])

        # (i) Radar significant detection
        qmi = _pcolormesh(
            radar, SD_FIELD, sweep=sweep, cmap=CMAP_NCP, norm=NORM_NCP,
            fig=fig, ax=axes[i,8])

    # Create colour bars
    qm = [qma, qmb, qmc, qmd, qme, qmf, qmg, qmh, qmi]
    _create_colorbars(fig, axes, qm, TICKS)

    # Format plot axes
    for ax in axes.flat:
        ax.xaxis.set_major_locator(MultipleLocator(20))
        ax.xaxis.set_minor_locator(MultipleLocator(10))
        ax.yaxis.set_major_locator(MultipleLocator(20))
        ax.yaxis.set_minor_locator(MultipleLocator(10))
        ax.set_xlabel('Eastward Range (km)')
        ax.set_ylabel('Northward Range (km)')
        ax.grid(which='major')

    # Define image file name
    date_stamp = datetimes_from_radar(radar).min().strftime('%Y%m%d.%H%M%S')
    filename = '{}.png'.format(date_stamp)

    # Save figure
    fig.savefig(os.path.join(outdir, filename), format='png', dpi=dpi,
                bbox_inches='tight')

    # Close figure and axes to free memory
    plt.cla()
    plt.clf()
    plt.close(fig)

    return
Пример #6
0
def multipanel(radar, outdir, dpi=90, debug=False, verbose=False):
    """
    """

    # Create figure instance
    subs = {'xlim': (-100, 100), 'ylim': (-100, 100)}
    fig, axes = plt.subplots(nrows=len(SWEEPS), ncols=3, subplot_kw=subs)
    fig.subplots_adjust(wspace=0.6, hspace=0.6)

    if debug:
        print('Number of sweeps: {}'.format(radar.nsweeps))

    # Loop over specified sweeps
    for i, sweep in enumerate(SWEEPS):

        if verbose:
            print('Plotting sweep index: {}'.format(sweep))

        # (a) Reflectivity
        qma = _pcolormesh(
            radar, REFL_FIELD, sweep=sweep, cmap=CMAP_REFL, norm=NORM_REFL,
            fig=fig, ax=axes[i,0])

        # (b) Doppler velocity
        qmb = _pcolormesh(
            radar, VDOP_FIELD, sweep=sweep+1, cmap=CMAP_VDOP, norm=NORM_VDOP,
            fig=fig, ax=axes[i,1])

        # (c) Spectrum width
        qmc = _pcolormesh(
            radar, SPW_FIELD, sweep=sweep+1, cmap=CMAP_SPW, norm=NORM_SPW,
            fig=fig, ax=axes[i,2])

    # Create color bars
    qm = [qma, qmb, qmc]
    _create_colorbars(fig, axes, qm, TICKS)

    # Format plot axes
    for ax in axes.flat:
        ax.xaxis.set_major_locator(MultipleLocator(50))
        ax.xaxis.set_minor_locator(MultipleLocator(10))
        ax.yaxis.set_major_locator(MultipleLocator(50))
        ax.yaxis.set_minor_locator(MultipleLocator(10))
        ax.set_xlabel('Eastward Range (km)')
        ax.set_ylabel('Northward Range (km)')
        ax.grid(which='major')

    # Define image file name
    date_stamp = datetimes_from_radar(radar).min().strftime('%Y%m%d.%H%M%S')
    fname = '{}.png'.format(date_stamp)

    # Save figure
    fig.savefig(os.path.join(outdir, fname), format='png', dpi=dpi,
                bbox_inches='tight', frameon=True, transparent=False)

    # Close figure to free memory
    plt.cla()
    plt.clf()
    plt.close(fig)

    return
Пример #7
0
def multipanel(radar, outdir, dpi=90, debug=False, verbose=False):
    """
    """

    # Create figure instance
    subs = {"xlim": (-117, 117), "ylim": (-117, 117)}
    fig, axes = plt.subplots(nrows=len(SWEEPS), ncols=7, subplot_kw=subs)
    fig.subplots_adjust(wspace=0.5, hspace=0.6)

    if debug:
        print("Number of sweeps: {}".format(radar.nsweeps))

    # Loop over specified sweeps
    for i, sweep in enumerate(SWEEPS):

        if verbose:
            print("Plotting sweep index: {}".format(sweep))

        # (a) Reflectivity
        qma = _pcolormesh(radar, REFL_FIELD, sweep=sweep, cmap=CMAP_REFL, norm=NORM_REFL, fig=fig, ax=axes[i, 0])

        # (b) Doppler velocity
        qmb = _pcolormesh(radar, VDOP_FIELD, sweep=sweep, cmap=CMAP_VDOP, norm=NORM_VDOP, fig=fig, ax=axes[i, 1])

        # (c) Spectrum width
        qmc = _pcolormesh(radar, SPW_FIELD, sweep=sweep, cmap=CMAP_SPW, norm=NORM_SPW, fig=fig, ax=axes[i, 2])

        # (d) Copolar correlation coefficient
        qmd = _pcolormesh(radar, RHOHV_FIELD, sweep=sweep, cmap=CMAP_RHOHV, norm=NORM_RHOHV, fig=fig, ax=axes[i, 3])

        # (e) Differential reflectivity
        qme = _pcolormesh(radar, ZDR_FIELD, sweep=sweep, cmap=CMAP_ZDR, norm=NORM_ZDR, fig=fig, ax=axes[i, 4])

        # (f) Differential phase
        qmf = _pcolormesh(radar, PHIDP_FIELD, sweep=sweep, cmap=CMAP_PHIDP, norm=NORM_PHIDP, fig=fig, ax=axes[i, 5])

        # (g) Normalized coherent power
        qmg = _pcolormesh(radar, NCP_FIELD, sweep=sweep, cmap=CMAP_NCP, norm=NORM_NCP, fig=fig, ax=axes[i, 6])

    # Create color bars
    qm = [qma, qmb, qmc, qmd, qme, qmf, qmg]
    _create_colorbars(fig, axes, qm, TICKS)

    # Format plot axes
    for ax in axes.flat:
        ax.xaxis.set_major_locator(MultipleLocator(50))
        ax.xaxis.set_minor_locator(MultipleLocator(10))
        ax.yaxis.set_major_locator(MultipleLocator(50))
        ax.yaxis.set_minor_locator(MultipleLocator(10))
        ax.set_xlabel("Eastward Range (km)")
        ax.set_ylabel("Northward Range (km)")
        ax.grid(which="major")

    # Define image file name
    date_stamp = datetimes_from_radar(radar).min().strftime("%Y%m%d.%H%M%S")
    fname = "{}.png".format(date_stamp)

    # Save figure
    fig.savefig(os.path.join(outdir, fname), format="png", dpi=dpi, bbox_inches="tight")

    # Close figure to free memory
    plt.cla()
    plt.clf()
    plt.close(fig)

    return
Пример #8
0
def process_file(filename, outdir, debug=False, verbose=False):
    """
    """

    # Read radar data
    if USE_RADX:
        radar = read_radx(filename)
    else:
        radar = read(filename, exclude_fields=None)

    # Radar VCP check
    if CHECK_VCP:
        if NSWEEPS is not None and radar.nsweeps != NSWEEPS:
            return

    if verbose:
        print 'Processing file: {}'.format(os.path.basename(filename))

    if debug:
        print 'Number of sweeps: {}'.format(radar.nsweeps)

    if USE_RADX:
        # Create file metadata object
        meta = FileMetadata(
            'nexrad_archive', field_names=None, additional_metadata=None,
            file_field_names=False, exclude_fields=None)

        # Remove unnecessary fields
        for field in REMOVE_FIELDS:
            radar.fields.pop(field, None)

        # Rename fields to default Py-ART names
        for field in radar.fields.keys():
            default_field = meta.get_field_name(field)
            radar.fields[default_field] = radar.fields.pop(field, None)

    # Step 1: Determine radar significant detection
    # Since NEXRAD WSR-88D Level II data is already processed to some degree,
    # this amounts to essentially removing salt and pepper noise
    gf = noise._significant_features(
        radar, REFL_FIELD, gatefilter=None, size_bins=SIZE_BINS,
        size_limits=SIZE_LIMITS, structure=STRUCTURE, remove_size_field=False,
        fill_value=None, size_field=None, debug=debug)
    gf = noise.significant_detection(
        radar, gatefilter=gf, remove_small_features=False, size_bins=SIZE_BINS,
        size_limits=SIZE_LIMITS, fill_holes=FILL_HOLES, dilate=DILATE,
        structure=STRUCTURE, iterations=1, rays_wrap_around=False,
        min_ncp=None, detect_field=None, debug=debug, verbose=verbose)

    # Step 2: Doppler velocity correction
    if DEALIAS == 'phase':
        vdop_corr = dealias_unwrap_phase(
            radar, gatefilter=gf, unwrap_unit='sweep', nyquist_vel=None,
            rays_wrap_around=True, keep_original=False, vel_field=None,
            corr_vel_field=VDOP_CORR_FIELD)
    elif DEALIAS == 'region':
        vdop_corr = dealias_region_based(
            radar, gatefilter=gf, interval_splits=INTERVAL_SPLITS,
            interval_limits=None, skip_between_rays=2, skip_along_ray=2,
            centered=True, nyquist_vel=None, rays_wrap_around=True,
            keep_original=False, vel_field=None,
            corr_vel_field=VDOP_CORR_FIELD)
    else:
        raise ValueError('Unsupported velocity correction routine')

    radar.add_field(VDOP_CORR_FIELD, vdop_corr, replace_existing=True)

    # Step 3: Reflectivity correction
    # Currently no correction procedures are applied to the reflectivity field
    # due to minimal attenuation at S-band
    refl_corr = radar.fields[REFL_FIELD].copy()
    radar.add_field(REFL_CORR_FIELD, refl_corr, replace_existing=True)

    # Step 4: Interpolate missing gates
    basic_fixes.interpolate_missing(
        radar, fields=FILL_FIELDS, interp_window=FILL_WINDOW,
        interp_sample=FILL_SAMPLE, kind='mean', rays_wrap_around=False,
        fill_value=None, debug=debug, verbose=verbose)

    # Add metadata
    _add_metadata(radar, filename)

    # ARM file name protocols
    date_stamp = datetimes_from_radar(radar).min().strftime('%Y%m%d.%H%M%S')
    fname = 'nexradwsr88d{}cmac{}.{}.{}.cdf'.format(QF, FN, DL, date_stamp)

    # Write CMAC NetCDF file
    write_cfradial(os.path.join(outdir, fname), radar, format=FORMAT,
                   arm_time_variables=True)

    return
Пример #9
0
def process_file(filename, outdir, debug=False, verbose=False):
    """
    """

    if verbose:
        print 'Processing file: {}'.format(os.path.basename(filename))

    # Read radar data
    radar = read_mdv(filename, exclude_fields=EXLUDE_FIELDS)

    if debug:
        print 'Number of sweeps: {}'.format(radar.nsweeps)

    # Step 1: Remove last 7 gates from each ray
    # These gates are reserved for signal testing only
    for field in radar.fields.keys():
        if verbose:
            print 'Removing signal testing gates: {}'.format(field)
        radar.fields[field]['data'][:,-7:] = np.ma.masked

    # Step 2: Radar significant detection
    # Includes Doppler velocity coherency, Doppler velocity phasor coherency,
    # and significant echo boundary detection
    gf = noise.velocity_coherency(
        radar, gatefilter=None, text_bins=VDOP_TEXT_BINS,
        text_limits=VDOP_TEXT_LIMITS, texture_window=TEXTURE_WINDOW,
        texture_sample=TEXTURE_SAMPLE, max_texture=None, nyquist=None,
        rays_wrap_around=False, remove_small_features=False, fill_value=None,
        vdop_field=VDOP_FIELD, text_field=None, coherent_field=None,
        debug=debug, verbose=verbose)
    gf = noise.velocity_phasor_coherency(
        radar, gatefilter=gf, text_bins=PHASOR_TEXT_BINS,
        text_limits=PHASOR_TEXT_LIMITS, texture_window=TEXTURE_WINDOW,
        texture_sample=TEXTURE_SAMPLE, max_texture=None,
        rays_wrap_around=False, remove_small_features=False, fill_value=None,
        vdop_field=VDOP_FIELD, phasor_field=None, text_field=None,
        coherent_field=None, debug=debug, verbose=verbose)
    gf = noise.echo_boundaries(
        radar, gatefilter=gf, texture_window=TEXTURE_WINDOW,
        texture_sample=TEXTURE_SAMPLE, min_texture=None,
        bounds_percentile=BOUNDS_PERCENTILE, remove_small_features=False,
        rays_wrap_around=False, fill_value=None, sqi_field=NCP_FIELD,
        text_field=None, bounds_field=None, debug=debug, verbose=verbose)
    gf = noise.significant_detection(
        radar, gatefilter=gf, remove_small_features=True, size_bins=SIZE_BINS,
        size_limits=SIZE_LIMITS, fill_holes=FILL_HOLES, dilate=DILATE,
        structure=STRUCTURE, iterations=ITERATIONS, min_ncp=MIN_NCP,
        ncp_field=NCP_FIELD, detect_field=None, debug=debug, verbose=verbose)

    # Step 3: Compute radar texture fields
    texture_fields.add_textures(
        radar, fields=TEXTURE_FIELDS, gatefilter=None,
        texture_window=TEXTURE_WINDOW, texture_sample=TEXTURE_SAMPLE,
        min_sweep=None, max_sweep=None, min_range=None, max_range=None,
        min_ncp=None, rays_wrap_around=False, fill_value=None,
        ncp_field=NCP_FIELD)

    # Step 4: Doppler velocity correction
    if DEALIAS.upper() == 'REGION':
        vdop_corr = dealias_region_based(
            radar, gatefilter=gf, interval_splits=INTERVAL_SPLITS,
            interval_limits=None, skip_between_rays=2, skip_along_ray=2,
            centered=True, nyquist_vel=None, rays_wrap_around=True,
            keep_original=False, vel_field=VDOP_FIELD,
            corr_vel_field=CORR_VDOP_FIELD)
    else:
        raise ValueError('Unsupported velocity correction routine')

    radar.add_field(CORR_VDOP_FIELD, vdop_corr, replace_existing=False)

    # TODO
    # Step 5: Reflectivity correction
    refl_corr = radar.fields[REFL_FIELD].copy()
    radar.add_field(CORR_REFL_FIELD, refl_corr, replace_existing=False)

    # Step 6: Interpolate missing gates
    basic_fixes.interpolate_missing(
        radar, fields=FILL_FIELDS, interp_window=FILL_WINDOW,
        interp_sample=FILL_SAMPLE, kind='mean', rays_wrap_around=False,
        fill_value=None, debug=debug, verbose=verbose)

    # Step 7: Remove unwanted fields before writing
    for field in REMOVE_FIELDS:
        if verbose:
            print 'Removing radar field before writing: {}'.format(field)
        radar.fields.pop(field, None)

    # Parse metadata
    _add_metadata(radar, filename)

    # ARM file name protocols
    date = datetimes_from_radar(radar).min().strftime('%Y%m%d.%H%M%S')
    fname = 'sgpcsaprsurcmac{}.{}.{}.cdf'.format(FN, DL, date)

    # Write CMAC NetCDF file
    write_cfradial(os.path.join(outdir, fname), radar, format=FORMAT,
                   arm_time_variables=True)

    return