Пример #1
0
def createFromArrowRecordBatchesRDD(self, ardd, schema=None, timezone=None):
    #from pyspark.sql.types import from_arrow_schema
    #from pyspark.sql.dataframe import DataFrame
    #from pyspark.serializers import ArrowSerializer, PickleSerializer, AutoBatchedSerializer

    from pyspark.sql.pandas.types import from_arrow_schema
    from pyspark.sql.dataframe import DataFrame

    # Filter out and cache arrow record batches
    ardd = ardd.filter(lambda x: isinstance(x, pa.RecordBatch)).cache()

    ardd = ardd.map(_arrow_record_batch_dumps)

    #schema = pa.schema([pa.field('c0', pa.int16()),
    #                    pa.field('c1', pa.int32())],
    #                   metadata={b'foo': b'bar'})
    if (args.aligner == "BWA"):
        schema = from_arrow_schema(sam_schema())
    else:
        schema = from_arrow_schema(_schema())

    # Create the Spark DataFrame directly from the Arrow data and schema
    jrdd = ardd._to_java_object_rdd()
    jdf = self._jvm.PythonSQLUtils.toDataFrame(jrdd, schema.json(),
                                               self._wrapped._jsqlContext)
    df = DataFrame(jdf, self._wrapped)
    df._schema = schema

    return df
Пример #2
0
    def _create_from_pandas_with_arrow(self, pdf, schema, timezone):
        """
        Create a DataFrame from a given pandas.DataFrame by slicing it into partitions, converting
        to Arrow data, then sending to the JVM to parallelize. If a schema is passed in, the
        data types will be used to coerce the data in Pandas to Arrow conversion.
        """
        from pyspark.serializers import ArrowStreamSerializer, _create_batch
        from pyspark.sql.types import from_arrow_schema, to_arrow_type, TimestampType
        from pyspark.sql.utils import require_minimum_pandas_version, \
            require_minimum_pyarrow_version

        require_minimum_pandas_version()
        require_minimum_pyarrow_version()

        from pandas.api.types import is_datetime64_dtype, is_datetime64tz_dtype

        # Determine arrow types to coerce data when creating batches
        if isinstance(schema, StructType):
            arrow_types = [to_arrow_type(f.dataType) for f in schema.fields]
        elif isinstance(schema, DataType):
            raise ValueError("Single data type %s is not supported with Arrow" % str(schema))
        else:
            # Any timestamps must be coerced to be compatible with Spark
            arrow_types = [to_arrow_type(TimestampType())
                           if is_datetime64_dtype(t) or is_datetime64tz_dtype(t) else None
                           for t in pdf.dtypes]

        # Slice the DataFrame to be batched
        step = -(-len(pdf) // self.sparkContext.defaultParallelism)  # round int up
        pdf_slices = (pdf[start:start + step] for start in xrange(0, len(pdf), step))

        # Create Arrow record batches
        safecheck = self._wrapped._conf.arrowSafeTypeConversion()
        batches = [_create_batch([(c, t) for (_, c), t in zip(pdf_slice.iteritems(), arrow_types)],
                                 timezone, safecheck)
                   for pdf_slice in pdf_slices]

        # Create the Spark schema from the first Arrow batch (always at least 1 batch after slicing)
        if isinstance(schema, (list, tuple)):
            struct = from_arrow_schema(batches[0].schema)
            for i, name in enumerate(schema):
                struct.fields[i].name = name
                struct.names[i] = name
            schema = struct

        jsqlContext = self._wrapped._jsqlContext

        def reader_func(temp_filename):
            return self._jvm.PythonSQLUtils.readArrowStreamFromFile(jsqlContext, temp_filename)

        def create_RDD_server():
            return self._jvm.ArrowRDDServer(jsqlContext)

        # Create Spark DataFrame from Arrow stream file, using one batch per partition
        jrdd = self._sc._serialize_to_jvm(batches, ArrowStreamSerializer(), reader_func,
                                          create_RDD_server)
        jdf = self._jvm.PythonSQLUtils.toDataFrame(jrdd, schema.json(), jsqlContext)
        df = DataFrame(jdf, self._wrapped)
        df._schema = schema
        return df
Пример #3
0
    def _create_dataframe(self, data, schema, samplingRatio, verifySchema):
        if isinstance(schema, StructType):
            verify_func = _make_type_verifier(schema) if verifySchema else lambda _: True

            def prepare(obj):
                verify_func(obj)
                return obj
        elif isinstance(schema, DataType):
            dataType = schema
            schema = StructType().add("value", schema)

            verify_func = _make_type_verifier(
                dataType, name="field value") if verifySchema else lambda _: True

            def prepare(obj):
                verify_func(obj)
                return obj,
        else:
            prepare = lambda obj: obj

        if isinstance(data, RDD):
            rdd, schema = self._createFromRDD(data.map(prepare), schema, samplingRatio)
        else:
            rdd, schema = self._createFromLocal(map(prepare, data), schema)
        jrdd = self._jvm.SerDeUtil.toJavaArray(rdd._to_java_object_rdd())
        jdf = self._jsparkSession.applySchemaToPythonRDD(jrdd.rdd(), schema.json())
        df = DataFrame(jdf, self._wrapped)
        df._schema = schema
        return df
Пример #4
0
    def _create_from_pandas_with_arrow(self, pdf, schema, timezone):
        """
        Create a DataFrame from a given pandas.DataFrame by slicing it into partitions, converting
        to Arrow data, then sending to the JVM to parallelize. If a schema is passed in, the
        data types will be used to coerce the data in Pandas to Arrow conversion.
        """
        from pyspark.serializers import ArrowStreamSerializer, _create_batch
        from pyspark.sql.types import from_arrow_schema, to_arrow_type, TimestampType
        from pyspark.sql.utils import require_minimum_pandas_version, \
            require_minimum_pyarrow_version

        require_minimum_pandas_version()
        require_minimum_pyarrow_version()

        from pandas.api.types import is_datetime64_dtype, is_datetime64tz_dtype

        # Determine arrow types to coerce data when creating batches
        if isinstance(schema, StructType):
            arrow_types = [to_arrow_type(f.dataType) for f in schema.fields]
        elif isinstance(schema, DataType):
            raise ValueError("Single data type %s is not supported with Arrow" % str(schema))
        else:
            # Any timestamps must be coerced to be compatible with Spark
            arrow_types = [to_arrow_type(TimestampType())
                           if is_datetime64_dtype(t) or is_datetime64tz_dtype(t) else None
                           for t in pdf.dtypes]

        # Slice the DataFrame to be batched
        step = -(-len(pdf) // self.sparkContext.defaultParallelism)  # round int up
        pdf_slices = (pdf[start:start + step] for start in xrange(0, len(pdf), step))

        # Create Arrow record batches
        batches = [_create_batch([(c, t) for (_, c), t in zip(pdf_slice.iteritems(), arrow_types)],
                                 timezone)
                   for pdf_slice in pdf_slices]

        # Create the Spark schema from the first Arrow batch (always at least 1 batch after slicing)
        if isinstance(schema, (list, tuple)):
            struct = from_arrow_schema(batches[0].schema)
            for i, name in enumerate(schema):
                struct.fields[i].name = name
                struct.names[i] = name
            schema = struct

        jsqlContext = self._wrapped._jsqlContext

        def reader_func(temp_filename):
            return self._jvm.PythonSQLUtils.readArrowStreamFromFile(jsqlContext, temp_filename)

        def create_RDD_server():
            return self._jvm.ArrowRDDServer(jsqlContext)

        # Create Spark DataFrame from Arrow stream file, using one batch per partition
        jrdd = self._sc._serialize_to_jvm(batches, ArrowStreamSerializer(), reader_func,
                                          create_RDD_server)
        jdf = self._jvm.PythonSQLUtils.toDataFrame(jrdd, schema.json(), jsqlContext)
        df = DataFrame(jdf, self._wrapped)
        df._schema = schema
        return df
Пример #5
0
    def _create_from_pandas_with_arrow(self, pdf, schema, timezone):
        """
        Create a DataFrame from a given pandas.DataFrame by slicing it into partitions, converting
        to Arrow data, then sending to the JVM to parallelize. If a schema is passed in, the
        data types will be used to coerce the data in Pandas to Arrow conversion.
        """
        from pyspark.serializers import ArrowSerializer, _create_batch
        from pyspark.sql.types import from_arrow_schema, to_arrow_type, \
            _old_pandas_exception_message, TimestampType
        try:
            from pandas.api.types import is_datetime64_dtype, is_datetime64tz_dtype
        except ImportError as e:
            raise ImportError(_old_pandas_exception_message(e))

        # Determine arrow types to coerce data when creating batches
        if isinstance(schema, StructType):
            arrow_types = [to_arrow_type(f.dataType) for f in schema.fields]
        elif isinstance(schema, DataType):
            raise ValueError(
                "Single data type %s is not supported with Arrow" %
                str(schema))
        else:
            # Any timestamps must be coerced to be compatible with Spark
            arrow_types = [
                to_arrow_type(TimestampType())
                if is_datetime64_dtype(t) or is_datetime64tz_dtype(t) else None
                for t in pdf.dtypes
            ]

        # Slice the DataFrame to be batched
        step = -(-len(pdf) // self.sparkContext.defaultParallelism
                 )  # round int up
        pdf_slices = (pdf[start:start + step]
                      for start in xrange(0, len(pdf), step))

        # Create Arrow record batches
        batches = [
            _create_batch(
                [(c, t)
                 for (_, c), t in zip(pdf_slice.iteritems(), arrow_types)],
                timezone) for pdf_slice in pdf_slices
        ]

        # Create the Spark schema from the first Arrow batch (always at least 1 batch after slicing)
        if isinstance(schema, (list, tuple)):
            struct = from_arrow_schema(batches[0].schema)
            for i, name in enumerate(schema):
                struct.fields[i].name = name
                struct.names[i] = name
            schema = struct

        # Create the Spark DataFrame directly from the Arrow data and schema
        jrdd = self._sc._serialize_to_jvm(batches, len(batches),
                                          ArrowSerializer())
        jdf = self._jvm.PythonSQLUtils.arrowPayloadToDataFrame(
            jrdd, schema.json(), self._wrapped._jsqlContext)
        df = DataFrame(jdf, self._wrapped)
        df._schema = schema
        return df
Пример #6
0
    def _create_from_pandas_with_arrow(self, pdf, schema, timezone):
        """
        Create a DataFrame from a given pandas.DataFrame by slicing it into partitions, converting
        to Arrow data, then sending to the JVM to parallelize. If a schema is passed in, the
        data types will be used to coerce the data in Pandas to Arrow conversion.
        """
        from pyspark.serializers import ArrowSerializer, _create_batch
        from pyspark.sql.types import from_arrow_schema, to_arrow_type, \
            _old_pandas_exception_message, TimestampType
        from pyspark.sql.utils import _require_minimum_pyarrow_version
        try:
            from pandas.api.types import is_datetime64_dtype, is_datetime64tz_dtype
        except ImportError as e:
            raise ImportError(_old_pandas_exception_message(e))

        _require_minimum_pyarrow_version()

        # Determine arrow types to coerce data when creating batches
        if isinstance(schema, StructType):
            arrow_types = [to_arrow_type(f.dataType) for f in schema.fields]
        elif isinstance(schema, DataType):
            raise ValueError("Single data type %s is not supported with Arrow" % str(schema))
        else:
            # Any timestamps must be coerced to be compatible with Spark
            arrow_types = [to_arrow_type(TimestampType())
                           if is_datetime64_dtype(t) or is_datetime64tz_dtype(t) else None
                           for t in pdf.dtypes]

        # Slice the DataFrame to be batched
        step = -(-len(pdf) // self.sparkContext.defaultParallelism)  # round int up
        pdf_slices = (pdf[start:start + step] for start in xrange(0, len(pdf), step))

        # Create Arrow record batches
        batches = [_create_batch([(c, t) for (_, c), t in zip(pdf_slice.iteritems(), arrow_types)],
                                 timezone)
                   for pdf_slice in pdf_slices]

        # Create the Spark schema from the first Arrow batch (always at least 1 batch after slicing)
        if isinstance(schema, (list, tuple)):
            struct = from_arrow_schema(batches[0].schema)
            for i, name in enumerate(schema):
                struct.fields[i].name = name
                struct.names[i] = name
            schema = struct

        # Create the Spark DataFrame directly from the Arrow data and schema
        jrdd = self._sc._serialize_to_jvm(batches, len(batches), ArrowSerializer())
        jdf = self._jvm.PythonSQLUtils.arrowPayloadToDataFrame(
            jrdd, schema.json(), self._wrapped._jsqlContext)
        df = DataFrame(jdf, self._wrapped)
        df._schema = schema
        return df
Пример #7
0
    def _create_dataframe(
        self,
        data: Union["RDD[Any]", Iterable[Any]],
        schema: Optional[Union[DataType, List[str]]],
        samplingRatio: Optional[float],
        verifySchema: bool,
    ) -> DataFrame:
        if isinstance(schema, StructType):
            verify_func = _make_type_verifier(schema) if verifySchema else lambda _: True

            @no_type_check
            def prepare(obj):
                verify_func(obj)
                return obj

        elif isinstance(schema, DataType):
            dataType = schema
            schema = StructType().add("value", schema)

            verify_func = (
                _make_type_verifier(dataType, name="field value")
                if verifySchema
                else lambda _: True
            )

            @no_type_check
            def prepare(obj):
                verify_func(obj)
                return (obj,)

        else:

            def prepare(obj: Any) -> Any:
                return obj

        if isinstance(data, RDD):
            rdd, struct = self._createFromRDD(data.map(prepare), schema, samplingRatio)
        else:
            rdd, struct = self._createFromLocal(map(prepare, data), schema)
        assert self._jvm is not None
        jrdd = self._jvm.SerDeUtil.toJavaArray(
            rdd._to_java_object_rdd()  # type: ignore[attr-defined]
        )
        jdf = self._jsparkSession.applySchemaToPythonRDD(jrdd.rdd(), struct.json())
        df = DataFrame(jdf, self)
        df._schema = struct
        return df
Пример #8
0
def createDataFrame(sqlc, data, schema, samplingRatio=None):
    """ Our own version of spark.sql.session.createDataFrame which doesn't validate the schema.
        See https://issues.apache.org/jira/browse/SPARK-16700
    """
    # pylint: disable=protected-access

    self = sqlc.sparkSession

    if isinstance(data, RDD):
        rdd, schema = self._createFromRDD(data, schema, samplingRatio)
    else:
        rdd, schema = self._createFromLocal(data, schema)

    jrdd = self._jvm.SerDeUtil.toJavaArray(rdd._to_java_object_rdd())
    jdf = self._jsparkSession.applySchemaToPythonRDD(jrdd.rdd(), schema.json())
    df = DataFrame(jdf, self._wrapped)
    df._schema = schema
    return df
Пример #9
0
def createDataFrame(sqlc, data, schema, samplingRatio=None):
    """ Our own version of spark.sql.session.createDataFrame which doesn't validate the schema.
        See https://issues.apache.org/jira/browse/SPARK-16700
    """
    # pylint: disable=protected-access

    self = sqlc.sparkSession

    if isinstance(data, RDD):
        rdd, schema = self._createFromRDD(data, schema, samplingRatio)
    else:
        rdd, schema = self._createFromLocal(data, schema)

    jrdd = self._jvm.SerDeUtil.toJavaArray(rdd._to_java_object_rdd())
    jdf = self._jsparkSession.applySchemaToPythonRDD(jrdd.rdd(), schema.json())
    df = DataFrame(jdf, self._wrapped)
    df._schema = schema
    return df
Пример #10
0
    def createDataFrame(self, data, schema=None, samplingRatio=None):
        """
        Creates a :class:`DataFrame` from an :class:`RDD`, a list or a :class:`pandas.DataFrame`.

        When ``schema`` is a list of column names, the type of each column
        will be inferred from ``data``.

        When ``schema`` is ``None``, it will try to infer the schema (column names and types)
        from ``data``, which should be an RDD of :class:`Row`,
        or :class:`namedtuple`, or :class:`dict`.

        When ``schema`` is :class:`DataType` or datatype string, it must match the real data, or
        exception will be thrown at runtime. If the given schema is not StructType, it will be
        wrapped into a StructType as its only field, and the field name will be "value", each record
        will also be wrapped into a tuple, which can be converted to row later.

        If schema inference is needed, ``samplingRatio`` is used to determined the ratio of
        rows used for schema inference. The first row will be used if ``samplingRatio`` is ``None``.

        :param data: an RDD of any kind of SQL data representation(e.g. row, tuple, int, boolean,
            etc.), or :class:`list`, or :class:`pandas.DataFrame`.
        :param schema: a :class:`DataType` or a datatype string or a list of column names, default
            is None.  The data type string format equals to `DataType.simpleString`, except that
            top level struct type can omit the `struct<>` and atomic types use `typeName()` as
            their format, e.g. use `byte` instead of `tinyint` for ByteType. We can also use `int`
            as a short name for IntegerType.
        :param samplingRatio: the sample ratio of rows used for inferring
        :return: :class:`DataFrame`

        .. versionchanged:: 2.0
           The schema parameter can be a DataType or a datatype string after 2.0. If it's not a
           StructType, it will be wrapped into a StructType and each record will also be wrapped
           into a tuple.

        >>> l = [('Alice', 1)]
        >>> spark.createDataFrame(l).collect()
        [Row(_1=u'Alice', _2=1)]
        >>> spark.createDataFrame(l, ['name', 'age']).collect()
        [Row(name=u'Alice', age=1)]

        >>> d = [{'name': 'Alice', 'age': 1}]
        >>> spark.createDataFrame(d).collect()
        [Row(age=1, name=u'Alice')]

        >>> rdd = sc.parallelize(l)
        >>> spark.createDataFrame(rdd).collect()
        [Row(_1=u'Alice', _2=1)]
        >>> df = spark.createDataFrame(rdd, ['name', 'age'])
        >>> df.collect()
        [Row(name=u'Alice', age=1)]

        >>> from pyspark.sql import Row
        >>> Person = Row('name', 'age')
        >>> person = rdd.map(lambda r: Person(*r))
        >>> df2 = spark.createDataFrame(person)
        >>> df2.collect()
        [Row(name=u'Alice', age=1)]

        >>> from pyspark.sql.types import *
        >>> schema = StructType([
        ...    StructField("name", StringType(), True),
        ...    StructField("age", IntegerType(), True)])
        >>> df3 = spark.createDataFrame(rdd, schema)
        >>> df3.collect()
        [Row(name=u'Alice', age=1)]

        >>> spark.createDataFrame(df.toPandas()).collect()  # doctest: +SKIP
        [Row(name=u'Alice', age=1)]
        >>> spark.createDataFrame(pandas.DataFrame([[1, 2]])).collect()  # doctest: +SKIP
        [Row(0=1, 1=2)]

        >>> spark.createDataFrame(rdd, "a: string, b: int").collect()
        [Row(a=u'Alice', b=1)]
        >>> rdd = rdd.map(lambda row: row[1])
        >>> spark.createDataFrame(rdd, "int").collect()
        [Row(value=1)]
        >>> spark.createDataFrame(rdd, "boolean").collect() # doctest: +IGNORE_EXCEPTION_DETAIL
        Traceback (most recent call last):
            ...
        Py4JJavaError: ...
        """
        if isinstance(data, DataFrame):
            raise TypeError("data is already a DataFrame")

        if isinstance(schema, basestring):
            schema = _parse_datatype_string(schema)

        try:
            import pandas
            has_pandas = True
        except Exception:
            has_pandas = False
        if has_pandas and isinstance(data, pandas.DataFrame):
            if schema is None:
                schema = [str(x) for x in data.columns]
            data = [r.tolist() for r in data.to_records(index=False)]

        if isinstance(schema, StructType):
            def prepare(obj):
                _verify_type(obj, schema)
                return obj
        elif isinstance(schema, DataType):
            datatype = schema

            def prepare(obj):
                _verify_type(obj, datatype)
                return (obj, )
            schema = StructType().add("value", datatype)
        else:
            prepare = lambda obj: obj

        if isinstance(data, RDD):
            rdd, schema = self._createFromRDD(data.map(prepare), schema, samplingRatio)
        else:
            rdd, schema = self._createFromLocal(map(prepare, data), schema)
        jrdd = self._jvm.SerDeUtil.toJavaArray(rdd._to_java_object_rdd())
        jdf = self._jsparkSession.applySchemaToPythonRDD(jrdd.rdd(), schema.json())
        df = DataFrame(jdf, self._wrapped)
        df._schema = schema
        return df
Пример #11
0
    def createDataFrame(self, data, schema=None, samplingRatio=None, verifySchema=True):
        """
        Creates a :class:`DataFrame` from an :class:`RDD`, a list or a :class:`pandas.DataFrame`.

        When ``schema`` is a list of column names, the type of each column
        will be inferred from ``data``.

        When ``schema`` is ``None``, it will try to infer the schema (column names and types)
        from ``data``, which should be an RDD of :class:`Row`,
        or :class:`namedtuple`, or :class:`dict`.

        When ``schema`` is :class:`pyspark.sql.types.DataType` or a datatype string, it must match
        the real data, or an exception will be thrown at runtime. If the given schema is not
        :class:`pyspark.sql.types.StructType`, it will be wrapped into a
        :class:`pyspark.sql.types.StructType` as its only field, and the field name will be "value",
        each record will also be wrapped into a tuple, which can be converted to row later.

        If schema inference is needed, ``samplingRatio`` is used to determined the ratio of
        rows used for schema inference. The first row will be used if ``samplingRatio`` is ``None``.

        :param data: an RDD of any kind of SQL data representation(e.g. row, tuple, int, boolean,
            etc.), or :class:`list`, or :class:`pandas.DataFrame`.
        :param schema: a :class:`pyspark.sql.types.DataType` or a datatype string or a list of
            column names, default is ``None``.  The data type string format equals to
            :class:`pyspark.sql.types.DataType.simpleString`, except that top level struct type can
            omit the ``struct<>`` and atomic types use ``typeName()`` as their format, e.g. use
            ``byte`` instead of ``tinyint`` for :class:`pyspark.sql.types.ByteType`. We can also use
            ``int`` as a short name for ``IntegerType``.
        :param samplingRatio: the sample ratio of rows used for inferring
        :param verifySchema: verify data types of every row against schema.
        :return: :class:`DataFrame`

        .. versionchanged:: 2.1
           Added verifySchema.

        .. note:: Usage with spark.sql.execution.arrow.enabled=True is experimental.

        >>> l = [('Alice', 1)]
        >>> spark.createDataFrame(l).collect()
        [Row(_1=u'Alice', _2=1)]
        >>> spark.createDataFrame(l, ['name', 'age']).collect()
        [Row(name=u'Alice', age=1)]

        >>> d = [{'name': 'Alice', 'age': 1}]
        >>> spark.createDataFrame(d).collect()
        [Row(age=1, name=u'Alice')]

        >>> rdd = sc.parallelize(l)
        >>> spark.createDataFrame(rdd).collect()
        [Row(_1=u'Alice', _2=1)]
        >>> df = spark.createDataFrame(rdd, ['name', 'age'])
        >>> df.collect()
        [Row(name=u'Alice', age=1)]

        >>> from pyspark.sql import Row
        >>> Person = Row('name', 'age')
        >>> person = rdd.map(lambda r: Person(*r))
        >>> df2 = spark.createDataFrame(person)
        >>> df2.collect()
        [Row(name=u'Alice', age=1)]

        >>> from pyspark.sql.types import *
        >>> schema = StructType([
        ...    StructField("name", StringType(), True),
        ...    StructField("age", IntegerType(), True)])
        >>> df3 = spark.createDataFrame(rdd, schema)
        >>> df3.collect()
        [Row(name=u'Alice', age=1)]

        >>> spark.createDataFrame(df.toPandas()).collect()  # doctest: +SKIP
        [Row(name=u'Alice', age=1)]
        >>> spark.createDataFrame(pandas.DataFrame([[1, 2]])).collect()  # doctest: +SKIP
        [Row(0=1, 1=2)]

        >>> spark.createDataFrame(rdd, "a: string, b: int").collect()
        [Row(a=u'Alice', b=1)]
        >>> rdd = rdd.map(lambda row: row[1])
        >>> spark.createDataFrame(rdd, "int").collect()
        [Row(value=1)]
        >>> spark.createDataFrame(rdd, "boolean").collect() # doctest: +IGNORE_EXCEPTION_DETAIL
        Traceback (most recent call last):
            ...
        Py4JJavaError: ...
        """
        SparkSession._activeSession = self
        self._jvm.SparkSession.setActiveSession(self._jsparkSession)
        if isinstance(data, DataFrame):
            raise TypeError("data is already a DataFrame")

        if isinstance(schema, basestring):
            schema = _parse_datatype_string(schema)
        elif isinstance(schema, (list, tuple)):
            # Must re-encode any unicode strings to be consistent with StructField names
            schema = [x.encode('utf-8') if not isinstance(x, str) else x for x in schema]

        try:
            import pandas
            has_pandas = True
        except Exception:
            has_pandas = False
        if has_pandas and isinstance(data, pandas.DataFrame):
            from pyspark.sql.utils import require_minimum_pandas_version
            require_minimum_pandas_version()

            if self._wrapped._conf.pandasRespectSessionTimeZone():
                timezone = self._wrapped._conf.sessionLocalTimeZone()
            else:
                timezone = None

            # If no schema supplied by user then get the names of columns only
            if schema is None:
                schema = [str(x) if not isinstance(x, basestring) else
                          (x.encode('utf-8') if not isinstance(x, str) else x)
                          for x in data.columns]

            if self._wrapped._conf.arrowEnabled() and len(data) > 0:
                try:
                    return self._create_from_pandas_with_arrow(data, schema, timezone)
                except Exception as e:
                    from pyspark.util import _exception_message

                    if self._wrapped._conf.arrowFallbackEnabled():
                        msg = (
                            "createDataFrame attempted Arrow optimization because "
                            "'spark.sql.execution.arrow.enabled' is set to true; however, "
                            "failed by the reason below:\n  %s\n"
                            "Attempting non-optimization as "
                            "'spark.sql.execution.arrow.fallback.enabled' is set to "
                            "true." % _exception_message(e))
                        warnings.warn(msg)
                    else:
                        msg = (
                            "createDataFrame attempted Arrow optimization because "
                            "'spark.sql.execution.arrow.enabled' is set to true, but has reached "
                            "the error below and will not continue because automatic fallback "
                            "with 'spark.sql.execution.arrow.fallback.enabled' has been set to "
                            "false.\n  %s" % _exception_message(e))
                        warnings.warn(msg)
                        raise
            data = self._convert_from_pandas(data, schema, timezone)

        if isinstance(schema, StructType):
            verify_func = _make_type_verifier(schema) if verifySchema else lambda _: True

            def prepare(obj):
                verify_func(obj)
                return obj
        elif isinstance(schema, DataType):
            dataType = schema
            schema = StructType().add("value", schema)

            verify_func = _make_type_verifier(
                dataType, name="field value") if verifySchema else lambda _: True

            def prepare(obj):
                verify_func(obj)
                return obj,
        else:
            prepare = lambda obj: obj

        if isinstance(data, RDD):
            rdd, schema = self._createFromRDD(data.map(prepare), schema, samplingRatio)
        else:
            rdd, schema = self._createFromLocal(map(prepare, data), schema)
        jrdd = self._jvm.SerDeUtil.toJavaArray(rdd._to_java_object_rdd())
        jdf = self._jsparkSession.applySchemaToPythonRDD(jrdd.rdd(), schema.json())
        df = DataFrame(jdf, self._wrapped)
        df._schema = schema
        return df
Пример #12
0
    def createDataFrame(self,
                        data,
                        schema=None,
                        samplingRatio=None,
                        verifySchema=True):
        """
        Creates a :class:`DataFrame` from an :class:`RDD`, a list or a :class:`pandas.DataFrame`.

        When ``schema`` is a list of column names, the type of each column
        will be inferred from ``data``.

        When ``schema`` is ``None``, it will try to infer the schema (column names and types)
        from ``data``, which should be an RDD of :class:`Row`,
        or :class:`namedtuple`, or :class:`dict`.

        When ``schema`` is :class:`pyspark.sql.types.DataType` or a datatype string, it must match
        the real data, or an exception will be thrown at runtime. If the given schema is not
        :class:`pyspark.sql.types.StructType`, it will be wrapped into a
        :class:`pyspark.sql.types.StructType` as its only field, and the field name will be "value",
        each record will also be wrapped into a tuple, which can be converted to row later.

        If schema inference is needed, ``samplingRatio`` is used to determined the ratio of
        rows used for schema inference. The first row will be used if ``samplingRatio`` is ``None``.

        :param data: an RDD of any kind of SQL data representation(e.g. row, tuple, int, boolean,
            etc.), or :class:`list`, or :class:`pandas.DataFrame`.
        :param schema: a :class:`pyspark.sql.types.DataType` or a datatype string or a list of
            column names, default is ``None``.  The data type string format equals to
            :class:`pyspark.sql.types.DataType.simpleString`, except that top level struct type can
            omit the ``struct<>`` and atomic types use ``typeName()`` as their format, e.g. use
            ``byte`` instead of ``tinyint`` for :class:`pyspark.sql.types.ByteType`. We can also use
            ``int`` as a short name for ``IntegerType``.
        :param samplingRatio: the sample ratio of rows used for inferring
        :param verifySchema: verify data types of every row against schema.
        :return: :class:`DataFrame`

        .. versionchanged:: 2.1
           Added verifySchema.

        .. note:: Usage with spark.sql.execution.arrow.enabled=True is experimental.

        >>> l = [('Alice', 1)]
        >>> spark.createDataFrame(l).collect()
        [Row(_1=u'Alice', _2=1)]
        >>> spark.createDataFrame(l, ['name', 'age']).collect()
        [Row(name=u'Alice', age=1)]

        >>> d = [{'name': 'Alice', 'age': 1}]
        >>> spark.createDataFrame(d).collect()
        [Row(age=1, name=u'Alice')]

        >>> rdd = sc.parallelize(l)
        >>> spark.createDataFrame(rdd).collect()
        [Row(_1=u'Alice', _2=1)]
        >>> df = spark.createDataFrame(rdd, ['name', 'age'])
        >>> df.collect()
        [Row(name=u'Alice', age=1)]

        >>> from pyspark.sql import Row
        >>> Person = Row('name', 'age')
        >>> person = rdd.map(lambda r: Person(*r))
        >>> df2 = spark.createDataFrame(person)
        >>> df2.collect()
        [Row(name=u'Alice', age=1)]

        >>> from pyspark.sql.types import *
        >>> schema = StructType([
        ...    StructField("name", StringType(), True),
        ...    StructField("age", IntegerType(), True)])
        >>> df3 = spark.createDataFrame(rdd, schema)
        >>> df3.collect()
        [Row(name=u'Alice', age=1)]

        >>> spark.createDataFrame(df.toPandas()).collect()  # doctest: +SKIP
        [Row(name=u'Alice', age=1)]
        >>> spark.createDataFrame(pandas.DataFrame([[1, 2]])).collect()  # doctest: +SKIP
        [Row(0=1, 1=2)]

        >>> spark.createDataFrame(rdd, "a: string, b: int").collect()
        [Row(a=u'Alice', b=1)]
        >>> rdd = rdd.map(lambda row: row[1])
        >>> spark.createDataFrame(rdd, "int").collect()
        [Row(value=1)]
        >>> spark.createDataFrame(rdd, "boolean").collect() # doctest: +IGNORE_EXCEPTION_DETAIL
        Traceback (most recent call last):
            ...
        Py4JJavaError: ...
        """
        if isinstance(data, DataFrame):
            raise TypeError("data is already a DataFrame")

        if isinstance(schema, basestring):
            schema = _parse_datatype_string(schema)
        elif isinstance(schema, (list, tuple)):
            # Must re-encode any unicode strings to be consistent with StructField names
            schema = [
                x.encode('utf-8') if not isinstance(x, str) else x
                for x in schema
            ]

        try:
            import pandas
            has_pandas = True
        except Exception:
            has_pandas = False
        if has_pandas and isinstance(data, pandas.DataFrame):
            from pyspark.sql.utils import require_minimum_pandas_version
            require_minimum_pandas_version()

            if self.conf.get("spark.sql.execution.pandas.respectSessionTimeZone").lower() \
               == "true":
                timezone = self.conf.get("spark.sql.session.timeZone")
            else:
                timezone = None

            # If no schema supplied by user then get the names of columns only
            if schema is None:
                schema = [
                    str(x) if not isinstance(x, basestring) else
                    (x.encode('utf-8') if not isinstance(x, str) else x)
                    for x in data.columns
                ]

            if self.conf.get("spark.sql.execution.arrow.enabled", "false").lower() == "true" \
                    and len(data) > 0:
                try:
                    return self._create_from_pandas_with_arrow(
                        data, schema, timezone)
                except Exception as e:
                    from pyspark.util import _exception_message

                    if self.conf.get("spark.sql.execution.arrow.fallback.enabled", "true") \
                            .lower() == "true":
                        msg = (
                            "createDataFrame attempted Arrow optimization because "
                            "'spark.sql.execution.arrow.enabled' is set to true; however, "
                            "failed by the reason below:\n  %s\n"
                            "Attempting non-optimization as "
                            "'spark.sql.execution.arrow.fallback.enabled' is set to "
                            "true." % _exception_message(e))
                        warnings.warn(msg)
                    else:
                        msg = (
                            "createDataFrame attempted Arrow optimization because "
                            "'spark.sql.execution.arrow.enabled' is set to true, but has reached "
                            "the error below and will not continue because automatic fallback "
                            "with 'spark.sql.execution.arrow.fallback.enabled' has been set to "
                            "false.\n  %s" % _exception_message(e))
                        warnings.warn(msg)
                        raise
            data = self._convert_from_pandas(data, schema, timezone)

        if isinstance(schema, StructType):
            verify_func = _make_type_verifier(
                schema) if verifySchema else lambda _: True

            def prepare(obj):
                verify_func(obj)
                return obj
        elif isinstance(schema, DataType):
            dataType = schema
            schema = StructType().add("value", schema)

            verify_func = _make_type_verifier(
                dataType,
                name="field value") if verifySchema else lambda _: True

            def prepare(obj):
                verify_func(obj)
                return obj,
        else:
            prepare = lambda obj: obj

        if isinstance(data, RDD):
            rdd, schema = self._createFromRDD(data.map(prepare), schema,
                                              samplingRatio)
        else:
            rdd, schema = self._createFromLocal(map(prepare, data), schema)
        jrdd = self._jvm.SerDeUtil.toJavaArray(rdd._to_java_object_rdd())
        jdf = self._jsparkSession.applySchemaToPythonRDD(
            jrdd.rdd(), schema.json())
        df = DataFrame(jdf, self._wrapped)
        df._schema = schema
        return df
Пример #13
0
    def createDataFrame(self, data, schema=None, samplingRatio=None):
        """
        Creates a :class:`DataFrame` from an :class:`RDD` of :class:`tuple`/:class:`list`,
        list or :class:`pandas.DataFrame`.

        When ``schema`` is a list of column names, the type of each column
        will be inferred from ``data``.

        When ``schema`` is ``None``, it will try to infer the schema (column names and types)
        from ``data``, which should be an RDD of :class:`Row`,
        or :class:`namedtuple`, or :class:`dict`.

        If schema inference is needed, ``samplingRatio`` is used to determined the ratio of
        rows used for schema inference. The first row will be used if ``samplingRatio`` is ``None``.

        :param data: an RDD of :class:`Row`/:class:`tuple`/:class:`list`/:class:`dict`,
            :class:`list`, or :class:`pandas.DataFrame`.
        :param schema: a :class:`StructType` or list of column names. default None.
        :param samplingRatio: the sample ratio of rows used for inferring
        :return: :class:`DataFrame`

        >>> l = [('Alice', 1)]
        >>> sqlContext.createDataFrame(l).collect()
        [Row(_1=u'Alice', _2=1)]
        >>> sqlContext.createDataFrame(l, ['name', 'age']).collect()
        [Row(name=u'Alice', age=1)]

        >>> d = [{'name': 'Alice', 'age': 1}]
        >>> sqlContext.createDataFrame(d).collect()
        [Row(age=1, name=u'Alice')]

        >>> rdd = sc.parallelize(l)
        >>> sqlContext.createDataFrame(rdd).collect()
        [Row(_1=u'Alice', _2=1)]
        >>> df = sqlContext.createDataFrame(rdd, ['name', 'age'])
        >>> df.collect()
        [Row(name=u'Alice', age=1)]

        >>> from pyspark.sql import Row
        >>> Person = Row('name', 'age')
        >>> person = rdd.map(lambda r: Person(*r))
        >>> df2 = sqlContext.createDataFrame(person)
        >>> df2.collect()
        [Row(name=u'Alice', age=1)]

        >>> from pyspark.sql.types import *
        >>> schema = StructType([
        ...    StructField("name", StringType(), True),
        ...    StructField("age", IntegerType(), True)])
        >>> df3 = sqlContext.createDataFrame(rdd, schema)
        >>> df3.collect()
        [Row(name=u'Alice', age=1)]

        >>> sqlContext.createDataFrame(df.toPandas()).collect()  # doctest: +SKIP
        [Row(name=u'Alice', age=1)]
        >>> sqlContext.createDataFrame(pandas.DataFrame([[1, 2]])).collect()  # doctest: +SKIP
        [Row(0=1, 1=2)]
        """
        if isinstance(data, DataFrame):
            raise TypeError("data is already a DataFrame")

        if isinstance(data, RDD):
            rdd, schema = self._createFromRDD(data, schema, samplingRatio)
        else:
            rdd, schema = self._createFromLocal(data, schema)
        jrdd = self._jvm.SerDeUtil.toJavaArray(rdd._to_java_object_rdd())
        jdf = self._ssql_ctx.applySchemaToPythonRDD(jrdd.rdd(), schema.json())
        df = DataFrame(jdf, self)
        df._schema = schema
        return df
Пример #14
0
    def _create_from_pandas_with_arrow(self, pdf, schema, timezone):
        """
        Create a DataFrame from a given pandas.DataFrame by slicing it into partitions, converting
        to Arrow data, then sending to the JVM to parallelize. If a schema is passed in, the
        data types will be used to coerce the data in Pandas to Arrow conversion.
        """
        from distutils.version import LooseVersion
        from pyspark.serializers import ArrowStreamPandasSerializer
        from pyspark.sql.types import from_arrow_type, to_arrow_type, TimestampType
        from pyspark.sql.utils import require_minimum_pandas_version, \
            require_minimum_pyarrow_version

        require_minimum_pandas_version()
        require_minimum_pyarrow_version()

        from pandas.api.types import is_datetime64_dtype, is_datetime64tz_dtype
        import pyarrow as pa

        # Create the Spark schema from list of names passed in with Arrow types
        if isinstance(schema, (list, tuple)):
            if LooseVersion(pa.__version__) < LooseVersion("0.12.0"):
                temp_batch = pa.RecordBatch.from_pandas(pdf[0:100], preserve_index=False)
                arrow_schema = temp_batch.schema
            else:
                arrow_schema = pa.Schema.from_pandas(pdf, preserve_index=False)
            struct = StructType()
            for name, field in zip(schema, arrow_schema):
                struct.add(name, from_arrow_type(field.type), nullable=field.nullable)
            schema = struct

        # Determine arrow types to coerce data when creating batches
        if isinstance(schema, StructType):
            arrow_types = [to_arrow_type(f.dataType) for f in schema.fields]
        elif isinstance(schema, DataType):
            raise ValueError("Single data type %s is not supported with Arrow" % str(schema))
        else:
            # Any timestamps must be coerced to be compatible with Spark
            arrow_types = [to_arrow_type(TimestampType())
                           if is_datetime64_dtype(t) or is_datetime64tz_dtype(t) else None
                           for t in pdf.dtypes]

        # Slice the DataFrame to be batched
        step = -(-len(pdf) // self.sparkContext.defaultParallelism)  # round int up
        pdf_slices = (pdf[start:start + step] for start in xrange(0, len(pdf), step))

        # Create list of Arrow (columns, type) for serializer dump_stream
        arrow_data = [[(c, t) for (_, c), t in zip(pdf_slice.iteritems(), arrow_types)]
                      for pdf_slice in pdf_slices]

        jsqlContext = self._wrapped._jsqlContext

        safecheck = self._wrapped._conf.arrowSafeTypeConversion()
        col_by_name = True  # col by name only applies to StructType columns, can't happen here
        ser = ArrowStreamPandasSerializer(timezone, safecheck, col_by_name)

        def reader_func(temp_filename):
            return self._jvm.PythonSQLUtils.readArrowStreamFromFile(jsqlContext, temp_filename)

        def create_RDD_server():
            return self._jvm.ArrowRDDServer(jsqlContext)

        # Create Spark DataFrame from Arrow stream file, using one batch per partition
        jrdd = self._sc._serialize_to_jvm(arrow_data, ser, reader_func, create_RDD_server)
        jdf = self._jvm.PythonSQLUtils.toDataFrame(jrdd, schema.json(), jsqlContext)
        df = DataFrame(jdf, self._wrapped)
        df._schema = schema
        return df
Пример #15
0
    def _create_from_pandas_with_arrow(self, pdf, schema, timezone):
        """
        Create a DataFrame from a given pandas.DataFrame by slicing it into partitions, converting
        to Arrow data, then sending to the JVM to parallelize. If a schema is passed in, the
        data types will be used to coerce the data in Pandas to Arrow conversion.
        """
        from pyspark.sql import SparkSession
        from pyspark.sql.dataframe import DataFrame

        assert isinstance(self, SparkSession)

        from pyspark.sql.pandas.serializers import ArrowStreamPandasSerializer
        from pyspark.sql.types import TimestampType
        from pyspark.sql.pandas.types import from_arrow_type, to_arrow_type
        from pyspark.sql.pandas.utils import require_minimum_pandas_version, \
            require_minimum_pyarrow_version

        require_minimum_pandas_version()
        require_minimum_pyarrow_version()

        from pandas.api.types import is_datetime64_dtype, is_datetime64tz_dtype
        import pyarrow as pa

        # Create the Spark schema from list of names passed in with Arrow types
        if isinstance(schema, (list, tuple)):
            arrow_schema = pa.Schema.from_pandas(pdf, preserve_index=False)
            struct = StructType()
            prefer_timestamp_ntz = is_timestamp_ntz_preferred()
            for name, field in zip(schema, arrow_schema):
                struct.add(name,
                           from_arrow_type(field.type, prefer_timestamp_ntz),
                           nullable=field.nullable)
            schema = struct

        # Determine arrow types to coerce data when creating batches
        if isinstance(schema, StructType):
            arrow_types = [to_arrow_type(f.dataType) for f in schema.fields]
        elif isinstance(schema, DataType):
            raise ValueError(
                "Single data type %s is not supported with Arrow" %
                str(schema))
        else:
            # Any timestamps must be coerced to be compatible with Spark
            arrow_types = [
                to_arrow_type(TimestampType())
                if is_datetime64_dtype(t) or is_datetime64tz_dtype(t) else None
                for t in pdf.dtypes
            ]

        # Slice the DataFrame to be batched
        step = -(-len(pdf) // self.sparkContext.defaultParallelism
                 )  # round int up
        pdf_slices = (pdf.iloc[start:start + step]
                      for start in range(0, len(pdf), step))

        # Create list of Arrow (columns, type) for serializer dump_stream
        arrow_data = [[(c, t)
                       for (_, c), t in zip(pdf_slice.iteritems(), arrow_types)
                       ] for pdf_slice in pdf_slices]

        jsqlContext = self._wrapped._jsqlContext

        safecheck = self._wrapped._conf.arrowSafeTypeConversion()
        col_by_name = True  # col by name only applies to StructType columns, can't happen here
        ser = ArrowStreamPandasSerializer(timezone, safecheck, col_by_name)

        def reader_func(temp_filename):
            return self._jvm.PythonSQLUtils.readArrowStreamFromFile(
                jsqlContext, temp_filename)

        def create_RDD_server():
            return self._jvm.ArrowRDDServer(jsqlContext)

        # Create Spark DataFrame from Arrow stream file, using one batch per partition
        jrdd = self._sc._serialize_to_jvm(arrow_data, ser, reader_func,
                                          create_RDD_server)
        jdf = self._jvm.PythonSQLUtils.toDataFrame(jrdd, schema.json(),
                                                   jsqlContext)
        df = DataFrame(jdf, self._wrapped)
        df._schema = schema
        return df
Пример #16
0
    def createDataFrame(self, data, schema=None, samplingRatio=None):
        """
        Creates a :class:`DataFrame` from an :class:`RDD` of :class:`tuple`/:class:`list`,
        list or :class:`pandas.DataFrame`.

        When ``schema`` is a list of column names, the type of each column
        will be inferred from ``data``.

        When ``schema`` is ``None``, it will try to infer the schema (column names and types)
        from ``data``, which should be an RDD of :class:`Row`,
        or :class:`namedtuple`, or :class:`dict`.

        If schema inference is needed, ``samplingRatio`` is used to determined the ratio of
        rows used for schema inference. The first row will be used if ``samplingRatio`` is ``None``.

        :param data: an RDD of :class:`Row`/:class:`tuple`/:class:`list`/:class:`dict`,
            :class:`list`, or :class:`pandas.DataFrame`.
        :param schema: a :class:`StructType` or list of column names. default None.
        :param samplingRatio: the sample ratio of rows used for inferring
        :return: :class:`DataFrame`

        >>> l = [('Alice', 1)]
        >>> sqlContext.createDataFrame(l).collect()
        [Row(_1=u'Alice', _2=1)]
        >>> sqlContext.createDataFrame(l, ['name', 'age']).collect()
        [Row(name=u'Alice', age=1)]

        >>> d = [{'name': 'Alice', 'age': 1}]
        >>> sqlContext.createDataFrame(d).collect()
        [Row(age=1, name=u'Alice')]

        >>> rdd = sc.parallelize(l)
        >>> sqlContext.createDataFrame(rdd).collect()
        [Row(_1=u'Alice', _2=1)]
        >>> df = sqlContext.createDataFrame(rdd, ['name', 'age'])
        >>> df.collect()
        [Row(name=u'Alice', age=1)]

        >>> from pyspark.sql import Row
        >>> Person = Row('name', 'age')
        >>> person = rdd.map(lambda r: Person(*r))
        >>> df2 = sqlContext.createDataFrame(person)
        >>> df2.collect()
        [Row(name=u'Alice', age=1)]

        >>> from pyspark.sql.types import *
        >>> schema = StructType([
        ...    StructField("name", StringType(), True),
        ...    StructField("age", IntegerType(), True)])
        >>> df3 = sqlContext.createDataFrame(rdd, schema)
        >>> df3.collect()
        [Row(name=u'Alice', age=1)]

        >>> sqlContext.createDataFrame(df.toPandas()).collect()  # doctest: +SKIP
        [Row(name=u'Alice', age=1)]
        >>> sqlContext.createDataFrame(pandas.DataFrame([[1, 2]]).collect())  # doctest: +SKIP
        [Row(0=1, 1=2)]
        """
        if isinstance(data, DataFrame):
            raise TypeError("data is already a DataFrame")

        if isinstance(data, RDD):
            rdd, schema = self._createFromRDD(data, schema, samplingRatio)
        else:
            rdd, schema = self._createFromLocal(data, schema)
        jrdd = self._jvm.SerDeUtil.toJavaArray(rdd._to_java_object_rdd())
        jdf = self._ssql_ctx.applySchemaToPythonRDD(jrdd.rdd(), schema.json())
        df = DataFrame(jdf, self)
        df._schema = schema
        return df
Пример #17
0
    def createDataFrame(self,
                        data,
                        schema=None,
                        samplingRatio=None,
                        verifySchema=True):
        """
        Creates a :class:`DataFrame` from an :class:`RDD`, a list or a :class:`pandas.DataFrame`.

        When ``schema`` is a list of column names, the type of each column
        will be inferred from ``data``.

        When ``schema`` is ``None``, it will try to infer the schema (column names and types)
        from ``data``, which should be an RDD of :class:`Row`,
        or :class:`namedtuple`, or :class:`dict`.

        When ``schema`` is :class:`pyspark.sql.types.DataType` or a datatype string, it must match
        the real data, or an exception will be thrown at runtime. If the given schema is not
        :class:`pyspark.sql.types.StructType`, it will be wrapped into a
        :class:`pyspark.sql.types.StructType` as its only field, and the field name will be "value",
        each record will also be wrapped into a tuple, which can be converted to row later.

        If schema inference is needed, ``samplingRatio`` is used to determined the ratio of
        rows used for schema inference. The first row will be used if ``samplingRatio`` is ``None``.

        :param data: an RDD of any kind of SQL data representation(e.g. row, tuple, int, boolean,
            etc.), or :class:`list`, or :class:`pandas.DataFrame`.
        :param schema: a :class:`pyspark.sql.types.DataType` or a datatype string or a list of
            column names, default is ``None``.  The data type string format equals to
            :class:`pyspark.sql.types.DataType.simpleString`, except that top level struct type can
            omit the ``struct<>`` and atomic types use ``typeName()`` as their format, e.g. use
            ``byte`` instead of ``tinyint`` for :class:`pyspark.sql.types.ByteType`. We can also use
            ``int`` as a short name for ``IntegerType``.
        :param samplingRatio: the sample ratio of rows used for inferring
        :param verifySchema: verify data types of every row against schema.
        :return: :class:`DataFrame`

        .. versionchanged:: 2.1
           Added verifySchema.

        >>> l = [('Alice', 1)]
        >>> spark.createDataFrame(l).collect()
        [Row(_1=u'Alice', _2=1)]
        >>> spark.createDataFrame(l, ['name', 'age']).collect()
        [Row(name=u'Alice', age=1)]

        >>> d = [{'name': 'Alice', 'age': 1}]
        >>> spark.createDataFrame(d).collect()
        [Row(age=1, name=u'Alice')]

        >>> rdd = sc.parallelize(l)
        >>> spark.createDataFrame(rdd).collect()
        [Row(_1=u'Alice', _2=1)]
        >>> df = spark.createDataFrame(rdd, ['name', 'age'])
        >>> df.collect()
        [Row(name=u'Alice', age=1)]

        >>> from pyspark.sql import Row
        >>> Person = Row('name', 'age')
        >>> person = rdd.map(lambda r: Person(*r))
        >>> df2 = spark.createDataFrame(person)
        >>> df2.collect()
        [Row(name=u'Alice', age=1)]

        >>> from pyspark.sql.types import *
        >>> schema = StructType([
        ...    StructField("name", StringType(), True),
        ...    StructField("age", IntegerType(), True)])
        >>> df3 = spark.createDataFrame(rdd, schema)
        >>> df3.collect()
        [Row(name=u'Alice', age=1)]

        >>> spark.createDataFrame(df.toPandas()).collect()  # doctest: +SKIP
        [Row(name=u'Alice', age=1)]
        >>> spark.createDataFrame(pandas.DataFrame([[1, 2]])).collect()  # doctest: +SKIP
        [Row(0=1, 1=2)]

        >>> spark.createDataFrame(rdd, "a: string, b: int").collect()
        [Row(a=u'Alice', b=1)]
        >>> rdd = rdd.map(lambda row: row[1])
        >>> spark.createDataFrame(rdd, "int").collect()
        [Row(value=1)]
        >>> spark.createDataFrame(rdd, "boolean").collect() # doctest: +IGNORE_EXCEPTION_DETAIL
        Traceback (most recent call last):
            ...
        Py4JJavaError: ...
        """
        if isinstance(data, DataFrame):
            raise TypeError("data is already a DataFrame")

        if isinstance(schema, basestring):
            schema = _parse_datatype_string(schema)

        try:
            import pandas
            has_pandas = True
        except Exception:
            has_pandas = False
        if has_pandas and isinstance(data, pandas.DataFrame):
            if schema is None:
                schema = [str(x) for x in data.columns]
            data = [r.tolist() for r in data.to_records(index=False)]

        verify_func = _verify_type if verifySchema else lambda _, t: True
        if isinstance(schema, StructType):

            def prepare(obj):
                verify_func(obj, schema)
                return obj
        elif isinstance(schema, DataType):
            dataType = schema
            schema = StructType().add("value", schema)

            def prepare(obj):
                verify_func(obj, dataType)
                return obj,
        else:
            if isinstance(schema, list):
                schema = [
                    x.encode('utf-8') if not isinstance(x, str) else x
                    for x in schema
                ]
            prepare = lambda obj: obj

        if isinstance(data, RDD):
            rdd, schema = self._createFromRDD(data.map(prepare), schema,
                                              samplingRatio)
        else:
            rdd, schema = self._createFromLocal(map(prepare, data), schema)
        jrdd = self._jvm.SerDeUtil.toJavaArray(rdd._to_java_object_rdd())
        jdf = self._jsparkSession.applySchemaToPythonRDD(
            jrdd.rdd(), schema.json())
        df = DataFrame(jdf, self._wrapped)
        df._schema = schema
        return df