def test_histo_plot(): h_pt = ntuple_column_histo(nt, 'pt') histo_plot(h_pt, color='blue', show=False)
import math from random import gauss from pyhistuples.pyntuple.ntuple import NTuple from matplotlib import pyplot from pyhistuples.pyhistoplots import ntuple_plot, histo_plot, ntuple_column_histo from pyhistuples.pyhistogram.histogram import Histogram, Axis mu_p = 15. mu_pt = 5. sigma_p = 10. sigma_pt = 5. nt = NTuple('x', 'p', 'pt') h_pt = Histogram(axis=Axis(100, -50, 50, label='pt')) for x in xrange(10000) : val = gauss(mu_pt, sigma_pt) h_pt.fill(val) # greem plot without errors plot_pt = histo_plot(h_pt, color='green', errorfunction=None) # blue plot with default errors (poissonSigma) plot_pt_errors = histo_plot(h_pt, color='blue') print 'plot_pt range', plot_pt.axes[0].xaxis.get_view_interval() print 'plot_pt_errors range', plot_pt_errors.axes[0].xaxis.get_view_interval()
import math from random import gauss from pyhistuples.pyntuple.ntuple import NTuple from matplotlib import pyplot from pyhistuples.pyhistoplots import ntuple_plot, histo_plot, ntuple_column_histo from pyhistuples.pyhistogram.histogram import Histogram, Axis mu_p = 15. mu_pt = 5. sigma_p = 10. sigma_pt = 5. nt = NTuple('x', 'p', 'pt') h_pt = Histogram(axis=Axis(100, -50, 50, label='pt')) for x in xrange(10000): val = gauss(mu_pt, sigma_pt) h_pt.fill(val) # greem plot without errors plot_pt = histo_plot(h_pt, color='green', errorfunction=None) # blue plot with default errors (poissonSigma) plot_pt_errors = histo_plot(h_pt, color='blue') print 'plot_pt range', plot_pt.axes[0].xaxis.get_view_interval() print 'plot_pt_errors range', plot_pt_errors.axes[0].xaxis.get_view_interval()
import math from random import gauss from pyhistuples.pyntuple.ntuple import NTuple from matplotlib import pyplot from pyhistuples.pyhistoplots import ntuple_plot, histo_plot, ntuple_column_histo mu_p = 15. mu_pt = 5. sigma_p = 10. sigma_pt = 5. nt = NTuple('x', 'p', 'pt') for x in xrange(10000) : nt.fill('x',x) nt.fill('p', gauss(mu_p, sigma_p)) nt.fill('pt', gauss(mu_pt, sigma_pt)) nt.write() pt_plot = ntuple_plot(nt, 'pt') h_pt = ntuple_column_histo(nt, 'pt') histo_plot(h_pt, color='blue')
def __call__(self, params) : return map(lambda g, e : g-e, fitfunc(params, self.x), self.y) mu_pt = 5. sigma_pt = 15. sigma2_pt=pow(sigma_pt,2) h_pt = Histogram(axis=Axis(100, -50, 50, label='pt')) for i in xrange(10000) : h_pt.fill(gauss(mu_pt, sigma_pt)) p0 = [15., 10, 1000.] # mu, sigma, integral. errfunc = ErrFunc(h_pt, fitfunc) p0, success = optimize.leastsq(errfunc, p0[:]) print 'Success:', success, 'p[0] =', p0[0], ' p[1] =', p0[1], ' p0[2] =', p0[2] plot_pt = histo_plot(h_pt, color='green') # plot the fit results on top. fit=plot_pt.add_subplot(1,1,1) pt = [bin.centre for bin in h_pt.filledBins()] fitval = fitfunc(p0,pt) fit.plot(pt, fitval, 'r') plot_pt.show()
def test_histo_plot() : h_pt = ntuple_column_histo(nt, 'pt') histo_plot(h_pt, color='blue', show = False)