Пример #1
0
    def _initialize(self, ):
        assert len(self.input.params['shape']) == 2, 'Are you joking ?'
        self.sample_rate = sr = self.input.params['sample_rate']
        self.nb_channel = self.input.params['shape'][1]
        buf_size = int(self.input.params['sample_rate'] * self.max_xsize)

        # channel names
        channel_info = self.inputs['signals'].params.get('channel_info', None)
        if channel_info is None:
            self.channel_names = [
                'ch{}'.format(c) for c in range(self.nb_channel)
            ]
        else:
            self.channel_names = [ch_info['name'] for ch_info in channel_info]

        # create proxy input to ensure sharedarray with time axis 1
        if self.input.params['transfermode'] == 'sharedmem' and self.input.params['axisorder'] is not None \
                and tuple(self.input.params['axisorder']) == (1,0):
            self.conv = None
            # TODO raise here
        else:
            # if input is not transfermode creat a proxy
            if self.local_workers:
                self.conv = StreamConverter()
            else:
                ng = self.nodegroup_friends[-1]
                self.conv = ng.create_node('StreamConverter')
                self.conv.ng_proxy = ng
            self.conv.configure()

            # the inputstream is not needed except for parameters
            input_spec = dict(self.input.params)
            self.conv.input.connect(input_spec)

            self.conv.output.configure(
                protocol='tcp',
                interface='127.0.0.1',
                port='*',
                dtype='float32',
                transfermode='sharedmem',
                streamtype='analogsignal',
                buffer_size=buf_size,
                axisorder=[1, 0],
                shape=(-1, self.nb_channel),
                double=True,
                fill=0,
            )
            self.conv.initialize()

        self.workers = []
        self.input_maps = []

        #~ self.global_poller = ThreadPollInput(input_stream=self.input, return_data=None) # only valid when no conv
        self.global_poller = ThreadPollOutput(output_stream=self.conv.output,
                                              return_data=False)
        self.global_timer = QtCore.QTimer(interval=500)
        self.global_timer.timeout.connect(self.compute_maps)

        if not self.local_workers:
            self.map_pollers = []

        for i in range(self.nb_channel):

            # create worker
            if self.local_workers:
                worker = TimeFreqWorker()
            else:
                ng = self.nodegroup_friends[i % max(
                    len(self.nodegroup_friends) - 1, 1)]
                worker = ng.create_node('TimeFreqWorker')
                worker.ng_proxy = ng
            worker.configure(channel=i, local=self.local_workers)
            worker.input.connect(self.conv.output)
            if self.local_workers:
                protocol = 'inproc'
            else:
                protocol = 'tcp'
            worker.output.configure(protocol=protocol,
                                    transfermode='plaindata')
            worker.initialize()
            self.workers.append(worker)

            # socket stream for maps from worker
            input_map = InputStream()
            out_params = worker.output.params
            if not isinstance(out_params, dict):
                # worker is remote; request attribute from remote process.
                out_params = out_params._get_value()
            else:
                # copy to prevent modification
                out_params = dict(out_params)
            stream_spec = out_params
            input_map.connect(worker.output)
            self.input_maps.append(input_map)
            if self.local_workers:
                worker.wt_map_done.connect(self.on_new_map_local)
            else:
                poller = ThreadPollInput(input_stream=input_map,
                                         return_data=True)
                poller.new_data.connect(self.on_new_map_socket)
                poller.chan = i
                self.map_pollers.append(poller)

        # This is used to diffred heavy action whena changing params (setting plots, compute wavelet, ...)
        # this avoid overload on CPU if multiple changes occurs in a short time
        self.mutex_action = Mutex()
        self.actions = OrderedDict([
            (self.create_grid, False),
            (self.initialize_time_freq, False),
            (self.initialize_plots, False),
        ])
        self.timer_action = QtCore.QTimer(singleShot=True, interval=300)
        self.timer_action.timeout.connect(self.apply_actions)

        # Create parameters
        all = []
        for i in range(self.nb_channel):
            by_chan_p = [{
                'name': 'label',
                'type': 'str',
                'value': self.channel_names[i],
                'readonly': True
            }] + list(self._default_by_channel_params)
            all.append({
                'name': 'ch{}'.format(i),
                'type': 'group',
                'children': by_chan_p
            })
        self.by_channel_params = pg.parametertree.Parameter.create(
            name='AnalogSignals', type='group', children=all)
        self.params = pg.parametertree.Parameter.create(
            name='Global options', type='group', children=self._default_params)
        self.all_params = pg.parametertree.Parameter.create(
            name='all param',
            type='group',
            children=[self.params, self.by_channel_params])
        self.params.param('xsize').setLimits([16. / sr, self.max_xsize * .95])
        self.all_params.sigTreeStateChanged.connect(self.on_param_change)

        if self.with_user_dialog:
            self.params_controller = TimeFreqController(parent=self,
                                                        viewer=self)
            self.params_controller.setWindowFlags(QtCore.Qt.Window)
        else:
            self.params_controller = None

        self.create_grid()
        self.initialize_time_freq()
        self.initialize_plots()
Пример #2
0
    def __init__(self):
        super(FractalWidget, self).__init__()

        self.xsize, self.ysize = 1024, 1024
        self.xmin, self.xmax = -2, 1
        self.ymin, self.ymax = -1.5, 1.5
        self.maxit, self.col = 200, 200

        self.moveSpeed = 6
        self.zoomSpeed = 1.06667

        # Array to hold iteration count for each pixel
        self.data = np.zeros(self.xsize * self.ysize, dtype=np.int32)

        # Add view box
        view = self.addViewBox(lockAspect=True,
                               enableMouse=False,
                               enableMenu=False,
                               invertY=True)

        # Create image item
        self.ip = pg.ImageItem(border='w')
        lut = generate_lut(color_map=get_color_map(
            os.path.dirname(os.path.abspath(__file__)) + '/../viridis'))
        self.ip.setLookupTable(lut, update=False)
        self.createFractal()
        view.addItem(self.ip)

        # Create TextItem to display fps and coordinates
        self.ti = pg.TextItem()
        self.ti.setPos(10, self.ysize)
        view.addItem(self.ti)

        # Connect mouse click event to function mouseEvent
        self.scene().sigMouseClicked.connect(self.mouseEvent)

        # Dictionary with functions to call at keypress
        self.staticKeyList = {QtCore.Qt.Key_R: self.createFractal}
        # Functions which get continuously called at keypress
        self.movementKeyList = {
            QtCore.Qt.Key_E: self.zoomIn,
            QtCore.Qt.Key_Q: self.zoomOut,
            QtCore.Qt.Key_A: self.moveL,
            QtCore.Qt.Key_D: self.moveR,
            QtCore.Qt.Key_S: self.moveD,
            QtCore.Qt.Key_W: self.moveU
        }
        # A set of currently pressed keys
        self.pressedKeys = set()

        # Timer which calls update function at const framerate
        self.tickRate = 1000 / 30
        self.timer = QtCore.QTimer()
        self.timer.start(self.tickRate)
        self.timer.timeout.connect(self.move)
        self.timer.timeout.connect(self.renderText)

        # Init fps counter
        self.fps = 1000 / self.tickRate
        self.lastTime = time()
        self.timer.timeout.connect(self.fpsCounter)
Пример #3
0
 def animation(self):
     timer = QtCore.QTimer()
     timer.timeout.connect(self.update)
     timer.start()
     self.start()
Пример #4
0
    def __init__(self):

        # ---------------------------------------------------------------------
        #
        # ---------------------------------------------------------------------
        QtGui.QMainWindow.__init__(self)
        self.setWindowTitle('Test application')

        # ---------------------------------------------------------------------
        #
        # ---------------------------------------------------------------------
        parentWidget = QtGui.QWidget()
        vbox_gr = QtGui.QGridLayout()
        vbox_ui = QtGui.QVBoxLayout()
        hbox = QtGui.QHBoxLayout()
        hbox.addLayout(vbox_ui)
        hbox.addLayout(vbox_gr)
        parentWidget.setLayout(hbox)
        self.setCentralWidget(parentWidget)

        # ---------------------------------------------------------------------
        #
        # ---------------------------------------------------------------------
        logoGBox = QtGui.QGroupBox()
        logoGBoxLayout = QtGui.QGridLayout()
        logoGBox.setLayout(logoGBoxLayout)
        logoGBox.setMaximumWidth(MINIMUM_WIDTH)
        logoGBox.setMinimumWidth(MINIMUM_WIDTH)
        # ---------------------------------------------------------------------
        label = QtGui.QLabel()
        pixmap = QtGui.QPixmap('logo.png')
        label.setPixmap(pixmap)
        logoGBoxLayout.addWidget(label)

        # ---------------------------------------------------------------------
        #
        # ---------------------------------------------------------------------
        infoGBox = QtGui.QGroupBox("General info")
        infoGBoxLayout = QtGui.QGridLayout()
        infoGBox.setLayout(infoGBoxLayout)
        infoGBox.setMinimumWidth(MINIMUM_WIDTH)
        infoGBox.setMaximumWidth(MINIMUM_WIDTH)
        # ---------------------------------------------------------------------
        self.val0_label = QtGui.QLabel("...")
        infoGBoxLayout.addWidget(QtGui.QLabel("Val0: "), 0, 0)
        infoGBoxLayout.addWidget(self.val0_label, 0, 1, 1, 7)
        # ---------------------------------------------------------------------
        self.val1_label = QtGui.QLabel("...")
        infoGBoxLayout.addWidget(QtGui.QLabel("Val1: "), 1, 0)
        infoGBoxLayout.addWidget(self.val1_label, 1, 1, 1, 7)
        # ---------------------------------------------------------------------
        self.val2_label = QtGui.QLabel("...")
        infoGBoxLayout.addWidget(QtGui.QLabel("Val2: "), 2, 0)
        infoGBoxLayout.addWidget(self.val2_label, 2, 1, 1, 7)
        # ---------------------------------------------------------------------
        resetGraphButton = QtGui.QPushButton("Reset graph")
        infoGBoxLayout.addWidget(resetGraphButton, 3, 0, 1, 8)
        resetGraphButton.clicked.connect(self.resetGraphButtonAction)

        # ---------------------------------------------------------------------
        #
        # ---------------------------------------------------------------------
        valIncControlGBox = QtGui.QGroupBox("Value increment adjustment")
        valIncControlGBoxLayout = QtGui.QGridLayout()
        valIncControlGBox.setLayout(valIncControlGBoxLayout)
        valIncControlGBox.setMaximumWidth(MINIMUM_WIDTH)
        valIncControlGBox.setMinimumWidth(MINIMUM_WIDTH)
        # ---------------------------------------------------------------------
        self.valIncControl_val0 = QtGui.QDoubleSpinBox()
        self.valIncControl_val0.setRange(0, 100000000)
        self.valIncControl_val0.setSingleStep(1)
        self.valIncControl_val0.setValue(100)
        self.valIncControl_val0.setDecimals(0)
        self.valIncControl_val0.setKeyboardTracking(False)
        valIncControlGBoxLayout.addWidget(QtGui.QLabel("Val0 Increment: "), 0,
                                          0)
        valIncControlGBoxLayout.addWidget(self.valIncControl_val0, 0, 1, 1, 6)
        # ---------------------------------------------------------------------
        self.valIncControl_val1 = QtGui.QDoubleSpinBox()
        self.valIncControl_val1.setRange(0, 100000000)
        self.valIncControl_val1.setSingleStep(1)
        self.valIncControl_val1.setValue(200)
        self.valIncControl_val1.setDecimals(0)
        self.valIncControl_val1.setKeyboardTracking(False)
        valIncControlGBoxLayout.addWidget(QtGui.QLabel("Val1 Increment: "), 1,
                                          0)
        valIncControlGBoxLayout.addWidget(self.valIncControl_val1, 1, 1, 1, 6)
        # ---------------------------------------------------------------------
        self.valIncControl_val2 = QtGui.QDoubleSpinBox()
        self.valIncControl_val2.setRange(0, 100000000)
        self.valIncControl_val2.setSingleStep(1)
        self.valIncControl_val2.setValue(300)
        self.valIncControl_val2.setDecimals(0)
        self.valIncControl_val2.setKeyboardTracking(False)
        valIncControlGBoxLayout.addWidget(QtGui.QLabel("Val2 Increment: "), 2,
                                          0)
        valIncControlGBoxLayout.addWidget(self.valIncControl_val2, 2, 1, 1, 6)
        # ---------------------------------------------------------------------
        self.valIncControl_val0.valueChanged.connect(self.updateValIncrements)
        self.valIncControl_val1.valueChanged.connect(self.updateValIncrements)
        self.valIncControl_val2.valueChanged.connect(self.updateValIncrements)

        # ---------------------------------------------------------------------
        #
        # ---------------------------------------------------------------------
        vbox_ui.addWidget(logoGBox)
        vbox_ui.addWidget(infoGBox)
        vbox_ui.addWidget(valIncControlGBox)
        vbox_ui.addStretch(1)

        # ---------------------------------------------------------------------
        #
        # ---------------------------------------------------------------------
        self.plot1 = pg.PlotWidget()
        self.plot2 = pg.PlotWidget()
        self.plot3 = pg.PlotWidget()
        self.plot4 = pg.PlotWidget()

        # ---------------------------------------------------------------------
        self.plot1.setLabel('bottom', 'time(sec)')
        self.plot2.setLabel('bottom', 'time(sec)')
        self.plot3.setLabel('bottom', 'time(sec)')
        self.plot4.setLabel('bottom', 'time(sec)')
        self.plot1.setLabel('left', '...')
        self.plot2.setLabel('left', '...')
        self.plot3.setLabel('left', '...')
        self.plot4.setLabel('left', '...')

        # ---------------------------------------------------------------------
        self.plot1.setTitle("Test Value 0")
        self.plot2.setTitle("Test Value 1")
        self.plot3.setTitle("Test Value 2")
        self.plot4.setTitle("Test Values Combined")

        # ---------------------------------------------------------------------
        #
        # ---------------------------------------------------------------------
        vbox_gr.addWidget(self.plot1, 0, 0)
        vbox_gr.addWidget(self.plot2, 0, 1)
        vbox_gr.addWidget(self.plot3, 1, 0)
        vbox_gr.addWidget(self.plot4, 1, 1)

        # ---------------------------------------------------------------------
        self.plot1_curve1 = pg.PlotCurveItem(pen=(1, 1))
        self.plot1.addItem(self.plot1_curve1)

        # ---------------------------------------------------------------------
        self.plot2_curve1 = pg.PlotCurveItem(pen=(1, 2))
        self.plot2.addItem(self.plot2_curve1)

        # ---------------------------------------------------------------------
        self.plot3_curve1 = pg.PlotCurveItem(pen=(1, 3))
        self.plot3.addItem(self.plot3_curve1)

        # ---------------------------------------------------------------------
        self.plot4_curve1 = pg.PlotCurveItem(pen=(1, 1))
        self.plot4_curve2 = pg.PlotCurveItem(pen=(1, 2))
        self.plot4_curve3 = pg.PlotCurveItem(pen=(1, 3))
        self.plot4.addItem(self.plot4_curve1)
        self.plot4.addItem(self.plot4_curve2)
        self.plot4.addItem(self.plot4_curve3)

        # ---------------------------------------------------------------------
        pg.setConfigOptions(antialias=True)

        # ---------------------------------------------------------------------
        #
        # ---------------------------------------------------------------------
        self.timer = QtCore.QTimer()
        self.timer.timeout.connect(self.PeriodicFunc)
        self.timer.start(33)
Пример #5
0
 def animation(self):
     timer = QtCore.QTimer()
     timer.timeout.connect(self.update)
     timer.start(10)
     QtGui.QApplication.instance().exec_()
Пример #6
0
    def __init__(self):
        self.width = 1000
        self.high = 1000
        self.console_high = 150
        self.plot_high = self.high - self.console_high
        self.console_size = (self.width, self.console_high)
        self.plot_size = (self.width, self.plot_high)
        self.app = QtGui.QApplication([])
        self.win = QtGui.QMainWindow()
        self.area = DockArea()
        self.win.setCentralWidget(self.area)
        self.win.resize(self.width, self.high)
        self.win.setWindowTitle('Gimbal Monitor')
        self.timer_dt = 50

        pg.setConfigOptions(antialias=True)
        pg.setConfigOption('background', [0, 0, 0])
        pg.setConfigOption('foreground', [255, 255, 255, 100])

        # Dock
        self.d_console = self.dock4console('Console')
        self.d_controller_state = self.dock4plot('Controller State')
        self.d_motors_state = self.dock4plot('Motors State')
        self.d_controller_config = self.dock4plot('Controller Config')
        self.d_motors_config = self.dock4plot('Motor Config')
        self.d_imu_attitude = Dock('IMU Attitude',
                                   size=(1000, self.plot_high),
                                   closable=True)
        #self.d_imu_attitude.show()
        self.area.addDock(self.d_console, 'bottom')
        self.area.addDock(self.d_controller_state, 'top')
        self.area.addDock(self.d_motors_state, 'top')
        self.area.addDock(self.d_controller_config, 'top')
        self.area.addDock(self.d_motors_config, 'top')
        self.area.addDock(self.d_imu_attitude, 'top')

        self.area.moveDock(self.d_motors_state, 'above',
                           self.d_controller_state)
        self.area.moveDock(self.d_controller_config, 'above',
                           self.d_motors_state)
        self.area.moveDock(self.d_motors_config, 'above',
                           self.d_controller_config)
        self.area.moveDock(self.d_imu_attitude, 'right',
                           self.d_controller_state)

        # Controller State Layout
        self.pen_width = 2
        self.fill_beta = 70
        self.pen_red = pg.mkPen('F00', width=self.pen_width)
        self.pen_green = pg.mkPen('0F0', width=self.pen_width)
        self.pen_blue = pg.mkPen('0AF', width=self.pen_width)
        self.fill_red = [255, 0, 0, self.fill_beta]
        self.fill_green = [0, 255, 0, self.fill_beta]
        self.fill_blue = [0, 200, 255, self.fill_beta]

        self.imu_angle_time_len = 200
        self.imu_angle_data = np.zeros((3, self.imu_angle_time_len))
        self.imu_angle_v_data = np.zeros((3, self.imu_angle_time_len))
        self.w_controller_state = pg.LayoutWidget()
        self.p_attitude = pg.PlotWidget(title="Camera Attitude")
        self.p_angle_v = pg.PlotWidget(title="Angle Velocity")
        self.p_attitude.showGrid(x=True, y=True)
        self.p_angle_v.showGrid(x=True, y=True)
        self.curve_roll = self.p_attitude.plot(self.imu_angle_data[0],
                                               pen=self.pen_red,
                                               fillLevel=0,
                                               brush=self.fill_red)
        self.curve_pitch = self.p_attitude.plot(self.imu_angle_data[1],
                                                pen=self.pen_green,
                                                fillLevel=0,
                                                brush=self.fill_green)
        self.curve_yaw = self.p_attitude.plot(self.imu_angle_data[2],
                                              pen=self.pen_blue,
                                              fillLevel=0,
                                              brush=self.fill_blue)
        self.curve_roll_v = self.p_angle_v.plot(self.imu_angle_v_data[0],
                                                pen=self.pen_red,
                                                fillLevel=0,
                                                brush=self.fill_red)
        self.curve_pitch_v = self.p_angle_v.plot(self.imu_angle_v_data[1],
                                                 pen=self.pen_green,
                                                 fillLevel=0,
                                                 brush=self.fill_green)
        self.curve_yaw_v = self.p_angle_v.plot(self.imu_angle_v_data[2],
                                               pen=self.pen_blue,
                                               fillLevel=0,
                                               brush=self.fill_blue)
        self.time_remain = 6
        self.angle_max = 100
        self.angle_v_max = 1000
        self.text_interval = self.angle_max * 0.12
        self.text_interval_v = self.angle_v_max * 0.12
        self.angle_text_max_y = self.angle_max * 1.12
        self.angle_v_text_max_y = self.angle_v_max * 1.12
        self.p_attitude.setXRange(0 - self.time_remain,
                                  self.imu_angle_time_len + self.time_remain)
        self.p_attitude.setYRange(-100, 100)
        self.p_angle_v.setXRange(0 - self.time_remain,
                                 self.imu_angle_time_len + self.time_remain)
        self.p_angle_v.setYRange(-1000, 1000)

        self.t_roll_angle = pg.TextItem()
        self.t_roll_angle.setText('roll: %0.1f' % (0), [255, 0, 0, 200])
        self.t_roll_angle.setPos(0, self.angle_text_max_y)
        self.p_attitude.addItem(self.t_roll_angle)

        self.t_pitch_angle = pg.TextItem()
        self.t_pitch_angle.setText('pitch: %0.1f' % (0), [0, 255, 0, 200])
        self.t_pitch_angle.setPos(0,
                                  self.angle_text_max_y - self.text_interval)
        self.p_attitude.addItem(self.t_pitch_angle)

        self.t_yaw_angle = pg.TextItem()
        self.t_yaw_angle.setText('yaw: %0.1f' % (0), [0, 200, 255, 230])
        self.t_yaw_angle.setPos(0,
                                self.angle_text_max_y - 2 * self.text_interval)
        self.p_attitude.addItem(self.t_yaw_angle)

        self.t_roll_angle_v = pg.TextItem()
        self.t_roll_angle_v.setText('roll: %0.1f' % (0), [255, 0, 0, 200])
        self.t_roll_angle_v.setPos(0, self.angle_v_text_max_y)
        self.p_angle_v.addItem(self.t_roll_angle_v)

        self.t_pitch_angle_v = pg.TextItem()
        self.t_pitch_angle_v.setText('pitch: %0.1f' % (0), [0, 255, 0, 200])
        self.t_pitch_angle_v.setPos(
            0, self.angle_v_text_max_y - self.text_interval_v)
        self.p_angle_v.addItem(self.t_pitch_angle_v)

        self.t_yaw_angle_v = pg.TextItem()
        self.t_yaw_angle_v.setText('yaw: %0.1f' % (0), [0, 200, 255, 230])
        self.t_yaw_angle_v.setPos(
            0, self.angle_v_text_max_y - 2 * self.text_interval_v)
        self.p_angle_v.addItem(self.t_yaw_angle_v)

        self.w_controller_state.addWidget(self.p_attitude, row=0, col=0)
        self.w_controller_state.addWidget(self.p_angle_v, row=1, col=0)
        self.d_controller_state.addWidget(self.w_controller_state,
                                          row=0,
                                          col=1)

        self.timer_controller_state = QtCore.QTimer()
        self.timer_controller_state.timeout.connect(
            self.controller_state_update)

        # Motors State Layout
        self.motors_state_time_len = 200
        self.ntc_tempre_data = np.zeros((3, self.motors_state_time_len))
        self.input_current_data = np.zeros((3, self.motors_state_time_len))
        self.motor_current_data = np.zeros((3, self.motors_state_time_len))
        self.input_v_data = np.zeros((3, self.motors_state_time_len))
        self.duty_cycle_now_data = np.zeros((3, self.motors_state_time_len))
        self.rpm_data = np.zeros((3, self.motors_state_time_len))
        self.tacho_data = np.zeros((3, self.motors_state_time_len))
        self.tacho_abs_data = np.zeros((3, self.motors_state_time_len))

        self.w_motors_state = pg.LayoutWidget()
        self.p_ntc_tempre = pg.PlotWidget()
        self.p_current = pg.PlotWidget()
        self.p_input_v = pg.PlotWidget()
        self.p_duty_cycle_now = pg.PlotWidget()
        self.p_rpm = pg.PlotWidget()
        self.p_tacho = pg.PlotWidget()
        self.p_tach_abs = pg.PlotWidget()
        self.p_ntc_tempre.showGrid(True)
        self.p_current.showGrid(True)
        self.p_input_v.showGrid(True)
        self.p_duty_cycle_now.showGrid(True)
        self.p_rpm.showGrid(True)
        self.p_tacho.showGrid(True)
        self.p_tach_abs.showGrid(True)
        self.curve_ntc_tempre = self.p_ntc_tempre.plot(self.ntc_tempre_data[0],
                                                       pen=self.pen_blue,
                                                       fillLevel=0,
                                                       brush=self.fill_blue)
        self.curve_input_current = self.p_current.plot(
            self.input_current_data[0], pen=self.pen_)

        # IMU Attitude OpenGL Layout

        self.vr_layout = pg.LayoutWidget()

        self.w_vr = gl.GLViewWidget()
        glEnable(GL_LINE_SMOOTH)
        glShadeModel(GL_SMOOTH)
        glEnable(GL_DEPTH_TEST)
        glEnable(GL_CULL_FACE)
        glCullFace(GL_BACK)
        glEnable(GL_BLEND)
        glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC1_ALPHA)
        self.light()
        glMatrixMode(GL_PROJECTION)
        glMatrixMode(GL_MODELVIEW)
        gluPerspective(40., 1., 1., 40.)
        self.w_vr.opts['distance'] = 40
        self.w_vr.opts['azimuth'] = -10
        print(self.w_vr.opts)
        self.w_vr.setWindowTitle('IMU Attitude')
        #self.w_vr.setCameraPosition(pos=[0, 0, 50],)

        self.w_vr.show()
        self.vr_ground = gl.GLGridItem()
        self.vr_ground.scale(10, 10, 1)
        self.w_vr.addItem(self.vr_ground)

        self.cube_width = 20
        self.cube_high = self.cube_width * (1 - 0.618)
        self.verts = np.array([
            [self.cube_width / 2, self.cube_width / 2, self.cube_high / 2],
            [-self.cube_width / 2, self.cube_width / 2, self.cube_high / 2],
            [-self.cube_width / 2, -self.cube_width / 2, self.cube_high / 2],
            [self.cube_width / 2, -self.cube_width / 2, self.cube_high / 2],
            [self.cube_width / 2, self.cube_width / 2, -self.cube_high / 2],
            [-self.cube_width / 2, self.cube_width / 2, -self.cube_high / 2],
            [-self.cube_width / 2, -self.cube_width / 2, -self.cube_high / 2],
            [self.cube_width / 2, -self.cube_width / 2, -self.cube_high / 2],
        ])
        self.face = np.array([
            [0, 1, 2],  # up
            [0, 2, 3],
            [4, 6, 5],  # down
            [4, 7, 6],
            [0, 3, 7],  # front
            [0, 7, 4],
            [1, 6, 2],  # back
            [1, 5, 6],
            [0, 4, 5],  # left
            [0, 5, 1],
            [2, 6, 7],  # right
            [2, 7, 3],
        ])
        self.alpha = 1
        self.c_red = [1, 0, 0, self.alpha]
        self.c_greed = [0, 1, 0, self.alpha]
        self.c_blue = [0, 0, 1, self.alpha]
        self.gray_scale = 0.8
        self.c_gray = [
            self.gray_scale, self.gray_scale, self.gray_scale, self.alpha
        ]
        self.colors = np.array([
            self.c_gray,
            self.c_gray,
            self.c_gray,
            self.c_gray,
            self.c_gray,
            self.c_gray,
            self.c_gray,
            self.c_gray,
            self.c_gray,
            self.c_gray,
            self.c_gray,
            self.c_gray,
        ])
        self.cube = gl.GLMeshItem(vertexes=self.verts,
                                  faces=self.face,
                                  faceColors=self.colors,
                                  shader='shaded',
                                  drawEdges=True,
                                  edgeColor=(1, 1, 1, 1),
                                  smooth=False)
        self.cube.translate(0, 0, 3)
        self.cube_quat = QQuaternion(1.0, 0.0, 0.0, 0.0)
        self.cube_mat = self.cube_quat.toRotationMatrix()
        self.cube_mat_data = self.cube_mat.data()
        self.cube_transform = pg.Transform3D(
            self.cube_mat_data[0], self.cube_mat_data[1],
            self.cube_mat_data[2], 0, self.cube_mat_data[3],
            self.cube_mat_data[4], self.cube_mat_data[5], 0,
            self.cube_mat_data[6], self.cube_mat_data[7],
            self.cube_mat_data[8], 0, 0, 0, 0, 1)

        self.cube.setTransform(self.cube_transform)
        self.w_vr.addItem(self.cube)
        self.d_imu_attitude.addWidget(self.w_vr)
    def __init__(self):
        TemplateBaseClass.__init__(self)

        # Create the main window
        self.ui = WindowTemplate()
        self.ui.setupUi(self)
        self.ui.runButton.clicked.connect(self.dostartstop)
        self.ui.actionRecord.triggered.connect(self.record)
        self.ui.verticalSlider.valueChanged.connect(self.triggerlevelchanged)
        self.ui.verticalSlider2.valueChanged.connect(self.triggerlevel2changed)
        self.ui.thresh2Check.clicked.connect(self.thresh2)
        self.ui.horizontalSlider.valueChanged.connect(self.triggerposchanged)
        self.ui.rollingButton.clicked.connect(self.rolling)
        self.ui.singleButton.clicked.connect(self.single)
        self.ui.timeslowButton.clicked.connect(self.timeslow)
        self.ui.timefastButton.clicked.connect(self.timefast)
        self.ui.risingedgeCheck.stateChanged.connect(self.risingfalling)
        self.ui.exttrigCheck.stateChanged.connect(self.exttrig)
        self.ui.totBox.valueChanged.connect(self.tot)
        self.ui.coinBox.valueChanged.connect(self.coin)
        self.ui.cointimeBox.valueChanged.connect(self.cointime)
        self.ui.autorearmCheck.stateChanged.connect(self.autorearm)
        self.ui.noselftrigCheck.stateChanged.connect(self.noselftrig)
        self.ui.avgCheck.stateChanged.connect(self.avg)
        self.ui.logicCheck.stateChanged.connect(self.logic)
        self.ui.highresCheck.stateChanged.connect(self.highres)
        self.ui.usb2Check.stateChanged.connect(self.usb2)
        self.ui.gridCheck.stateChanged.connect(self.grid)
        self.ui.markerCheck.stateChanged.connect(self.marker)
        self.ui.resampBox.valueChanged.connect(self.resamp)
        self.ui.upposButton.clicked.connect(self.uppos)
        self.ui.downposButton.clicked.connect(self.downpos)
        self.ui.chanBox.valueChanged.connect(self.selectchannel)
        self.ui.dacBox.valueChanged.connect(self.setlevel)
        self.ui.minidisplayCheck.stateChanged.connect(self.minidisplay)
        self.ui.acdcCheck.stateChanged.connect(self.acdc)
        self.ui.gainCheck.stateChanged.connect(self.gain)
        self.ui.supergainCheck.stateChanged.connect(self.supergain)
        self.ui.actionRead_from_file.triggered.connect(
            self.actionRead_from_file)
        self.ui.actionStore_to_file.triggered.connect(self.actionStore_to_file)
        self.ui.actionOutput_clk_left.triggered.connect(
            self.actionOutput_clk_left)
        self.ui.actionAllow_same_chan_coin.triggered.connect(
            self.actionAllow_same_chan_coin)
        self.ui.actionDo_autocalibration.triggered.connect(
            self.actionDo_autocalibration)
        self.ui.chanonCheck.stateChanged.connect(self.chanon)
        self.ui.slowchanonCheck.stateChanged.connect(self.slowchanon)
        self.ui.trigchanonCheck.stateChanged.connect(self.trigchanon)
        self.ui.oversampCheck.clicked.connect(self.oversamp)
        self.ui.overoversampCheck.clicked.connect(self.overoversamp)
        self.ui.decodeCheck.clicked.connect(self.decode)
        self.ui.fftCheck.clicked.connect(self.fft)
        self.ui.persistCheck.clicked.connect(self.persist)
        self.ui.drawingCheck.clicked.connect(self.drawing)
        self.db = False
        self.lastTime = time.time()
        self.fps = None
        self.lines = []
        self.otherlines = []
        self.savetofile = False  # save scope data to file
        self.doh5 = True  # use the h5 binary file format
        self.timer = QtCore.QTimer()
        self.timer.timeout.connect(self.updateplot)
        self.timer2 = QtCore.QTimer()
        self.timer2.timeout.connect(self.drawtext)
        self.selectchannel()
        self.ui.statusBar.showMessage("Hello!")
        self.ui.plot.setBackground('w')
        self.show()
Пример #8
0
 def setTimer(self):
     self._timer = QtCore.QTimer()
     self._timer.timeout.connect(self.update)
     self._timer.start(200)  # fps 15
Пример #9
0
 def setTimer(self):
     self._timer = QtCore.QTimer()
     self._timer.timeout.connect(self.update)
     self._timer.start(60)  # call plot update func every 60ms
Пример #10
0
app.setQuitOnLastWindowClosed(False)

print('before physics')
rospy.init_node("simulator")
max_range = 200.0
rospy.set_param("/carbon/maxrange", str(max_range))
psim = physics_sim()
signal.signal(signal.SIGINT, psim.ctrl_c_reset)
thread_physics = Thread(target=psim.start,
                        args=(Tsample_physics, quadcopterId, qcc))
# start the thread:
thread_physics.start()
#print('after physics')
# the graphics window is updated every Tsample_window seconds
# using a timer function from the Qt GUI part of pyqtgraph
# this also runs in the background, but at a much lower speed than
# the physics and control updates.
#print('a')
timer_window = QtCore.QTimer()
#print('b')
timer_window.timeout.connect(update_window)
#print('c')
timer_window.start()
#print('d')
# END
# Tips for using:
print('qcc errorpos', qcc.error_pos, ' dk ', qcc.z_ctrl.Kp)
#qcc.ref_pos = np.array([0,0,1])

QtGui.QApplication.instance().exec_()
Пример #11
0
p6 = win.addPlot(title="Updating plot")
curve = p6.plot(pen='y')
ptr = 0
count = 0

data = conn.recv(1024)
otr = 0


def update():
    global curve, data, ptr
    if len(data) != 0:
        data = struct.unpack(
            '>200h', data
        )  # '>200' is for recieveing 200 short signed point in big-endian form source:https://docs.python.org/3.0/library/struct.html
        curve.setData(data)
        data = conn.recv(1024)
        print(ptr)
        ptr += 1


timer1 = QtCore.QTimer()
timer1.timeout.connect(update)
timer1.start(10)  # you can change this refreshment time

if __name__ == '__main__':
    import sys
    if (sys.flags.interactive != 1) or not hasattr(QtCore, 'PYQT_VERSION'):
        QtGui.QApplication.instance().exec_()
Пример #12
0
    def __init__(self, *args, **kwargs):
        super(MainWindow, self).__init__(*args, **kwargs)
        pg.setConfigOption('background', 'w')
        pg.setConfigOption('foreground', 'k')
        pg.setConfigOptions(antialias=True)
        uic.loadUi(pkg_resources.resource_filename(__name__, "sysmonitor.ui"),
                   self)

        self.len_data = 60
        self.cpu_curve = []
        self.mem_curve = []
        self.gpu_curve = []
        self.net_curve = []
        self.disk_curve = []
        self.ti = []
        self.ti_net = []
        self.ti_disk = []
        self.wait_time_ms = 1000
        self.s = sysinfo()
        self.meminfo = np.zeros([self.len_data, 2])
        self.netinfo = np.zeros([self.len_data, 2, self.s.amount_net_adater])
        self.diskinfo = np.zeros([self.len_data, 2, self.s.amount_disks])
        self.cpuinfo = np.zeros([self.len_data, self.s.cpu_core_count + 1])
        self.x = np.linspace(-self.len_data * self.wait_time_ms / 1000,
                             0,
                             num=self.len_data,
                             endpoint=True)
        self.label_8.setText(self.s.cpu_model_name)
        self.plot_meminfo()
        self.plot_cpuinfo()
        self.plot_netinfo()
        self.plot_diskinfo()
        self.headertitle = ('USER', 'PID', 'CPU [%]', 'MEM [%]', 'START',
                            'TIME', 'COMMAND')
        self.tableWidget.verticalHeader().setVisible(False)
        self.tableWidget.horizontalHeader().setHighlightSections(False)
        header = self.tableWidget.horizontalHeader()
        header.setResizeMode(QtGui.QHeaderView.ResizeToContents)
        header.setStretchLastSection(True)
        header.setResizeMode(False)
        self.tableWidget.setSelectionBehavior(
            QtGui.QAbstractItemView.SelectRows)
        self.tableWidget.setShowGrid(False)
        self.update_running_processes()
        self.timer_4 = QtCore.QTimer()
        self.timer_4.timeout.connect(self.update_running_processes)
        self.timer_4.start(self.wait_time_ms)
        if self.s.nvidia_installed == 1:
            self.gpu_widgets = []
            self.gpuinfo = np.zeros([self.len_data, 4, self.s.gpu_num])
            for gpu_ind in range(self.s.gpu_num):
                tab_widgets = []

                # first set vertical alignment of tab
                tab = QtWidgets.QWidget()
                self.tabWidget.addTab(tab, self.s.gpu_name[gpu_ind])
                vbox = QtGui.QVBoxLayout(tab)

                # then add widgets in horizontal layout
                widget_1 = QtWidgets.QWidget()
                widget_2 = QtWidgets.QWidget()
                widget_3 = QtWidgets.QWidget()
                widget_4 = QtWidgets.QWidget()
                widget_5 = QtWidgets.QWidget()
                vbox.addWidget(widget_1)
                vbox.addWidget(widget_2)
                vbox.addWidget(widget_3)
                vbox.addWidget(widget_4)
                vbox.addWidget(widget_5)
                hbox_1 = QtGui.QGridLayout(widget_1)
                hbox_2 = QtGui.QGridLayout(widget_2)
                hbox_3 = QtGui.QGridLayout(widget_3)
                hbox_4 = QtGui.QGridLayout(widget_4)
                hbox_5 = QtGui.QGridLayout(widget_5)

                label_1 = QtGui.QLabel("Gpu:")
                label_1_sub = QtGui.QLabel("% over 60 seconds")
                label_1_sub.setFont(QtGui.QFont('Ubuntu', 7))
                label_2 = QtGui.QLabel("Memory:")
                label_2_sub = QtGui.QLabel("% over 60 seconds")
                label_2_sub.setFont(QtGui.QFont('Ubuntu', 7))
                label_3 = QtGui.QLabel("Encoder:")
                label_3_sub = QtGui.QLabel("% over 60 seconds")
                label_3_sub.setFont(QtGui.QFont('Ubuntu', 7))
                label_4 = QtGui.QLabel("Decoder:")
                label_4_sub = QtGui.QLabel("% over 60 seconds")
                label_4_sub.setFont(QtGui.QFont('Ubuntu', 7))
                label_5 = QtGui.QLabel("Gpu clock:")
                label_6 = QtGui.QLabel("Memory clock:")
                hbox_1.addWidget(label_1, 1, 1)
                hbox_1.addWidget(label_2, 1, 2)
                hbox_1.addWidget(label_1_sub, 2, 1)
                hbox_1.addWidget(label_2_sub, 2, 2)
                hbox_3.addWidget(label_3, 1, 1)
                hbox_3.addWidget(label_4, 1, 2)
                hbox_3.addWidget(label_3_sub, 2, 1)
                hbox_3.addWidget(label_4_sub, 2, 2)
                hbox_5.addWidget(label_5, 1, 1)
                hbox_5.addWidget(label_6, 1, 2)

                graph_w_1 = pg.GraphicsLayoutWidget()
                graph_w_2 = pg.GraphicsLayoutWidget()
                graph_w_3 = pg.GraphicsLayoutWidget()
                graph_w_4 = pg.GraphicsLayoutWidget()

                hbox_2.addWidget(graph_w_1, 1, 1)
                hbox_2.addWidget(graph_w_2, 1, 2)
                hbox_4.addWidget(graph_w_3, 1, 1)
                hbox_4.addWidget(graph_w_4, 1, 2)

                # Append for later access
                tab_widgets.append(tab)
                tab_widgets.append(vbox)
                tab_widgets.append(widget_1)
                tab_widgets.append(widget_2)
                tab_widgets.append(widget_3)
                tab_widgets.append(widget_4)
                tab_widgets.append(widget_5)
                tab_widgets.append(hbox_1)
                tab_widgets.append(hbox_2)
                tab_widgets.append(hbox_3)
                tab_widgets.append(hbox_4)
                tab_widgets.append(hbox_5)
                tab_widgets.append(label_1)
                tab_widgets.append(label_2)
                tab_widgets.append(label_3)
                tab_widgets.append(label_4)
                tab_widgets.append(label_5)
                tab_widgets.append(label_6)
                tab_widgets.append(graph_w_1)
                tab_widgets.append(graph_w_2)
                tab_widgets.append(graph_w_3)
                tab_widgets.append(graph_w_4)
                self.gpu_widgets.append(tab_widgets)
            self.plot_gpuinfo()
            self.update_gpuinfo()
            self.timer_3 = QtCore.QTimer()
            self.timer_3.timeout.connect(self.update_gpuinfo)
            self.timer_3.start(self.wait_time_ms)
Пример #13
0
    def plot_cpuinfo(self, ):
        counter = 0
        p = []
        self.cpuinfo[-1, :] = self.s.refresh_stat() * 100
        for cpu in range(self.s.cpu_core_count):
            p.append(self.widget_2.addPlot())
            p[-1].setXRange(-self.len_data * self.wait_time_ms / 1000,
                            0,
                            padding=0)
            p[-1].setYRange(0, 100, padding=0)
            p[-1].enableAutoRange('xy', False)
            p[-1].showAxis('top', show=True)
            p[-1].showAxis('right', show=True)
            p[-1].axes['bottom']['item'].setStyle(showValues=False)
            p[-1].axes['top']['item'].setStyle(showValues=False)
            p[-1].axes['left']['item'].setStyle(showValues=False)
            p[-1].axes['right']['item'].setStyle(showValues=False)
            p[-1].axes['right']['item'].setGrid(100)
            p[-1].axes['top']['item'].setGrid(100)
            p[-1].setMouseEnabled(x=False, y=False)
            p[-1].hideButtons()
            p[-1].setMenuEnabled(False)
            self.ti.append(pg.TextItem('', anchor=(0, 0)))
            self.ti[-1].setPos(-self.len_data * self.wait_time_ms / 1000, 100)
            p[-1].addItem(self.ti[-1])
            self.ti.append(pg.TextItem('', anchor=(1, 0)))
            self.ti[-1].setPos(0, 100)
            p[-1].addItem(self.ti[-1])
            self.cpu_curve.append(p[-1].plot(pen=pg.mkPen('b', width=1),
                                             fillLevel=-0.3,
                                             brush=(50, 50, 200, 50)))
            if counter == 3:
                self.widget_2.nextRow()
                counter = 0
            else:
                counter += 1

        p.append(self.widget_5.addPlot())
        p[-1].setXRange(-self.len_data * self.wait_time_ms / 1000,
                        0,
                        padding=0)
        p[-1].setYRange(0, 100, padding=0)
        p[-1].enableAutoRange('xy', False)
        p[-1].showAxis('top', show=True)
        p[-1].showAxis('right', show=True)
        p[-1].axes['bottom']['item'].setStyle(showValues=True)
        p[-1].axes['top']['item'].setStyle(showValues=False)
        p[-1].axes['left']['item'].setStyle(showValues=False)
        p[-1].axes['right']['item'].setStyle(showValues=True)
        p[-1].axes['right']['item'].setGrid(100)
        p[-1].axes['top']['item'].setGrid(100)
        p[-1].setLabel('right', "[%]")
        p[-1].setLabel('bottom', "Seconds")
        p[-1].setMouseEnabled(x=False, y=False)
        p[-1].hideButtons()
        p[-1].setMenuEnabled(False)
        self.cpu_curve.append(p[-1].plot(pen=pg.mkPen('b', width=1),
                                         fillLevel=-0.3,
                                         brush=(50, 50, 200, 50)))

        self.update_cpuinfo()
        self.timer_2 = QtCore.QTimer()
        self.timer_2.timeout.connect(self.update_cpuinfo)
        self.timer_2.start(self.wait_time_ms)
Пример #14
0
    def __init__(self):
        
        #Initialisation de la GUI, des connections actionneurs/fonctions et des modules supplémentaires non supportés par QtCreator
        os.chdir("/home/pi/Desktop/Résultats Capsula") #dossier de travail
        super(self.__class__, self).__init__()
        self.setupUi(self) #initialisation de la GUI Capsula
        #Ajout des Widgets non proposés par QtDesigner
        #Graphe intensité du laser
        self.graphicsViewLaserBeamProfile = PlotWidget(self.tabWidgetLaserControl)
        self.graphicsViewLaserBeamProfile.setGeometry(QtCore.QRect(310, 60, 475, 300))
        self.graphicsViewLaserBeamProfile.setXRange(0,480)
        self.graphicsViewLaserBeamProfile.setYRange(0,255)
        self.graphicsViewLaserBeamProfile.setObjectName("graphicsViewLaserBeamProfile")
        #Graphe détection 
        self.graphicsViewRealPlot = PlotWidget(self.tabWidgetDetection)
        self.graphicsViewRealPlot.setGeometry(QtCore.QRect(10, 10, 550, 310))
        self.graphicsViewRealPlot.setXRange(0,400)
        self.graphicsViewRealPlot.setYRange(0,1)
        self.graphicsViewRealPlot.setObjectName("graphicsViewRealPlot")
        #Message "Making reference, please wait"
        self.messageBoxBlank = QtGui.QProgressDialog("Making reference, please wait...", "Cancel",0, 100, self.tabWidgetDetection)
        self.messageBoxBlank.setWindowTitle("Wait...")

        #Initialisation des threads
        self.thread1 = thread.LoadingBar(self.messageBoxBlank) 
        self.thread2 = thread.MakeBlank(self.messageBoxBlank)

        #Connexion boutons/méthodes
        self.checkBoxLaser532nm.clicked.connect(lambda: las.togglelaser532nm(self.checkBoxLaser532nm.isChecked()))
        self.checkBoxLaser635nm.clicked.connect(lambda: las.togglelaser635nm(self.checkBoxLaser635nm.isChecked()))
        self.pushButtonDutyCycleM.clicked.connect(lambda: mot.dutyCycleM(int(self.lcdNumberDutyCycleM.value())))
        self.pushButtonBlank.clicked.connect(self.makeBlank)
        self.pushButtonClear.clicked.connect(self.on_init)
        self.pushButtonChangeDirectionM.clicked.connect(mot.changeDirectionM)
        self.pushButtonRunAndGoBackM.clicked.connect(mot.runAndGoBackM)
        self.pushButtonSeeCamera.clicked.connect(lambda: las.cameraStart(self.graphicsViewLaserBeamProfile, self.labelBeamImage, self.labelHHWValue, int(self.lineEditExposureTime.displayText())))
        self.pushButtonStart.clicked.connect(self.startAcquisition)
        self.pushButtonStartMotor.clicked.connect(mot.startM)
        self.pushButtonStop.clicked.connect(self.stopAcquisition)
        self.pushButtonStopMotor.clicked.connect(mot.stopM)
        self.radioButtonContinu.clicked.connect(self.continuousDisplay)
        self.radioButtonSegmente.clicked.connect(self.segmentedDisplay)
        
        #Connexion actions/méthodes
        self.actionOpen_detection_configuration.triggered.connect(self.openDetectionConfiguration)
        self.actionOpen_pump_configuration.triggered.connect(self.openPumpConfiguration)
        self.actionOpen_motor_configuration.triggered.connect(self.openMotorConfiguration)
        self.actionPause.triggered.connect(self.pauseAcquisition)
        self.actionQuit.triggered.connect(self.closeEvent)
        self.actionSave_detection_configuration.triggered.connect(self.saveDetectionConfiguration)
        self.actionSave_pump_configuration.triggered.connect(self.savePumpConfiguration)
        self.actionSave_motor_configuration.triggered.connect(self.saveMotorConfiguration)
        self.actionStart_Aquisition.triggered.connect(self.startAcquisition)
        self.actionStop_Aquisition.triggered.connect(self.stopAcquisition)

        #Initialisation timer
        self.timer = QtCore.QTimer()
        self.pasDeTemps = float(self.lineEditSamplingPeriod.displayText()) #vitesse d'affichage
        self.timer.setInterval(self.pasDeTemps)
        self.timer.timeout.connect(self.update) #connexion timer out/update data
        
        #Initialisation graphe
        self.on_init()

        #Initialisation lasers
        GPIO.output(22, True)
        GPIO.output(32, True)

        #Déclaration variables
        self.blankDone = False
        self.inCaps = False
        self.noFloatDetected = True
        self.oldLineEdit = ""
        self.pause = False
        self.start = False
        self.stop = False        
        self.withlVid = False
        self.withrVid = False

        #Connexion Rpi/Arduino via USB
        self.ser = serial.Serial('/dev/ttyACM0', 250000)

#Onglet Lasers

        """voir laser.py"""
        
#Onglet Fluidics

        """rien pour l'instant"""
Пример #15
0
class ScanCore(QtCore.QObject):
    ''' Core of a scanobject
    
    params:
    prebody: (waittime [ms], function(step) ) '''

    result = QtCore.Signal(object)
    result_and_step = QtCore.Signal(object)
    finished = QtCore.Signal(object)
    timer = QtCore.QTimer()

    def __init__(self,
                 body=None,
                 steps=None,
                 iterer=None,
                 prebody=None,
                 onfinished=None,
                 name='scan',
                 estimate=0):
        super().__init__()
        self.name = name
        self.steps = steps
        self.iterer = iterer
        self.paused = False
        self.body = body
        self.prebody = prebody
        self.onfinished = onfinished
        self._ready = False
        self.ready_time = None
        self.start_time = None
        self._estimate = estimate

    def __repr__(self):
        return '{}: estimated duration {}s'.format(self.name, self.estimate)

    def reset(self):
        '''Reset status such that rerun is posible'''
        self.iterer = None
        self.ready = False
        self.start_time = None

    @property
    def estimate(self):
        if self.start_time and not self.ready and self.count > 0:
            return (len(self.steps) - self.count)/self.count * \
                        (0.0001+(time.time() - self.start_time))
        else:
            return self._estimate

    @property
    def ready(self):
        return self._ready

    @ready.setter
    def ready(self, status):
        if status:
            self._ready = True
            self.ready_time = time.time()
            self._estimate = self.ready_time - self.start_time
            self.finished.emit(status)
        else:
            self._ready = status

    def start(self, steps=None):
        if self.ready:
            raise RuntimeError('Scan has run already, reset first')
        self.cont = True
        if not self.paused:
            if not steps is None:
                self.steps = steps
                self.iterer = self.steps.__iter__()
            if self.iterer is None:
                self.iterer = self.steps.__iter__()

            self.start_time = time.time()
            self.count = 0

            def internal():
                try:
                    if self.cont:
                        step = self.iterer.__next__()
                        self.count += 1

                        def measureandcontinue():

                            #connect to saver
                            @Slot(object)
                            def add_step_and_emit(measurement):
                                self.result_and_step.emit((step, measurement))

                            self.result.connect(add_step_and_emit)

                            self.body(self.result, step)
                            self.result.disconnect(add_step_and_emit)
                            self.timer.singleShot(1, internal)

                        if self.prebody:
                            self.prebody[1](step)

                            self.timer.singleShot(self.prebody[0],
                                                  measureandcontinue)
                        else:
                            measureandcontinue()
                except StopIteration:
                    if self.onfinished:
                        ret = self.onfinished(self)
                    else:
                        ret = True
                    self.ready = ret
                    try:
                        cam.disarm()
                    except AttributeError:
                        pass

                self._internal = internal

        try:
            cam.arm()
        except AttributeError:
            pass
        self.timer.singleShot(0, internal)

    def pause(self):
        self.cont = False

    def resume(self):
        self.cont = True
        self.timer.singleShot(0, self._internal)

    def stop(self):
        self.cont = False
Пример #16
0
    #Update input and output
    #Only executes when the graph is still being filled out (hasn't reached end of graph)
    if iteration < dataSize:
        #Read in next sample/input value (INPUT)
        data[iteration] = dw.getEyeblinkAmplitude()

        #Controls output of tone/airpuff (OUTPUT)
        manageOutputs()

    #End of iteration
    iteration += 1


#Create timer to run sample update function (start is called on the timer in createGraph function above)
sampleTimer = QtCore.QTimer()
sampleTimer.setTimerType(0)  #0 = precise timer (default = 1 = coarse timer)
sampleTimer.timeout.connect(sampleUpdate)


#Updates the display
def displayUpdate():
    #Variables that need to be survive across multiple calls to update function
    global iteration, dataSize, curve, data, bars, barHeights, playing

    #Pause functionality
    if not playing:
        return

    #Update stimulus graph
    curve.setData(data)
Пример #17
0
class ScanManagerMonitor(QtGui.QTableWidget):
    """Create a window that shows all the current set scans"""
    timer = QtCore.QTimer()

    def __init__(self, QueueManager):
        super(self.__class__, self).__init__()
        self.finished_rows = 0
        self.qm = QueueManager
        self.setupUI()
        self.populate()
        self.show()
        self.timer.timeout.connect(self.populate)
        self.timer.start(200)

    def setupUI(self):
        self.setWindowTitle('ScanManager Monitor')
        #self.setDisabled(True)
        self.setColumnCount(3)
        self.setHorizontalHeaderLabels(['Name', 'Duration (s)', 'Endtime'])

    #@Slot(object)
    def populate(self, obj=None):
        tasks = self.qm.scans
        rows = len(tasks) + 1
        self.setRowCount(rows)
        for row, task in zip(range(rows), tasks):
            item = QtGui.QTableWidgetItem(task.name)
            self.setItem(row, 0, item)
            duration = max(task.estimate, 1e-10)
            self.setItem(row, 1,
                         QtGui.QTableWidgetItem('{:.1f}'.format(duration)))
            if task.start_time:
                if task.ready:
                    endtime = task.ready_time
                else:
                    endtime = time.time() + duration
                endtime = time.strftime('%H:%M:%S', time.localtime(endtime))
            else:
                endtime = ''
            self.setItem(row, 2, QtGui.QTableWidgetItem(str(endtime)))
            if task.ready:
                self.colorRow(row, 'lightblue')
            else:
                self.colorRow(row, 'white')
        self.setItem(rows - 1, 1, QtGui.QTableWidgetItem('End time'))
        #st = self.qm.start_time if self.qm.start_time else time.time()
        st = time.time()
        endtime = time.strftime('%H:%M:%S',
                                time.localtime(self.qm.estimate() + st))
        self.setItem(rows - 1, 2, QtGui.QTableWidgetItem(endtime))
        self.setVerticalHeaderLabels([str(i) for i in range(self.rowCount())])

        #self.resize(myGetQTableWidgetSize(self))

    def finish(self):
        self.colorRow(self.finished_rows, 'lightblue')
        self.finished_rows += 1

    def colorRow(self, rownumber, color):
        for col in range(self.columnCount()):
            try:
                self.item(rownumber,
                          col).setBackgroundColor(QtGui.QColor(color))
            except AttributeError:
                pass
Пример #18
0
def pyqt_cort(subj, mesh_dir, subcort_dir, elecs_dir, Grid, depths, Faces,
              Edge):

    # for white background
    pg.setConfigOption('background', 'w')

    # set up shader
    shader = gl.shaders.ShaderProgram('my_shader', [
        gl.shaders.VertexShader("""
            varying vec3 normal;
            void main() {
                // compute here for use in fragment shader
                normal = normalize(gl_NormalMatrix * gl_Normal * 0.5);
                gl_FrontColor = gl_Color;
                gl_BackColor = gl_Color;
                gl_Position = ftransform();
            }
        """),
        gl.shaders.FragmentShader("""
            varying vec3 normal;
            void main() {
                float p = dot(normal, normalize(vec3(1.0, -4.0, -4.0)));
                p = p < 0. ? p * -0.8 : p * 0.8;
                vec4 color = gl_Color;
                color.x = color.x * (0.3 + p);
                color.y = color.y * (0.3 + p);
                color.z = color.z * (0.3 + p);
                gl_FragColor = color;
            }
        """)
    ])

    #define subjects mesh dir
    os.chdir(mesh_dir)

    #nave to mesh and loat it
    lh_tri = io.loadmat('lh_tri')
    lh_faces = lh_tri.get('tri')
    lh_faces = lh_faces - 1

    lh_vert = io.loadmat('lh_vert')
    lh_verts = lh_vert.get('vert')

    #nave to mesh and loat it
    rh_tri = io.loadmat('rh_tri')
    rh_faces = rh_tri.get('tri')
    rh_faces = rh_faces - 1

    rh_vert = io.loadmat('rh_vert')
    rh_verts = rh_vert.get('vert')

    # go to subcort dir
    os.chdir(subcort_dir)

    # set up hippocampus mesh
    lHipp_tri = io.loadmat('subcort_lHipp_tri')
    lHipp_faces = lHipp_tri.get('tri')
    lHipp_faces = lHipp_faces - 1

    lHipp_vert = io.loadmat('subcort_lHipp_vert')
    lHipp_verts = lHipp_vert.get('vert')

    # set up amgd mesh
    lAmgd_tri = io.loadmat('subcort_lAmgd_tri')
    lAmgd_faces = lAmgd_tri.get('tri')
    lAmgd_faces = lAmgd_faces - 1

    lAmgd_vert = io.loadmat('subcort_lAmgd_vert')
    lAmgd_verts = lAmgd_vert.get('vert')

    # set up GP mesh
    lGP_tri = io.loadmat('subcort_lGP_tri')
    lGP_faces = lGP_tri.get('tri')
    lGP_faces = lGP_faces - 1

    lGP_vert = io.loadmat('subcort_lGP_vert')
    lGP_verts = lAmgd_vert.get('vert')

    # set up Caud mesh
    lCaud_tri = io.loadmat('subcort_lCaud_tri')
    lCaud_faces = lCaud_tri.get('tri')
    lCaud_faces = lCaud_faces - 1

    lCaud_vert = io.loadmat('subcort_lCaud_vert')
    lCaud_verts = lCaud_vert.get('vert')

    # set up Put mesh
    lPut_tri = io.loadmat('subcort_lPut_tri')
    lPut_faces = lPut_tri.get('tri')
    lPut_faces = lPut_faces - 1

    lPut_vert = io.loadmat('subcort_lPut_vert')
    lPut_verts = lPut_vert.get('vert')

    # set up Thal mesh
    lThal_tri = io.loadmat('subcort_lThal_tri')
    lThal_faces = lThal_tri.get('tri')
    lThal_faces = lThal_faces - 1

    lThal_vert = io.loadmat('subcort_lThal_vert')
    lThal_verts = lThal_vert.get('vert')

    # set up hippocampus mesh
    rHipp_tri = io.loadmat('subcort_rHipp_tri')
    rHipp_faces = rHipp_tri.get('tri')
    rHipp_faces = rHipp_faces - 1

    rHipp_vert = io.loadmat('subcort_rHipp_vert')
    rHipp_verts = rHipp_vert.get('vert')

    # set up amgd mesh
    rAmgd_tri = io.loadmat('subcort_rAmgd_tri')
    rAmgd_faces = rAmgd_tri.get('tri')
    rAmgd_faces = rAmgd_faces - 1

    rAmgd_vert = io.loadmat('subcort_rAmgd_vert')
    rAmgd_verts = rAmgd_vert.get('vert')

    # set up GP mesh
    rGP_tri = io.loadmat('subcort_rGP_tri')
    rGP_faces = rGP_tri.get('tri')
    rGP_faces = rGP_faces - 1

    rGP_vert = io.loadmat('subcort_rGP_vert')
    rGP_verts = rGP_vert.get('vert')

    # set up Caud mesh
    rCaud_tri = io.loadmat('subcort_rCaud_tri')
    rCaud_faces = rCaud_tri.get('tri')
    rCaud_faces = rCaud_faces - 1

    rCaud_vert = io.loadmat('subcort_rCaud_vert')
    rCaud_verts = rCaud_vert.get('vert')

    # set up Put mesh
    rPut_tri = io.loadmat('subcort_rPut_tri')
    rPut_faces = rPut_tri.get('tri')
    rPut_faces = rPut_faces - 1

    rPut_vert = io.loadmat('subcort_rPut_vert')
    rPut_verts = rPut_vert.get('vert')

    # set up Thal mesh
    rThal_tri = io.loadmat('subcort_rThal_tri')
    rThal_faces = rThal_tri.get('tri')
    rThal_faces = rThal_faces - 1

    rThal_vert = io.loadmat('subcort_rThal_vert')
    rThal_verts = rThal_vert.get('vert')

    # go to fiber mesh dir
    #subj_fiberMesh_dir = '/Users/Zach/Desktop/Data/MR_data/EC69/DTI_HARDI_55_dirs/dti55trilin/fiberMeshes/lARC';
    #os.chdir(subj_fiberMesh_dir);

    # set up fiber mesh
    #lARC_tri = io.loadmat('lARC_fiber_1');
    #lARC_faces = lARC_tri.get('fiberMesh');
    #lARC_faces = lARC_faces -1;

    # launch opengl app
    app = QtGui.QApplication([])
    w = gl.GLViewWidget()
    w.show()
    w.setWindowTitle(('Patient Pial Surface and Depths for: ' + subj))
    w.setCameraPosition(distance=750)

    # set grid on
    g = gl.GLGridItem()
    g.scale(100, 100, 50)
    #w.addItem(g)

    # add electrodes as spheres
    os.chdir(elecs_dir)
    grid = io.loadmat('depth_probes.mat')
    grid = grid.get('elecmatrix')
    m1 = gl.GLScatterPlotItem(pos=grid,
                              size=15.,
                              color=(1, 0, 0, 1),
                              pxMode=True)
    m1.translate(5, 5, 0)
    m1.setDepthValue(1)
    m1.setGLOptions('additive')

    #grid
    grid = io.loadmat('hd_grid.mat')
    grid = grid.get('elecmatrix')
    m4 = gl.GLScatterPlotItem(pos=grid,
                              size=15.,
                              color=(1, 0, 0, 1),
                              pxMode=True)
    m4.translate(5, 5, 0)
    m4.setDepthValue(1)
    m4.setGLOptions('translucent')

    phase = 0.

    #load in ecog data
    #subj_data_dir = '/Users/Zach/Desktop/Data/MR_data/EC69/ECoG';
    #os.chdir(subj_data_dir);
    #data = io.loadmat('hg_listen_avg.mat');
    #avg_trial = data.get('avg_trial');
    #d2 = (grid**2).sum(axis=1)**0.5;

    # add depths and grid to plot
    w.addItem(m1)
    if Grid == True:
        w.addItem(m4)

    #z = avg_trial;
    #p4 = gl.GLSurfacePlotItem(x=grid[:,0], y = grid[:,1], shader='heightColor', computeNormals=False, smooth=False); #
    #p4.shader()['colorMap'] = np.array([0.2, 2, 0.5, 0.2, 1, 1, 0.2, 0, 2]); #avg_trial[:,0];
    #p4.translate(10, 10, 0)
    #w.addItem(p4)

    # An alternative to the custom shader is to invert the mesh normals:
    #meshdata = gl.MeshData(vertexes=faces);
    #norms = meshdata.faceNormals();
    #cd norms *= - 1;

    # set up lh mesh
    if Faces == True:
        edgeColor = (0, 0, 0, 1)
    else:
        edgeColor = (1, 1, 1, 0.2)
    colors1 = np.random.random(size=(lh_verts.shape[0], 3, 4))
    m2 = gl.GLMeshItem(vertexes=lh_verts,
                       faces=lh_faces,
                       drawFaces=Faces,
                       drawEdges=Edge,
                       faceColor=(1, 0, 0, 0),
                       edgeColor=edgeColor,
                       smooth=True,
                       shader='my_shader')
    m2.translate(5, 5, 0)
    m2.setGLOptions('translucent')
    #m2.setGLOptions('additive')
    m2.setDepthValue(0.5)
    w.addItem(m2)

    # add rh mesh
    colors2 = np.random.random(size=(rh_verts.shape[0], 3, 4))
    m3 = gl.GLMeshItem(vertexes=rh_verts,
                       faces=rh_faces,
                       drawFaces=Faces,
                       drawEdges=Edge,
                       faceColor=(1, 0, 0, 0),
                       edgeColor=edgeColor,
                       smooth=True,
                       shader='my_shader')
    m3.translate(5, 5, 0)
    m3.setGLOptions('translucent')
    #m2.setGLOptions('additive')
    m3.setDepthValue(0.5)
    w.addItem(m3)

    # add the hippocampus
    lHipp = gl.GLMeshItem(vertexes=lHipp_verts,
                          faces=lHipp_faces,
                          drawFaces=False,
                          drawEdges=True,
                          faceColor=(1, 0, 1, 0.4),
                          edgeColor=(1, 0, 0.5, 0.2),
                          smooth=True,
                          shader='my_shader')
    lHipp.translate(5, 5, 0)
    lHipp.setGLOptions('translucent')
    #m2.setGLOptions('additive')
    w.addItem(lHipp)

    # add the Amygdala
    lAmgd = gl.GLMeshItem(vertexes=lAmgd_verts,
                          faces=lAmgd_faces,
                          drawFaces=False,
                          drawEdges=True,
                          faceColor=(0, 0.4, 0.4, 0.4),
                          edgeColor=(1, 0.4, 0, 0.2),
                          smooth=True,
                          shader='my_shader')
    lAmgd.translate(5, 5, 0)
    lAmgd.setGLOptions('translucent')
    #m2.setGLOptions('additive')
    w.addItem(lAmgd)

    # add the Globus Pallidus
    lGP = gl.GLMeshItem(vertexes=lGP_verts,
                        faces=lGP_faces,
                        drawFaces=False,
                        drawEdges=True,
                        faceColor=(0, 0.4, 0.4, 0.4),
                        edgeColor=(1, 0.8, 0.2, 0.2),
                        smooth=True,
                        shader='my_shader')
    lGP.translate(5, 5, 0)
    lGP.setGLOptions('translucent')
    #m2.setGLOptions('additive')
    w.addItem(lGP)

    # add the Caudate
    lCaud = gl.GLMeshItem(vertexes=lCaud_verts,
                          faces=lCaud_faces,
                          drawFaces=False,
                          drawEdges=True,
                          faceColor=(0, 0.4, 0.4, 0.4),
                          edgeColor=(1, 0.2, 0.2, 0.2),
                          smooth=True,
                          shader='my_shader')
    lCaud.translate(5, 5, 0)
    lCaud.setGLOptions('translucent')
    #m2.setGLOptions('additive')
    w.addItem(lCaud)

    # add the Putamen
    lPut = gl.GLMeshItem(vertexes=lPut_verts,
                         faces=lPut_faces,
                         drawFaces=False,
                         drawEdges=True,
                         faceColor=(0, 0.4, 0.4, 0.4),
                         edgeColor=(0.2, 0.3, 0.5, 0.2),
                         smooth=True,
                         shader='my_shader')
    lPut.translate(5, 5, 0)
    lPut.setGLOptions('translucent')
    #m2.setGLOptions('additive')
    w.addItem(lPut)

    # add the Thalimus
    lThal = gl.GLMeshItem(vertexes=lThal_verts,
                          faces=lThal_faces,
                          drawFaces=False,
                          drawEdges=True,
                          faceColor=(0, 0.4, 0.4, 0.4),
                          edgeColor=(0.1, 0.7, 0.4, 0.2),
                          smooth=True,
                          shader='my_shader')
    lThal.translate(5, 5, 0)
    lThal.setGLOptions('translucent')
    #m2.setGLOptions('additive')
    w.addItem(lThal)

    # add the Thalimus
    #lARC = gl.GLMeshItem(faces=lARC_faces, drawFaces=False, drawEdges=True, faceColor=(1,0.4,0.4,0.4),edgeColor=(1,0.7,0.4,0.2), smooth=True, shader='my_shader');
    #lARC.translate(5, 5, 0)
    #lARC.setGLOptions('translucent');#m2.setGLOptions('additive')
    #w.addItem(lARC);

    # add the hippocampus
    rHipp = gl.GLMeshItem(vertexes=rHipp_verts,
                          faces=rHipp_faces,
                          drawFaces=False,
                          drawEdges=True,
                          faceColor=(1, 0, 1, 0.4),
                          edgeColor=(1, 0, 0.5, 0.2),
                          smooth=True,
                          shader='my_shader')
    rHipp.translate(5, 5, 0)
    rHipp.setGLOptions('translucent')
    #m2.setGLOptions('additive')
    w.addItem(rHipp)

    # add the Amygdala
    rAmgd = gl.GLMeshItem(vertexes=rAmgd_verts,
                          faces=rAmgd_faces,
                          drawFaces=False,
                          drawEdges=True,
                          faceColor=(0, 0.4, 0.4, 0.4),
                          edgeColor=(1, 0.4, 0, 0.2),
                          smooth=True,
                          shader='my_shader')
    rAmgd.translate(5, 5, 0)
    rAmgd.setGLOptions('translucent')
    #m2.setGLOptions('additive')
    w.addItem(rAmgd)

    # add the Globus Pallidus
    rGP = gl.GLMeshItem(vertexes=rGP_verts,
                        faces=rGP_faces,
                        drawFaces=False,
                        drawEdges=True,
                        faceColor=(0, 0.4, 0.4, 0.4),
                        edgeColor=(1, 0.8, 0.2, 0.2),
                        smooth=True,
                        shader='my_shader')
    rGP.translate(5, 5, 0)
    rGP.setGLOptions('translucent')
    #m2.setGLOptions('additive')
    w.addItem(rGP)

    # add the Caudate
    rCaud = gl.GLMeshItem(vertexes=rCaud_verts,
                          faces=rCaud_faces,
                          drawFaces=False,
                          drawEdges=True,
                          faceColor=(0, 0.4, 0.4, 0.4),
                          edgeColor=(1, 0.2, 0.2, 0.2),
                          smooth=True,
                          shader='my_shader')
    rCaud.translate(5, 5, 0)
    rCaud.setGLOptions('translucent')
    #m2.setGLOptions('additive')
    w.addItem(rCaud)

    # add the Putamen
    rPut = gl.GLMeshItem(vertexes=rPut_verts,
                         faces=rPut_faces,
                         drawFaces=False,
                         drawEdges=True,
                         faceColor=(0, 0.4, 0.4, 0.4),
                         edgeColor=(0.2, 0.3, 0.5, 0.2),
                         smooth=True,
                         shader='my_shader')
    rPut.translate(5, 5, 0)
    rPut.setGLOptions('translucent')
    #m2.setGLOptions('additive')
    w.addItem(rPut)

    # add the Thalimus
    rThal = gl.GLMeshItem(vertexes=rThal_verts,
                          faces=rThal_faces,
                          drawFaces=False,
                          drawEdges=True,
                          faceColor=(0, 0.4, 0.4, 0.4),
                          edgeColor=(0.1, 0.7, 0.4, 0.2),
                          smooth=True,
                          shader='my_shader')
    rThal.translate(5, 5, 0)
    rThal.setGLOptions('translucent')
    #m2.setGLOptions('additive')
    w.addItem(rThal)

    # add the Thalimus
    #lARC = gl.GLMeshItem(faces=lARC_faces, drawFaces=False, drawEdges=True, faceColor=(1,0.4,0.4,0.4),edgeColor=(1,0.7,0.4,0.2), smooth=True, shader='my_shader');
    #lARC.translate(5, 5, 0)
    #lARC.setGLOptions('translucent');#m2.setGLOptions('additive')
    #w.addItem(lARC);

    # update over 50 iterations the color value plotted at each electrode
    index = 0

    def update():
        ## update volume  colors
        global m1, m4, d2, index
        m1.rotate(1, 0, 0, 1)
        m2.rotate(1, 0, 0, 1)
        m3.rotate(1, 0, 0, 1)
        if Grid == True:
            m4.rotate(1, 0, 0, 1)
        index -= 1
        #p4.setData(z=z[:,index%z.shape[1]]);
        #g.rotate(1,0,0,1);
        lHipp.rotate(1, 0, 0, 1)
        lAmgd.rotate(1, 0, 0, 1)
        lGP.rotate(1, 0, 0, 1)
        lCaud.rotate(1, 0, 0, 1)
        lPut.rotate(1, 0, 0, 1)
        lThal.rotate(1, 0, 0, 1)
        rHipp.rotate(1, 0, 0, 1)
        rAmgd.rotate(1, 0, 0, 1)
        rGP.rotate(1, 0, 0, 1)
        rCaud.rotate(1, 0, 0, 1)
        rPut.rotate(1, 0, 0, 1)
        rThal.rotate(1, 0, 0, 1)
        #lARC.rotate(1,0,0,1);

        w.setCameraPosition(distance=750 + index)
        if (750 + index) <= 220:
            w.setCameraPosition(distance=220)

        index = index + 1

    t = QtCore.QTimer()
    t.timeout.connect(update)
    t.start(50)

    # launch mesh plot
    import sys
    if (sys.flags.interactive != 1) or not hasattr(QtCore, 'PYQT_VERSION'):
        QtGui.QApplication.instance().exec_()
Пример #19
0
 def _initialize(self):
     self.head = 0
     self.timer = QtCore.QTimer(singleShot=False,
                                interval=int(self.chunksize *
                                             self.sample_interval * 1000))
     self.timer.timeout.connect(self.send_data)
Пример #20
0
accerFastV = 0.1
accerSlowV = 0.01

accerFastI = 1e-6
accerSlowI = 1e-8

scanTime = 50  #ms
rate = accerSlowV

ui.gpibAddrInputBox.setText(str(gpibAddress))
ui.accerFast.setText(str(accerFastV))
ui.accerSlow.setText(str(accerSlowV))
ui.slowSelect.setChecked(True)

# set timer
MeasTimer = QtCore.QTimer()
ScanTimer = QtCore.QTimer()
filename = '20.dat'


def deviceInit():
    global gpibAddress, filename
    global K2400
    K2400 = Keithley_2400(gpibAddress)
    sourStats = K2400.getSourMode()
    gpibAddress = int(ui.gpibAddrInputBox.text())
    filename = "{:d}.dat".format(gpibAddress)
    if sourStats == 'VOLT':
        ui.sourVolt.setChecked(True)

    elif sourStats == 'CURR':
Пример #21
0
    data = np.random.random(n)
    data[int(n * 0.1):int(n * 0.13)] += .5
    data[int(n * 0.18)] += 2
    data[int(n * 0.1):int(n * 0.13)] *= 5
    data[int(n * 0.18)] *= 20
    data *= 1e-12
    return data, np.arange(n, n + len(data)) / float(n)


def updateData():
    yd, xd = rand(10000)
    p1.setData(y=yd, x=xd)


## Start a timer to rapidly update the plot in pw
t = QtCore.QTimer()
t.timeout.connect(updateData)
t.start(50)
#updateData()

## Multiple parameterized plots--we can autogenerate averages for these.
for i in range(0, 5):
    for j in range(0, 3):
        yd, xd = rand(10000)
        pw2.plot(y=yd * (j + 1), x=xd, params={'iter': i, 'val': j})

## Test large numbers
curve = pw3.plot(np.random.normal(size=100) * 1e0, clickable=True)
curve.curve.setClickable(True)
curve.setPen('w')  ## white pen
curve.setShadowPen(pg.mkPen((70, 70, 30), width=6, cosmetic=True))
Пример #22
0
    def __init__(self, parent=None, name="ImageView", view=None, imageItem=None, *args):
        """
        By default, this class creates an :class:`ImageItem <pyqtgraph.ImageItem>` to display image data
        and a :class:`ViewBox <pyqtgraph.ViewBox>` to contain the ImageItem. 
        
        ============= =========================================================
        **Arguments** 
        parent        (QWidget) Specifies the parent widget to which
                      this ImageView will belong. If None, then the ImageView
                      is created with no parent.
        name          (str) The name used to register both the internal ViewBox
                      and the PlotItem used to display ROI data. See the *name*
                      argument to :func:`ViewBox.__init__() 
                      <pyqtgraph.ViewBox.__init__>`.
        view          (ViewBox or PlotItem) If specified, this will be used
                      as the display area that contains the displayed image. 
                      Any :class:`ViewBox <pyqtgraph.ViewBox>`, 
                      :class:`PlotItem <pyqtgraph.PlotItem>`, or other 
                      compatible object is acceptable.
        imageItem     (ImageItem) If specified, this object will be used to
                      display the image. Must be an instance of ImageItem
                      or other compatible object.
        ============= =========================================================
        
        Note: to display axis ticks inside the ImageView, instantiate it 
        with a PlotItem instance as its view::
                
            pg.ImageView(view=pg.PlotItem())
        """
        QtGui.QWidget.__init__(self, parent, *args)
        self.markerRadius = 50 #circle radius marking single points/rois
        self.clicked = []
        self.image_Designation = None
        self.levelMax = 4096
        self.levelMin = 0
        self.name = name
        self.image = None
        self.axes = {}
        self.imageDisp = None
        self.ui = Ui_Form() #pyqtgraph.imageview.ImageViewTemplate_pyqt
        self.ui.setupUi(self)
        self.scene = self.ui.graphicsView.scene()
        
        self.ignoreTimeLine = False
        self.ignoreZLine = False
        
        if view is None:
            self.view = ViewBox()
        else:
            self.view = view
        
        self.ui.graphicsView.setCentralItem(self.view)
        self.view.setAspectLocked(True)
        self.view.invertY()
        
        if imageItem is None:
            self.imageItem = ImageItem()
        else:
            self.imageItem = imageItem
        self.imageview = self.view.addItem(self.imageItem)
        self.currentTime = 0
        self.currentLayer = 0 #layer in z axis
        
        #relay x y coordinates within image
        self.view.scene().sigMouseMoved.connect(self.mouseMoved)
        self.view.scene().sigMouseClicked.connect(self.mouseClicked)
        #self.view.scene().mouseReleaseEvent(self.releaseEvent)
        #self.view.scene().mouseReleaseEvent(self.mouseReleased)
        #pdb.set_trace()
        #generate roi list
        self.croi = [] #holdes x,y,z points for roi
        self.ccroi = [] #hold pg roi for croi
        self.aroi = {} #place to store all rois, each roi is passed as dictionary with each index = currentLayer
        self.aaroi = [] #place to store pg of arois in self.currentLayer
        self.button1 = 'off'
        
        self.ui.histogram.setImageItem(self.imageItem)
        
        self.menu = None
        
        self.ui.normGroup.hide()

        self.roi = PlotROI(10)
        self.roi.setZValue(20)
        self.view.addItem(self.roi)
        self.roi.hide()
        self.normRoi = PlotROI(10)
        self.normRoi.setPen('y')
        self.normRoi.setZValue(20)
        self.view.addItem(self.normRoi)
        self.normRoi.hide()
        self.roiCurve = self.ui.roiPlot.plot()
        
        
        self.timeLine = InfiniteLine(0, movable=True)
        self.timeLine.setPen((255, 255, 0, 200))
        #self.timeLine.setPen((255, 255, 200, 0))
        self.timeLine.setZValue(1)
        self.ui.roiPlot.addItem(self.timeLine)
        self.ui.splitter.setSizes([self.height()-35, 35])
        self.ui.roiPlot.hideAxis('left')
        
        
        
        self.ui.splitter.setSizes([self.height(), 10])
        self.ui.zPlot.plot()
        self.zLine = InfiniteLine(0, movable=True, angle = 0)
        #self.zLine.setBounds([0, 42])
        self.zLine.setPen((255, 255, 0, 200))
        self.zLine.setZValue(self.currentLayer )
        self.ui.ztext.setText(str(self.currentLayer))
        
        self.ui.zPlot.addItem(self.zLine)
        self.ui.zPlot.hideAxis('bottom')
        
        
        
        self.keysPressed = {}
        self.playTimer = QtCore.QTimer()
        self.playRate = 0
        self.lastPlayTime = 0
        
        self.normRgn = LinearRegionItem()
        self.normRgn.setZValue(0)
        self.ui.roiPlot.addItem(self.normRgn)
        self.normRgn.hide()
            
        ## wrap functions from view box
        for fn in ['addItem', 'removeItem']:
            setattr(self, fn, getattr(self.view, fn))

        ## wrap functions from histogram
        for fn in ['setHistogramRange', 'autoHistogramRange', 'getLookupTable', 'getLevels']:
            setattr(self, fn, getattr(self.ui.histogram, fn))

        self.timeLine.sigPositionChanged.connect(self.timeLineChanged)
        self.zLine.sigPositionChanged.connect(self.zLineChanged)
        self.ui.roiBtn.clicked.connect(self.roiClicked)
        self.roi.sigRegionChanged.connect(self.roiChanged)
        #self.ui.normBtn.toggled.connect(self.normToggled)
        self.ui.menuBtn.clicked.connect(self.menuClicked)
        self.ui.normDivideRadio.clicked.connect(self.normRadioChanged)
        self.ui.normSubtractRadio.clicked.connect(self.normRadioChanged)
        self.ui.normOffRadio.clicked.connect(self.normRadioChanged)
        self.ui.normROICheck.clicked.connect(self.updateNorm)
        self.ui.normFrameCheck.clicked.connect(self.updateNorm)
        self.ui.normTimeRangeCheck.clicked.connect(self.updateNorm)
        #radio button for navigation and roi selection
        self.ui.navRadio.clicked.connect(self.NavigationStatus)
        self.ui.radioSinglePoint.clicked.connect(self.radioSinglePoint)
        self.ui.radioAreaROI.clicked.connect(self.radioAreaROI)
        self.ui.radioPolygon.clicked.connect(self.radioPolygon)
        self.ui.radioEdit.clicked.connect(self.radioEdit)
        
        self.playTimer.timeout.connect(self.timeout)
        
        self.normProxy = SignalProxy(self.normRgn.sigRegionChanged, slot=self.updateNorm)
        self.normRoi.sigRegionChangeFinished.connect(self.updateNorm)
        
        self.ui.roiPlot.registerPlot(self.name + '_ROI')
        self.view.register(self.name)
        
        self.noRepeatKeys = [QtCore.Qt.Key_Right, QtCore.Qt.Key_Left, QtCore.Qt.Key_Up, QtCore.Qt.Key_Down, QtCore.Qt.Key_PageUp, QtCore.Qt.Key_PageDown]
        
        self.roiClicked() ## initialize roi plot to correct shape / visibility
Пример #23
0
        w2.setXRange(Frelist[0], Frelist[-1])
        BtnStart.setChecked(False)
        StartODMR()  #Finish the Rabi task
        print('Finished a measurement')
        Data.finished = False  #Prepare for next task
        Plotting.stop()


def OnTimeSettingChange():  #############Setting###########
    global Contime, Intetime, Power, startfre, endfre, step
    #Cooling[3]=SpinBoxCooling.value()*unit.ms
    startfre = SpinBoxstartfr.value() * unit.MHz
    endfre = SpinBoxendfr.value() * unit.MHz
    step = SpinBoxstep.value() * unit.MHz

    Contime = SpinBoxconstanttime.value() * unit.ms
    Intetime = SpinBoxIntegraltime.value() * unit.s

    Power = SpinBoxpower.value() * unit.dBm


Plotting = QtCore.QTimer()
Plotting.timeout.connect(update)

i = 0

if __name__ == "__main__":
    win.show()
    app.exec_()
    print("Exit")
Пример #24
0
    def __init__(self, device, *args, **kwargs):  # agregue device

        super().__init__(*args, **kwargs)

        self.nidaq = device  # esto tiene que ir

        imageWidget = pg.GraphicsLayoutWidget()
        self.vb = imageWidget.addViewBox(row=1, col=1)

#        imageWidget2 = pg.GraphicsLayoutWidget()
#        self.vb2 = imageWidget2.addViewBox(row=1, col=1)

        # Parameters for smooth moving (to no shake hard the piezo)
        self.moveTime = 0.1  # total time to move(s)
        self.moveSamples = 1000  # samples to move
        self.moveRate = self.moveSamples / self.moveTime
        self.activeChannels = ["x", "y", "z"]
        self.AOchans = [0, 1, 2]

        # LiveView Button

        self.liveviewButton = QtGui.QPushButton('confocal LIVEVIEW')
        self.liveviewButton.setCheckable(True)
        self.liveviewButton.clicked.connect(self.liveview)
#        self.liveviewButton.clicked.connect(self.channelsOpen)

        # save image Button

        self.saveimageButton = QtGui.QPushButton('Scan and Save')
        self.saveimageButton.setCheckable(True)
        self.saveimageButton.clicked.connect(self.saveimage)
        self.saveimageButton.setStyleSheet(
                "QPushButton { background-color: gray; }"
                "QPushButton:pressed { background-color: blue; }")

        # Defino el tipo de Scan que quiero

        self.scanMode = QtGui.QComboBox()
        self.scanModes = ['step scan', 'otro scan', 'tempesta scan']
        self.scanMode.addItems(self.scanModes)
#        self.scanMode.currentIndexChanged.connect(
#            lambda: self.setScanMode(self.scanMode.currentText()))

#        def setScanMode(self, mode):
##            self.stageScan.setScanMode(mode)
#            self.scanParameterChanged('scanMode')

        self.stepcheck = QtGui.QCheckBox('Scan Barckward')
        self.stepcheck.clicked.connect(self.steptype)
        self.step = False


        self.canales = False
        # Scanning parameters

        self.initialPositionLabel = QtGui.QLabel('Initial Pos [x0 y0 z0] (µm)')
        self.initialPositionEdit = QtGui.QLineEdit('0 0 1')
        self.scanRangeLabel = QtGui.QLabel('Scan range (µm)')
        self.scanRangeEdit = QtGui.QLineEdit('10')
        self.pixelTimeLabel = QtGui.QLabel('Pixel time (ms)')
        self.pixelTimeEdit = QtGui.QLineEdit('1')
        self.numberofPixelsLabel = QtGui.QLabel('Number of pixels')
        self.numberofPixelsEdit = QtGui.QLineEdit('100')
        self.pixelSizeLabel = QtGui.QLabel('Pixel size (nm)')
        self.pixelSizeValue = QtGui.QLabel('')

        self.timeTotalLabel = QtGui.QLabel('tiempo total del escaneo (s)')
        self.timeTotalValue = QtGui.QLabel('')

        self.numberofPixelsEdit.textChanged.connect(self.paramChanged)
        self.scanRangeEdit.textChanged.connect(self.paramChanged)
        self.pixelTimeEdit.textChanged.connect(self.paramChanged)
        self.initialPositionEdit.textChanged.connect(self.paramChanged)

        self.paramChanged()

        self.paramWidget = QtGui.QWidget()

        grid = QtGui.QGridLayout()
        self.setLayout(grid)
        grid.addWidget(imageWidget, 0, 0)
        grid.addWidget(self.paramWidget, 0, 1)
#        grid.addWidget(imageWidget2, 0, 2)

        subgrid = QtGui.QGridLayout()
        self.paramWidget.setLayout(subgrid)
        subgrid.addWidget(self.liveviewButton, 10, 1)
        subgrid.addWidget(self.initialPositionLabel, 0, 1)
        subgrid.addWidget(self.initialPositionEdit, 1, 1)
        subgrid.addWidget(self.scanRangeLabel, 2, 1)
        subgrid.addWidget(self.scanRangeEdit, 3, 1)
        subgrid.addWidget(self.pixelTimeLabel, 4, 1)
        subgrid.addWidget(self.pixelTimeEdit, 5, 1)
        subgrid.addWidget(self.numberofPixelsLabel, 6, 1)
        subgrid.addWidget(self.numberofPixelsEdit, 7, 1)
        subgrid.addWidget(self.pixelSizeLabel, 8, 1)
        subgrid.addWidget(self.pixelSizeValue, 9, 1)
        subgrid.addWidget(self.timeTotalLabel, 13, 1)
        subgrid.addWidget(self.timeTotalValue, 14, 1)
        subgrid.addWidget(self.stepcheck, 11, 2)

#        subgrid.addWidget(self.scanMode, 12, 1)
        subgrid.addWidget(self.saveimageButton, 15, 1)  #

        self.paramWidget.setFixedHeight(400)

        self.vb.setMouseMode(pg.ViewBox.RectMode)
#        self.vb2.setMouseMode(pg.ViewBox.RectMode)
        self.img = pg.ImageItem()
        self.img.translate(-0.5, -0.5)
        self.vb.addItem(self.img)
        self.vb.setAspectLocked(True)
#        self.vb2.addItem(self.img)
#        self.vb2.setAspectLocked(True)
        imageWidget.setAspectLocked(True)
#        imageWidget2.setAspectLocked(True)
        self.hist = pg.HistogramLUTItem(image=self.img)
        self.hist.gradient.loadPreset('thermal')
        self.hist.vb.setLimits(yMin=0, yMax=66000)
#        self.hist.vb2.setLimits(yMin=0, yMax=66000)

#        self.cubehelixCM = pg.ColorMap(np.arange(0, 1, 1/256),
#                                       guitools.cubehelix().astype(int))
#        self.hist.gradient.setColorMap(self.cubehelixCM)

        for tick in self.hist.gradient.ticks:
            tick.hide()
        imageWidget.addItem(self.hist, row=1, col=2)
#        imageWidget2.addItem(self.hist, row=1, col=2)

#        self.ROI = guitools.ROI((0, 0), self.vb, (0, 0), handlePos=(1, 0),
#                               handleCenter=(0, 1), color='y', scaleSnap=True,
#                               translateSnap=True)

        self.viewtimer = QtCore.QTimer()
        self.viewtimer.timeout.connect(self.updateView)
Пример #25
0
x = 0  # variável contendo o índice


def update():
    global tensao, curva, x
    leitura_arduino = comport.readline()  # Lendo o valor da arduino

    if leitura_arduino != b'\r\n' and leitura_arduino != b'\n':  # Checkando se o valor é válido
        tensao_ecg = float(leitura_arduino) / 100.0 - 1.65
        # tensao_ecg = float(leitura_arduino)/100.0 - 1.65
        tensao.append(tensao_ecg)  # Inserindo o valor lido ao vetor 'tensao'
        tensao.pop(0)  # deletando o valor mais antigo do vetor 'tensao'
        tensaonp = np.array(
            tensao[-500:], dtype='float'
        )  # Convertendo o vetor 'tensao' do tipo array para numpy array
        curva.setData(tensaonp)  # Passando os valores do vetor para a curva
        x += 1  # Atualizando o índice da leitura
        curva.setPos(x, 0)  # Valor do eixo x e seu deslocamento verticalmente
        plot.setLabel('bottom',
                      "Tensão [V]: " + "{0:.2f}".format(tensaonp.item(499)))
        app.processEvents()  # Atualizando a interface (janela do gráfico)


timer = QtCore.QTimer()  # Temporizador da biblioteca
timer.timeout.connect(update)
timer.start(0)

if __name__ == '__main__':  # Função iniciando a execução da janela
    import sys
    if (sys.flags.interactive != 1) or not hasattr(QtCore, 'PYQT_VERSION'):
        QtGui.QApplication.instance().exec_()
Пример #26
0
def visualize_time_travel_data(path=None, automatically_rotate=True):
    """
    This function visualizes data from the Time Travel Task in 3D.

    :param path: the path to a data file to visualize
    :param automatically_rotate: If True, the figure will automatically rotate in an Abs(Sin(x)) function shape,
                                 otherwise the user can interact with the figure.

    :return: Nothing
    """
    # noinspection PyGlobalUndefined
    global path_line, idx, timer, iterations, click_scatter, click_pos, click_color, click_size, window, meta, \
        reconstruction_items, num_points_to_update, line_color, line_color_state, auto_rotate

    auto_rotate = automatically_rotate

    ####################################################################################################################
    # Setup
    ####################################################################################################################

    # Get Log File Path and Load File
    local_directory = os.path.dirname(os.path.realpath(__file__))  # The directory of this script
    # filename = '001_1_1_1_2016-08-29_10-26-03.dat'  # The relative path to the data file (CHANGE ME)
    # path = os.path.join(local_directory, filename)
    if path is None:
        path = easygui.fileopenbox()
    if path is '':
        logging.info('No file selected. Closing.')
        exit()
    if not os.path.exists(path):
        logging.error('File not found. Closing.')
        exit()

    meta = None
    # noinspection PyBroadException
    try:
        meta = get_filename_meta_data(os.path.basename(path))  # The meta filename information for convenience
    except:
        logging.error('There was an error reading the filename meta-information. Please confirm this is a valid log '
                      'file.')
        exit()

    logging.info("Parsing file (" + str(path) + ")...")
    # First we populate a list of each iteration's data
    # This section of code contains some custom binary parser data which won't be explained here
    iterations = read_binary_file(path)
    # Output the iterations count for debugging purposes
    logging.info("Plotting " + str(len(iterations)) + " iterations.")

    # Generate UI Window and Set Camera Settings

    app = QtGui.QApplication([])
    window = gl.GLViewWidget()
    window.opts['center'] = pg.Qt.QtGui.QVector3D(0, 0, 30)
    window.opts['distance'] = 200
    window.setWindowTitle('Timeline Visualizer' +
                          ' - Subject {0}, Trial {1}, Phase {2}'.format(meta['subID'], meta['trial'],
                                                                        phase_num_to_str(int(meta['phase']))))

    ####################################################################################################################
    # Generate static graphical items
    ####################################################################################################################

    # Make Grid

    grid_items = []

    def make_grid_item(loc, rot, scale):
        g = gl.GLGridItem()
        g.scale(scale[0], scale[1], scale[2])
        g.rotate(rot[0], rot[1], rot[2], rot[3])
        g.translate(loc[0], loc[1], loc[2])
        return g

    if meta['phase'] == '0' or meta['phase'] == '3' or meta['phase'] == '6':
        g0 = make_grid_item((-19, 0, 15), (90, 0, 1, 0), (1.5, 1.9, 1.9))
        g1 = make_grid_item((0, -19, 15), (90, 1, 0, 0), (1.9, 1.5, 1.9))
        grid_items.append(g0)
        grid_items.append(g1)
        window.addItem(g0)
        window.addItem(g1)
    else:
        g0 = make_grid_item((-19, 0, 15), (90, 0, 1, 0), (1.5, 1.9, 1.9))
        g1 = make_grid_item((-19, 0, 45), (90, 0, 1, 0), (1.5, 1.9, 1.9))
        g2 = make_grid_item((0, -19, 15), (90, 1, 0, 0), (1.9, 1.5, 1.9))
        g3 = make_grid_item((0, -19, 45), (90, 1, 0, 0), (1.9, 1.5, 1.9))
        grid_items.append(g0)
        grid_items.append(g1)
        grid_items.append(g2)
        grid_items.append(g3)
        window.addItem(g0)
        window.addItem(g1)
        window.addItem(g2)
        window.addItem(g3)
    gn = make_grid_item((0, 0, 0), (0, 0, 0, 0), (1.9, 1.9, 1.9))
    grid_items.append(gn)
    window.addItem(gn)

    # Make Image Base

    # Determine the background image according to meta phase
    img_location = './media/time_travel_task/'
    bg_path = 'studyBG.png'
    if meta['phase'] == '0' or meta['phase'] == '3':
        bg_path = 'practiceBG.png'
    elif meta['phase'] == '6':
        bg_path = 'practiceBG.png'
    elif meta['phase'] == '7' or meta['phase'] == '8':
        bg_path = 'studyBG.png'
    img = imread(os.path.abspath(os.path.join(img_location, bg_path)))

    image_scale = (19.0 * 2.0) / float(img.shape[0])
    tex1 = pg.makeRGBA(img)[0]
    base_image = gl.GLImageItem(tex1)
    base_image.translate(-19, -19, 0)
    base_image.rotate(270, 0, 0, 1)
    base_image.scale(image_scale, image_scale, image_scale)
    window.addItem(base_image)

    # Make Timeline Colored Bars

    color_bars = []

    def make_color_bar(rgb, p, r, s):
        v = gl.GLImageItem(np.array([[rgb + (255,)]]))
        v.translate(p[0], p[1], p[2])
        v.scale(s[0], s[1], s[2])
        v.rotate(r[0], r[1], r[2], r[3])
        return v

    color_bar_length = 15

    if meta['phase'] == '0' or meta['phase'] == '3' or meta['phase'] == '6':
        times = [0, 7.5, 15, 22.5]
        color_bar_length = 7.5
    else:
        times = [0, 15, 30, 45]
    if meta['inverse'] == '1':
        times.reverse()

    v0 = make_color_bar((255, 255, 0), (19, times[0], 19), (90, 1, 0, 0), (5, color_bar_length, 0))
    v1 = make_color_bar((255, 0, 0), (19, times[1], 19), (90, 1, 0, 0), (5, color_bar_length, 0))
    v2 = make_color_bar((0, 255, 0), (19, times[2], 19), (90, 1, 0, 0), (5, color_bar_length, 0))
    v3 = make_color_bar((0, 0, 255), (19, times[3], 19), (90, 1, 0, 0), (5, color_bar_length, 0))
    color_bars.append(v0)
    color_bars.append(v1)
    color_bars.append(v2)
    color_bars.append(v3)
    window.addItem(v0)
    window.addItem(v1)
    window.addItem(v2)
    window.addItem(v3)

    # Generate Path Line

    forwardColor = (255, 255, 255, 255)
    backwardColor = (255, 0, 255, 255)
    line_color = np.empty((len(iterations), 4))
    line_color_state = np.empty((len(iterations), 4))
    x = []
    y = []
    z = []
    for idx, i in enumerate(iterations):
        x.append(float(i['x']))
        y.append(float(i['z']))
        z.append(float(i['time_val']))
        c = forwardColor
        if i['timescale'] <= 0:
            c = backwardColor
        line_color[idx] = pg.glColor(c)
        line_color_state[idx] = pg.glColor((0, 0, 0, 0))

    pts = np.vstack([x, y, z]).transpose()
    path_line = gl.GLLinePlotItem(pos=pts, color=line_color_state, mode='line_strip', antialias=True)
    window.addItem(path_line)

    # Generate Item Lines (ground truth)
    # noinspection PyUnusedLocal
    items, times, directions = get_items_solutions(meta)

    if meta['phase'] == '0' or meta['phase'] == '3' or meta['phase'] == '6':
        times = [2, 12, 18, 25]
        directions = [2, 1, 2, 1]  # Fall = 2, Fly = 1, Stay = 0
        if meta['inverse'] == '1':
            times.reverse()
            directions.reverse()
        items = [{'direction': directions[0], 'pos': (2, -12, times[0]), 'color': (255, 255, 0)},
                 {'direction': directions[1], 'pos': (2, 13, times[1]), 'color': (255, 0, 0)},
                 {'direction': directions[2], 'pos': (-13, 2, times[2]), 'color': (0, 255, 0)},
                 {'direction': directions[3], 'pos': (-12, -17, times[3]), 'color': (0, 0, 255)},
                 {'direction': 0, 'pos': (13, 5, 0), 'color': (128, 0, 128)}]
    # elif meta['phase'] == '7' or meta['phase'] == '8':
    #    times = [2, 8, 17, 23]
    #    directions = [2, 1, 1, 2]  # Fall = 2, Fly = 1, Stay = 0
    #    if meta['inverse'] == '1':
    #        times.reverse()
    #        directions.reverse()
    #    items = [{'direction': directions[0], 'pos': (16, -14, times[0]), 'color': (255, 255, 0)},
    #             {'direction': directions[1], 'pos': (-10, -2, times[1]), 'color': (255, 0, 0)},
    #             {'direction': directions[2], 'pos': (15, -8, times[2]), 'color': (0, 255, 0)},
    #             {'direction': directions[3], 'pos': (-15, -15, times[3]), 'color': (0, 0, 255)},
    #             {'direction': 0, 'pos': (-2, 10, 0), 'color': (128, 0, 128)}]
    else:
        times = [4, 10, 16, 25, 34, 40, 46, 51]
        directions = [2, 1, 1, 2, 2, 1, 2, 1]  # Fall = 2, Fly = 1, Stay = 0
        if meta['inverse'] == '1':
            times.reverse()
            directions.reverse()
        items = [{'direction': directions[0], 'pos': (18, -13, times[0]), 'color': (255, 255, 0)},
                 {'direction': directions[1], 'pos': (-13, 9, times[1]), 'color': (255, 255, 0)},
                 {'direction': directions[2], 'pos': (-10, -2, times[2]), 'color': (255, 0, 0)},
                 {'direction': directions[3], 'pos': (6, -2, times[3]), 'color': (255, 0, 0)},
                 {'direction': directions[4], 'pos': (17, -8, times[4]), 'color': (0, 255, 0)},
                 {'direction': directions[5], 'pos': (-2, -7, times[5]), 'color': (0, 255, 0)},
                 {'direction': directions[6], 'pos': (-15, -15, times[6]), 'color': (0, 0, 255)},
                 {'direction': directions[7], 'pos': (6, 18, times[7]), 'color': (0, 0, 255)},
                 {'direction': 0, 'pos': (14, 6, 0), 'color': (128, 0, 128)},
                 {'direction': 0, 'pos': (-2, 10, 0), 'color': (128, 0, 128)}]

    item_lines = []
    pos = np.empty((len(items), 3))
    size = np.empty((len(items)))
    color = np.empty((len(items), 4))
    end_time = 60
    if meta['phase'] == '0' or meta['phase'] == '3' or meta['phase'] == '6':
        end_time = 30
    for idx, i in enumerate(items):
        pos[idx] = i['pos']
        size[idx] = 2
        if i['direction'] == 0:
            size[idx] = 0
        color[idx] = (i['color'][0] / 255, i['color'][1] / 255, i['color'][2] / 255, 1)
        idx += 1
        end = i['pos']
        if i['direction'] == 1:
            end = (end[0], end[1], 0)
        elif i['direction'] == 2 or i['direction'] == 0:
            end = (end[0], end[1], end_time)
        line = gl.GLLinePlotItem(pos=np.vstack([[i['pos'][0], end[0]],
                                                [i['pos'][1], end[1]],
                                                [i['pos'][2], end[2]]]).transpose(),
                                 color=pg.glColor(i['color']), width=3, antialias=True)
        item_lines.append(line)
        window.addItem(line)

    item_scatter_plot = gl.GLScatterPlotItem(pos=pos, size=size, color=color, pxMode=False)
    window.addItem(item_scatter_plot)

    ####################################################################################################################
    # Generate data graphical items
    ####################################################################################################################

    # If Study/Practice, label click events
    '''click_pos = np.empty((len(items), 3))
    click_size = np.zeros((len(iterations), len(items)))
    click_color = np.empty((len(items), 4))
    if meta['phase'] == '0' or meta['phase'] == '1' or meta['phase'] == '3' or meta['phase'] == '4' \
            or meta['phase'] == '6' or meta['phase'] == '7':
        for idx, i in enumerate(iterations):
            if idx + 1 < len(iterations):
                for idxx, (i1, i2) in enumerate(zip(i['itemsclicked'], iterations[idx + 1]['itemsclicked'])):
                    if i['itemsclicked'][idxx]:
                        click_size[idx][idxx] = 0.5
                    if not i1 == i2:
                        click_pos[idxx] = (i['x'], i['z'], i['time_val'])
                        click_color[idxx] = (128, 128, 128, 255)
            else:
                for idxx, i1 in enumerate(i['itemsclicked']):
                    if i['itemsclicked'][idxx]:
                        click_size[idx][idxx] = 0.5
    '''
    click_pos, _, click_size, click_color = get_click_locations_and_indicies(iterations, items, meta)
    click_scatter = gl.GLScatterPlotItem(pos=click_pos, size=click_size[0], color=click_color, pxMode=False)
    window.addItem(click_scatter)

    # If Test, Generate Reconstruction Items

    event_state_labels, item_number_label, item_label_filename, cols = get_item_details()

    # if meta['phase'] == '7' or meta['phase'] == '8':
    #    item_number_label = ['bottle', 'clover', 'boot', 'bandana', 'guitar']
    #    item_label_filename = ['bottle.jpg', 'clover.jpg', 'boot.jpg', 'bandana.jpg', 'guitar.jpg']
    #    cols = [(255, 255, pastel_factor), (255, pastel_factor, pastel_factor), (pastel_factor, 255, pastel_factor),
    #            (pastel_factor, pastel_factor, 255), (128, pastel_factor / 2, 128)]
    reconstruction_item_scatter_plot = None
    reconstruction_item_lines = []
    if meta['phase'] == '2' or meta['phase'] == '5' or meta['phase'] == '8':
        reconstruction_items, order = parse_test_items(iterations, cols,
                                                       item_number_label, event_state_labels)
        pos = np.empty((len(reconstruction_items), 3))
        size = np.empty((len(reconstruction_items)))
        color = np.empty((len(reconstruction_items), 4))
        # Iterate through the reconstruction items and visualize them
        for idx, i in enumerate(reconstruction_items):
            pos[idx] = i['pos']
            size[idx] = 2
            if i['direction'] == 0:
                size[idx] = 0
            color[idx] = (i['color'][0] / 255, i['color'][1] / 255, i['color'][2] / 255, 1)
            end = pos[idx]
            if i['direction'] == 1:
                end = (end[0], end[1], 0)
            elif i['direction'] == 2 or i['direction'] == 0:
                end = (end[0], end[1], end_time)
            line = gl.GLLinePlotItem(pos=np.vstack([[pos[idx][0], end[0]],
                                                    [pos[idx][1], end[1]],
                                                    [pos[idx][2], end[2]]]).transpose(),
                                     color=pg.glColor(i['color']), width=3, antialias=True)
            reconstruction_item_lines.append(line)
            window.addItem(line)

            img_path = item_label_filename[idx]
            img = imread(os.path.join(local_directory, img_path))
            expected_size = 2.0
            image_scale = expected_size / float(img.shape[0])
            offset_param = 0.0 - image_scale / 2 - expected_size / 2
            tex = pg.makeRGBA(img)[0]
            label_image = gl.GLImageItem(tex)
            t = pos[idx][2]
            if i['direction'] == 0:
                t = end_time
            label_image.translate(pos[idx][0] + offset_param, pos[idx][1] + offset_param, t)
            label_image.scale(image_scale, image_scale, image_scale)
            window.addItem(label_image)
            billboard_item_labels.append(label_image)
        reconstruction_item_scatter_plot = gl.GLScatterPlotItem(pos=pos, size=size, color=color, pxMode=False)
        window.addItem(reconstruction_item_scatter_plot)

    ####################################################################################################################
    # Show UI
    ####################################################################################################################

    window.show()
    logging.info("Showing plot. Close plot to exit program.")

    ####################################################################################################################
    # Custom Keyboard Controls
    ####################################################################################################################

    # These variables are modified by the keyboard controls
    idx = 0
    num_points_to_update = 5
    saved_points_to_update = 0
    paused = False

    # GUI Callbacks
    def speed_up():
        global num_points_to_update, paused
        if not paused:
            num_points_to_update += 5
            logging.info("Setting speed to " + str(num_points_to_update) + " points per tick.")

    def speed_down():
        global num_points_to_update, paused
        if not paused:
            num_points_to_update -= 5
            logging.info("Setting speed to " + str(num_points_to_update) + " points per tick.")

    def pause():
        global num_points_to_update, saved_points_to_update, paused
        if not paused:
            logging.info("Paused.")
            saved_points_to_update = num_points_to_update
            num_points_to_update = 0
            paused = True
        else:
            logging.info("Unpaused.")
            num_points_to_update = saved_points_to_update
            saved_points_to_update = -0.5
            paused = False

    def reset():
        global idx, line_color_state
        logging.info("Resetting to time zero.")
        idx = 0
        for index in range(0, len(line_color_state) - 1):
            line_color_state[index] = (0, 0, 0, 0)

    def go_to_end():
        global idx, line_color_state, line_color
        logging.info("Going to end.")
        idx = len(line_color_state) - 1
        for index in range(0, len(line_color_state) - 1):
            line_color_state[index] = line_color[index]

    def close_all():
        global timer, app
        logging.info("User Shutdown Via Button Press")
        timer.stop()
        app.closeAllWindows()

    # Visibility Variables
    grid_visible = True
    base_visible = True
    color_bars_visible = True
    items_visible = True
    path_line_visible = True
    reconstruction_item_lines_visible = True
    billboard_item_labels_visible = True

    def toggle_grid_visible():
        global grid_visible
        if grid_visible:
            for g in grid_items:
                g.hide()
            grid_visible = False
        else:
            for g in grid_items:
                g.show()
            grid_visible = True

    def toggle_base_visible():
        global base_visible
        if base_visible:
            base_image.hide()
            base_visible = False
        else:
            base_image.show()
            base_visible = True

    def toggle_color_bars_visible():
        global color_bars_visible
        if color_bars_visible:
            for bar in color_bars:
                bar.hide()
            color_bars_visible = False
        else:
            for bar in color_bars:
                bar.show()
            color_bars_visible = True

    def toggle_items_visible():
        global items_visible
        if items_visible:
            item_scatter_plot.hide()
            for il in item_lines:
                il.hide()
            items_visible = False
        else:
            item_scatter_plot.show()
            for il in item_lines:
                il.show()
            items_visible = True

    def toggle_path_line_visible():
        global path_line_visible
        if path_line_visible:
            path_line.hide()
            click_scatter.hide()
            path_line_visible = False
        else:
            path_line.show()
            click_scatter.show()
            path_line_visible = True

    def toggle_reconstruction_item_lines_visible():
        global reconstruction_item_lines_visible
        if reconstruction_item_lines_visible:
            if reconstruction_item_scatter_plot is not None:
                reconstruction_item_scatter_plot.hide()
            for ril in reconstruction_item_lines:
                ril.hide()
            reconstruction_item_lines_visible = False
        else:
            if reconstruction_item_scatter_plot is not None:
                reconstruction_item_scatter_plot.show()
            for ril in reconstruction_item_lines:
                ril.show()
            reconstruction_item_lines_visible = True

    def toggle_billboard_item_labels_visible():
        global billboard_item_labels_visible
        if billboard_item_labels_visible:
            for il in billboard_item_labels:
                il.hide()
                billboard_item_labels_visible = False
        else:
            for il in billboard_item_labels:
                il.show()
                billboard_item_labels_visible = True

    # GUI Initialization
    sh = QtGui.QShortcut(QtGui.QKeySequence("+"), window, speed_up)
    sh.setContext(QtCore.Qt.ApplicationShortcut)
    sh = QtGui.QShortcut(QtGui.QKeySequence("-"), window, speed_down)
    sh.setContext(QtCore.Qt.ApplicationShortcut)
    sh = QtGui.QShortcut(QtGui.QKeySequence(" "), window, pause)
    sh.setContext(QtCore.Qt.ApplicationShortcut)
    sh = QtGui.QShortcut(QtGui.QKeySequence("R"), window, reset)
    sh.setContext(QtCore.Qt.ApplicationShortcut)
    sh = QtGui.QShortcut(QtGui.QKeySequence("E"), window, go_to_end)
    sh.setContext(QtCore.Qt.ApplicationShortcut)
    sh = QtGui.QShortcut(QtGui.QKeySequence("Escape"), window, close_all)
    sh.setContext(QtCore.Qt.ApplicationShortcut)

    sh = QtGui.QShortcut(QtGui.QKeySequence("1"), window, toggle_grid_visible)
    sh.setContext(QtCore.Qt.ApplicationShortcut)
    sh = QtGui.QShortcut(QtGui.QKeySequence("2"), window, toggle_base_visible)
    sh.setContext(QtCore.Qt.ApplicationShortcut)
    sh = QtGui.QShortcut(QtGui.QKeySequence("3"), window, toggle_color_bars_visible)
    sh.setContext(QtCore.Qt.ApplicationShortcut)
    sh = QtGui.QShortcut(QtGui.QKeySequence("4"), window, toggle_items_visible)
    sh.setContext(QtCore.Qt.ApplicationShortcut)
    sh = QtGui.QShortcut(QtGui.QKeySequence("5"), window, toggle_path_line_visible)
    sh.setContext(QtCore.Qt.ApplicationShortcut)
    sh = QtGui.QShortcut(QtGui.QKeySequence("6"), window, toggle_reconstruction_item_lines_visible)
    sh.setContext(QtCore.Qt.ApplicationShortcut)
    sh = QtGui.QShortcut(QtGui.QKeySequence("7"), window, toggle_billboard_item_labels_visible)
    sh.setContext(QtCore.Qt.ApplicationShortcut)

    ####################################################################################################################
    # Animation Loop
    ####################################################################################################################

    timer = QtCore.QTimer()
    # noinspection PyUnresolvedReferences
    timer.timeout.connect(update)
    timer.start(1)

    ####################################################################################################################
    # PyQtGraph Initialization
    ####################################################################################################################

    if (sys.flags.interactive != 1) or not hasattr(QtCore, 'PYQT_VERSION'):
        # noinspection PyArgumentList
        QtGui.QApplication.instance().exec_()
Пример #27
0
        return 0

    # print(test_re.datalines)
    for i, line_data in enumerate(test_re.datalines):
        test_re.getStockData(line_data["name"])
        print(line_data["name"])
        print(line_data["price"])
        exec("curve{}.setData(line_data['price'])".format(i))
        #stockline 1 ,2 save the data set
        exec("stockline{} = line_data['price']".format(i))
        # stock_curve0.setData(line_data["price"])
        # stock_curve1.setData(old_line["price"])
        # old_line = line_data


timer = QtCore.QTimer()
timer.timeout.connect(update)
# interval 29 sec to update the plotting
timer.start(29000)


# region.sigRegionChanged.connect(update)
#
def updateRegion(window, viewRange):
    rgn = viewRange[0]
    region.setRegion(rgn)


p1.sigRangeChanged.connect(updateRegion)

region.setRegion([1000, 2000])
Пример #28
0
 def __init__(self, capture, cam='cam'):
     self.punched = QtCore.Signal(object)
     self.timer = QtCore.QTimer()
Пример #29
0
 def __init__(self,*args,**kwargs):
     super(QuadrotorWidget,self).__init__(*args,**kwargs)
     
     self.object = 0
     
     self.lastPos = QtCore.QPoint()
     
     self.trolltechGreen = QtGui.QColor.fromCmykF(0.40,0.0,1.0,0.0)
     self.trolltechPurple = QtGui.QColor.fromCmykF(0.39,0.39,0.0,0.0)
     
     # window parameters
     self.window = 0
     ## window size in pixels. width and height
     self.window_size = (800,800)
     self.window_size_minimum = (400,400)
     ## perspective
     self.fovy = 60
     self.near = 0.01
     self.far = 2000
     
     # axes parameters
     self.tip = 0
     self.ORG = [0,0,0]
     self.AXES = [[2,0,0],[0,2,0],[0,0,2]]
     self.AXES_NORM = [[-1,0,0],[0,-1,0],[0,0,-1]]
     self.mat_diffuse = (1.0,0.0,0.0,0.0)
     
     # material and light parameters
     self.mat_specular = (0.2,0.2,0.2,0.2)
     self.mat_shininess = 0.2
     self.light_position = (10.0,10.0,10.0,0.0)
     self.white_light = (1.0,1.0,1.0,1.0)
     self.lmodel_ambient = (0.1,0.1,0.1,1.0)
     
     # load model
     self.drone_base = WFObject()
     self.drone_base.loadFile(get_source_name("models/drone_base.obj"))
     self.drone_propeller1 = WFObject()
     self.drone_propeller1.loadFile(get_source_name("models/drone_propeller1.obj"))
     self.drone_propeller2 = WFObject()
     self.drone_propeller2.loadFile(get_source_name("models/drone_propeller2.obj"))
     self.drone_propeller3 = WFObject()
     self.drone_propeller3.loadFile(get_source_name("models/drone_propeller3.obj"))
     self.drone_propeller4 = WFObject()
     self.drone_propeller4.loadFile(get_source_name("models/drone_propeller4.obj"))
     
     # Base Plane Size
     self.floor_size = (-100,100)
     self.floor_grid_num = 60
     self.floor_color = (0.3,0.3,0.3)
     
     # rotation vector
     self.vector_radius = 0.4
     self.vector_radius_color = [0.8,0.0,0.0]
     
     # quadrotor state set
     self.drone_position = [0,0,0]
     ## 312 yaw-roll-pitch
     self.drone_angles = [0,0,0] 
     ## drone_motor_speed
     self.drone_motors_speed = [100.0,200.0,250.0,10.0]
     
     # info screen
     self.info_screen = None
     self.info_screen_size = (150,200)
     ## gap between the left border/top border and info screen  
     self.info_screen_gap = (10,10)
     ## view size
     self.info_screen_L = 10
     ## char size
     self.char_height = 4
     self.char_gap = 2
     
     # interaction parameters
     self.mouse_state = {'button':None,'position':[0,0]}
     self.scene_movement = [0,0]
     self.movement_ratio = 0.1
     self.rotation_ratio = 0.1
     self.scale_ratio = 0.01
     self.camera_azimuth = 45
     self.camera_attitude = 45
     ## distance between eye and origin
     self.eye_R = 180
     self.camera_view_center = [0,0,0]
     self.follow = True
     self.trace_visible = False
     self.vector_visible = False
     self.drone_position_history = []
     ## drone trace color
     self.drone_trace_color = [1,0,0]
     
     # GUI
     glutInit()
     
     self.animationTimer = QtCore.QTimer()
     self.animationTimer.setSingleShot(False)
     self.animationTimer.timeout.connect(self.animate)
     self.animationTimer.start(25)
Пример #30
0
 def start(self):
     self.campoGrafico.show()
     self.timer = QtCore.QTimer()
     self.timer.timeout.connect(self.audio)
     self.timer.start(5)