Пример #1
0
class TestSample(TestCase):
    def setUp(self) -> None:
        predictors = [nc.band1, nc.band2, nc.band3, nc.band4, nc.band5, nc.band7]
        self.stack = Raster(predictors)
        self.strata = Raster(nc.strata)
    
    def tearDown(self) -> None:
        self.stack.close()
        self.strata.close()

    def test_sample_strata(self):
        # extract using a strata raster and returning two arrays
        size = 100
        categories = self.strata.read(masked=True).flatten()
        categories = categories[~categories.mask]
        n_categories = np.unique(categories).shape[0]
        n_samples = size * n_categories

        X, xy = self.stack.sample(size=size, strata=self.strata, return_array=True)
        self.assertEqual(X.shape, (n_samples, 6))
        self.assertEqual(xy.shape, (n_samples, 2))

        # extract using a strata raster and returning a dataframe
        samples = self.stack.sample(size=size, strata=self.strata, return_array=False)
        self.assertEqual(samples.shape, (n_samples, 7))
    
    def test_sample_no_strata(self):
        size = 100
        X, xy = self.stack.sample(size=size, return_array=True)
        self.assertEqual(X.shape, (size, 6))
        self.assertEqual(xy.shape, (size, 2))

        samples = self.stack.sample(size=size, return_array=False)
        self.assertEqual(samples.shape, (size, 7))
Пример #2
0
    def test_append_with_copy(self):
        """Same tests as above but create a new Raster rather than append
        in place
        """
        # append another Raster containing a single layer with identical name
        stack = Raster(self.predictors)
        band7_mean = stack["lsat7_2000_70"].read(masked=True).mean()
        result = stack.append(Raster(nc.band7), in_place=False)

        # check that original is untouched
        self.assertEqual(stack.count, 6)

        # check that result contains appended raster
        self.assertEqual(list(result.names)[5], "lsat7_2000_70_1")
        self.assertEqual(list(result.names)[-1], "lsat7_2000_70_2")

        # check that band 7 stats are the same after appending
        self.assertEqual(
            result.lsat7_2000_70_1.read(masked=True).mean(),
            result.lsat7_2000_70_2.read(masked=True).mean(),
            band7_mean,
        )

        # append a multiband raster
        result = stack.append(Raster(nc.multiband), in_place=False)
        self.assertEqual(list(result.names)[6], "landsat_multiband_1")
        stack.close()

        # append multiple rasters
        stack = Raster(self.predictors)
        new_stack = stack.append(
            [Raster(nc.band5), Raster(nc.band7)], in_place=False)
        self.assertEqual(new_stack.count, 8)
Пример #3
0
class TestToCrs(TestCase):
    def setUp(self) -> None:
        # inputs
        self.predictors = [
            nc.band1, nc.band2, nc.band3, nc.band4, nc.band5, nc.band7
        ]
        self.stack = Raster(self.predictors)
        training_py = gpd.read_file(nc.polygons)
        self.crop_bounds = training_py.loc[0, "geometry"].bounds

        # outputs
        self.cropped = None

    def tearDown(self) -> None:
        self.stack.close()
        self.cropped.close()

    def test_crop_defaults(self):
        self.cropped = self.stack.crop(self.crop_bounds)

        # check raster object
        self.assertIsInstance(self.cropped, Raster)
        self.assertEqual(self.cropped.count, self.stack.count)
        self.assertEqual(self.cropped.read(masked=True).count(), 1440)

        # test nodata value is recognized
        self.assertEqual(self.cropped.read(masked=True).min(), 35.0)
        self.assertEqual(self.cropped.read(masked=True).max(), 168.0)

    def test_crop_in_memory(self):
        self.cropped = self.stack.crop(self.crop_bounds, in_memory=True)
        self.assertIsInstance(self.cropped, Raster)
Пример #4
0
class TestPlotting(TestCase):
    def setUp(self) -> None:
        self.predictors = [
            nc.band1, nc.band2, nc.band3, nc.band4, nc.band5, nc.band7
        ]
        self.stack = Raster(self.predictors)
        self.stack_single = Raster(self.predictors[0])

    def tearDown(self) -> None:
        self.stack.close()
        self.stack_single.close()

    def test_plotting_raster(self):

        # test basic raster matrix plot
        p = self.stack.plot()
        self.assertIsInstance(p, np.ndarray)

        # test with arguments
        p = self.stack.plot(
            cmap="plasma",
            norm=mpl.colors.Normalize(vmin=10, vmax=100),
            title_fontsize=10,
            label_fontsize=10,
            names=["band1", "band2", "band3", "band4", "band5", "band7"],
            figsize=(10, 5),
            legend_kwds={"orientation": "horizontal"})
        self.assertIsInstance(p, np.ndarray)

    def test_plotting_single(self):
        p = self.stack_single.plot(legend_kwds={
            "orientation": "horizontal",
            "fraction": 0.04
        })
        self.assertIsInstance(p, mpl.axes.Subplot)
Пример #5
0
    def test_append_inplace(self):
        """Append another Raster containing a single layer with identical name

        This test should cause the Raster object to automatically rename the
        duplicated names as "lsat7_2000_70_1", "lsat7_2000_70_2", etc.

        Appending a multi-band raster should result in a new layer with the
        multi-band name "landsat_multiband_1", "landsat_multiband_2", etc.

        A list of Rasters can be passed to append() to append multiple rasters
        """
        # append a single band raster with the same name
        stack = Raster(self.predictors)
        band7_mean = stack["lsat7_2000_70"].read(masked=True).mean()
        stack.append(Raster(nc.band7), in_place=True)

        self.assertEqual(list(stack.names)[5], "lsat7_2000_70_1")
        self.assertEqual(list(stack.names)[-1], "lsat7_2000_70_2")
        self.assertEqual(
            stack.lsat7_2000_70_1.read(masked=True).mean(),
            stack.lsat7_2000_70_2.read(masked=True).mean(),
            band7_mean,
        )

        # append a multiband raster
        stack = Raster(self.predictors)
        stack.append(Raster(nc.multiband), in_place=True)
        self.assertEqual(list(stack.names)[6], "landsat_multiband_1")
        stack.close()

        # append multiple rasters
        stack = Raster(self.predictors)
        stack.append([Raster(nc.band5), Raster(nc.band7)], in_place=True)
        self.assertEqual(stack.count, 8)
Пример #6
0
    def test_subset_multiple_layers(self):
        stack = Raster(self.predictors + [nc.multiband])

        # Subset multiple layers using a slice of index positions
        # - returns a Raster object
        self.assertIsInstance(stack.iloc[0:2], Raster)

        # Subset multiple layers using a list of index positions
        # - returns a Raster object
        self.assertIsInstance(stack.iloc[[0, 1, 2]], Raster)

        # Subset multiple layers using a list of labels
        # - returns a Raster object
        subset_raster = stack[["lsat7_2000_10", "lsat7_2000_70"]]
        self.assertIsInstance(subset_raster, Raster)
        self.assertListEqual(list(subset_raster.names),
                             ["lsat7_2000_10", "lsat7_2000_70"])

        # Check that label and integer subset return the same layers
        self.assertListEqual(
            list(stack.iloc[0:3].names),
            list(stack[["lsat7_2000_10", "lsat7_2000_20",
                        "lsat7_2000_30"]].names),
        )

        stack.close()
Пример #7
0
class TestCalc(TestCase):
    def setUp(self) -> None:
        predictors = [nc.band1, nc.band2, nc.band3, nc.band4, nc.band5, nc.band7]
        self.stack = Raster(predictors)
        self.result = None

    def tearDown(self) -> None:
        self.stack.close()
        self.result.close()
        self.stack = None
        self.result = None

    def test_calc_with_2d_output(self):
        def compute_outputs_2d_array(arr):
            return arr[0, :, :] + arr[1, :, :]

        self.result = self.stack.apply(compute_outputs_2d_array)
        self.assertIsInstance(self.result, Raster)
        self.assertEqual(self.result.count, 1)
        self.assertEqual(self.result.read(masked=True).count(), 183418)

    def test_calc_with_2d_output_coerce_dtype(self):
        def compute_outputs_2d_array(arr):
            return arr[0, :, :] + arr[1, :, :]

        self.result = self.stack.apply(compute_outputs_2d_array, dtype=np.int16)
        self.assertIsInstance(self.result, Raster)
        self.assertEqual(self.result.count, 1)
        self.assertEqual(self.result.read(masked=True).count(), 183418)

    def test_calc_with_3d_output(self):
        def compute_outputs_3d_array(arr):
            arr[0, :, :] = arr[0, :, :] + arr[1, ::]
            return arr

        self.result = self.stack.apply(compute_outputs_3d_array)
        self.assertIsInstance(self.result, Raster)
        self.assertEqual(self.result.count, 6)
        self.assertEqual(self.result.read(masked=True).count(), 1052182)

    def test_calc_with_multiprocessing(self):
        def compute_outputs_2d_array(arr):
            return arr[0, :, :] + arr[1, :, :]

        self.result = self.stack.apply(compute_outputs_2d_array)
        self.assertIsInstance(self.result, Raster)
        self.assertEqual(self.result.count, 1)
        self.assertEqual(self.result.read(masked=True).count(), 183418)

    def test_calc_in_memory(self):
        def compute_outputs_2d_array(arr):
            return arr[0, :, :] + arr[1, :, :]

        self.result = self.stack.apply(compute_outputs_2d_array, in_memory=True)
        self.assertIsInstance(self.result, Raster)
        self.assertEqual(self.result.count, 1)
        self.assertEqual(self.result.read(masked=True).count(), 183418)
Пример #8
0
class TestIntersect(TestCase):
    def setUp(self) -> None:
        # inputs
        self.predictors = [nc.band1, nc.band2, nc.band3, nc.band4, nc.band5,
                           nc.band7]
        self.stack = Raster(self.predictors)

        # test results
        self.result = None

    def tearDown(self) -> None:
        self.stack.close()
        self.result.close()

    def test_intersect_defaults(self):
        self.result = self.stack.intersect()

        # check raster object
        self.assertIsInstance(self.result, Raster)
        self.assertEqual(self.result.count, self.stack.count)
        self.assertEqual(self.result.read(masked=True).count(), 810552)

        # test nodata value is recognized
        self.assertEqual(self.result.read(masked=True).min(), 1.0)
        self.assertEqual(self.result.read(masked=True).max(), 255.0)

    def test_intersect_custom_dtype(self):
        self.result = self.stack.intersect(dtype=np.int16)

        # check raster object
        self.assertIsInstance(self.result, Raster)
        self.assertEqual(self.result.count, self.stack.count)
        self.assertEqual(self.result.read(masked=True).count(), 810552)

        # test nodata value is recognized
        self.assertEqual(self.result.read(masked=True).min(), 1)
        self.assertEqual(self.result.read(masked=True).max(), 255)

    def test_intersect_custom_nodata(self):
        self.result = self.stack.intersect(dtype=np.int16, nodata=-999)

        # check raster object
        self.assertIsInstance(self.result, Raster)
        self.assertEqual(self.result.count, self.stack.count)
        self.assertEqual(self.result.read(masked=True).count(), 810552)

        # test nodata value is recognized
        self.assertEqual(self.result.read(masked=True).min(), 1)
        self.assertEqual(self.result.read(masked=True).max(), 255)

    def test_intersect_in_memory(self):
        self.result = self.stack.intersect(in_memory=True)

        # check raster object
        self.assertIsInstance(self.result, Raster)
Пример #9
0
    def test_drop_inplace(self):
        stack = Raster(self.predictors)
        stack.drop(labels="lsat7_2000_50", in_place=True)

        # check that Raster object is returned
        self.assertIsInstance(stack, Raster)

        # check that RasterLayer has been dropped
        self.assertEqual(stack.count, 5)
        self.assertNotIn("lsat7_2000_50", stack.names)
        stack.close()
Пример #10
0
class TestToCrs(TestCase):
    def setUp(self) -> None:
        # test inputs
        predictors = [
            nc.band1, nc.band2, nc.band3, nc.band4, nc.band5, nc.band7
        ]
        self.stack = Raster(predictors)

        # test results
        self.stack_prj = None

    def tearDown(self) -> None:
        self.stack.close()
        self.stack_prj.close()

    def test_to_crs_defaults(self):
        self.stack_prj = self.stack.to_crs({"init": "EPSG:4326"})

        # check raster object
        self.assertIsInstance(self.stack_prj, Raster)
        self.assertEqual(self.stack_prj.count, self.stack.count)
        self.assertEqual(self.stack_prj.read(masked=True).count(), 1012061)

        # test nodata value is recognized
        self.assertEqual(
            self.stack_prj.read(masked=True).min(),
            self.stack.read(masked=True).min())
        self.assertEqual(
            self.stack_prj.read(masked=True).max(),
            self.stack.read(masked=True).max())

    def test_to_crs_custom_nodata(self):
        self.stack_prj = self.stack.to_crs({"init": "EPSG:4326"}, nodata=-999)

        # check raster object
        self.assertIsInstance(self.stack_prj, Raster)
        self.assertEqual(self.stack_prj.count, self.stack.count)
        self.assertEqual(self.stack_prj.read(masked=True).count(), 1012061)

        # test nodata value is recognized
        self.assertEqual(
            self.stack_prj.read(masked=True).min(),
            self.stack.read(masked=True).min())
        self.assertEqual(
            self.stack_prj.read(masked=True).max(),
            self.stack.read(masked=True).max())

    def test_to_crs_in_memory(self):
        self.stack_prj = self.stack.to_crs({"init": "EPSG:4326"},
                                           in_memory=True)

        # check raster object
        self.assertIsInstance(self.stack_prj, Raster)
Пример #11
0
    def test_drop_with_copy(self):
        stack = Raster(self.predictors)
        names = stack.names
        result = stack.drop(labels="lsat7_2000_50", in_place=False)

        # check that Raster object is returned
        self.assertIsInstance(result, Raster)

        # check that RasterLayer has been dropped
        self.assertEqual(result.count, 5)
        self.assertNotIn("lsat7_2000_50", result.names)

        # check that original raster is unaffected
        self.assertEqual(stack.count, 6)
        self.assertEqual(stack.names, names)
        stack.close()
        result.close()
Пример #12
0
    def test_indexing(self):
        stack = Raster(self.predictors + [nc.multiband])

        # replace band 1 with band 7
        band7_mean = stack["lsat7_2000_70"].read(masked=True).mean()

        stack.iloc[0] = Raster(nc.band7).iloc[0]

        self.assertEqual(stack.iloc[0].read(masked=True).mean(), band7_mean)
        self.assertEqual(stack["lsat7_2000_10"].read(masked=True).mean(),
                         band7_mean)
        self.assertEqual(stack["lsat7_2000_10"].read(masked=True).mean(),
                         band7_mean)
        self.assertEqual(
            stack.lsat7_2000_10.read(masked=True).mean(), band7_mean)

        stack.close()
Пример #13
0
    def test_append_inplace(self):
        # append another Raster containing a single layer with identical name
        stack = Raster(self.predictors)
        band7_mean = stack["lsat7_2000_70"].read(masked=True).mean()
        stack.append(Raster(nc.band7), in_place=True)

        self.assertEqual(stack.names[5], "lsat7_2000_70_1")
        self.assertEqual(stack.names[-1], "lsat7_2000_70_2")
        self.assertEqual(
            stack.lsat7_2000_70_1.read(masked=True).mean(),
            stack.lsat7_2000_70_2.read(masked=True).mean(),
            band7_mean,
        )

        # append a multiband raster
        stack = Raster(self.predictors)
        stack.append(Raster(nc.multiband), in_place=True)
        self.assertEqual(stack.names[6], "landsat_multiband_1")
        stack.close()
Пример #14
0
    def test_subset_single_layer(self):
        stack = Raster(self.predictors + [nc.multiband])

        # Subset a single layer using an index position - returns a RasterLayer
        self.assertIsInstance(stack.iloc[0], RasterLayer)

        # Subset a single layer using a label - returns a RasterLayer
        self.assertIsInstance(stack["lsat7_2000_10"], RasterLayer)

        # Subset a single layer using an attribute - returns a RasterLayer
        self.assertIsInstance(stack.lsat7_2000_10, RasterLayer)

        # Check that the raster values are the same as the original values
        # after subsetting
        self.assertEqual(
            stack.lsat7_2000_10.read(masked=True).mean(), 80.56715262406088)
        self.assertEqual(
            stack.lsat7_2000_70.read(masked=True).mean(), 59.17773813401238)
        stack.close()
Пример #15
0
class TestAlter(TestCase):
    def setUp(self) -> None:
        predictors = [
            nc.band1, nc.band2, nc.band3, nc.band4, nc.band5, nc.band7
        ]
        self.stack = Raster(predictors)
        points = gpd.read_file(nc.points)
        data = self.stack.extract_vector(points)
        self.data = data.dropna()

    def tearDown(self) -> None:
        self.stack.close()

    def test_alter(self):
        scaler = StandardScaler()
        scaler.fit(self.data.drop(columns=["geometry"]).values)
        out = self.stack.alter(scaler)

        self.assertIsInstance(out, Raster)
        self.assertEqual(out.shape, self.stack.shape)
Пример #16
0
    def test_naming(self):
        stack = Raster(self.predictors + [nc.multiband])

        # check unique naming when stacking multiband raster
        self.assertEqual(stack.count, 11)
        expected_names = [
            "lsat7_2000_10",
            "lsat7_2000_20",
            "lsat7_2000_30",
            "lsat7_2000_40",
            "lsat7_2000_50",
            "lsat7_2000_70",
            "landsat_multiband_1",
            "landsat_multiband_2",
            "landsat_multiband_3",
            "landsat_multiband_4",
            "landsat_multiband_5",
        ]
        self.assertListEqual(list(stack.names), expected_names)
        stack.close()
Пример #17
0
    def test_append_with_copy(self):
        # append another Raster containing a single layer with identical name
        stack = Raster(self.predictors)
        band7_mean = stack["lsat7_2000_70"].read(masked=True).mean()
        result = stack.append(Raster(nc.band7), in_place=False)

        # check that original is untouched
        self.assertEqual(stack.count, 6)

        # check that result contains appended raster
        self.assertEqual(result.names[5], "lsat7_2000_70_1")
        self.assertEqual(result.names[-1], "lsat7_2000_70_2")

        # check that band 7 stats are the same after appending
        self.assertEqual(
            result.lsat7_2000_70_1.read(masked=True).mean(),
            result.lsat7_2000_70_2.read(masked=True).mean(),
            band7_mean,
        )

        # append a multiband raster
        result = stack.append(Raster(nc.multiband), in_place=False)
        self.assertEqual(result.names[6], "landsat_multiband_1")
        stack.close()
Пример #18
0
class TestMask(TestCase):
    def setUp(self) -> None:
        # test inputs
        training_py = gpd.read_file(nc.polygons)
        self.mask_py = training_py.iloc[0:1, :]

        predictors = [
            nc.band1, nc.band2, nc.band3, nc.band4, nc.band5, nc.band7
        ]
        self.stack = Raster(predictors)

        # test results
        self.masked_object = None

    def tearDown(self) -> None:
        self.stack.close()
        self.masked_object.close()

    def test_mask_defaults(self):
        self.masked_object = self.stack.mask(self.mask_py)

        # check raster object
        self.assertIsInstance(self.masked_object, Raster)
        self.assertEqual(self.masked_object.count, self.stack.count)
        self.assertEqual(self.masked_object.read(masked=True).count(), 738)

        # test nodata value is recognized
        self.assertEqual(self.masked_object.read(masked=True).min(), 38.0)
        self.assertEqual(self.masked_object.read(masked=True).max(), 168.0)

    def test_mask_inverted(self):
        self.masked_object = self.stack.mask(self.mask_py, invert=True)

        # check raster object
        self.assertIsInstance(self.masked_object, Raster)
        self.assertEqual(self.masked_object.count, self.stack.count)
        self.assertEqual(self.masked_object.read(masked=True).count(), 1051444)

        # test nodata value is recognized
        self.assertEqual(self.masked_object.read(masked=True).min(), 1.0)
        self.assertEqual(self.masked_object.read(masked=True).max(), 255.0)

    def test_mask_custom_dtype(self):
        self.masked_object = self.stack.mask(self.mask_py, dtype=np.int16)

        # check raster object
        self.assertIsInstance(self.masked_object, Raster)
        self.assertEqual(self.masked_object.count, self.stack.count)
        self.assertEqual(self.masked_object.read(masked=True).count(), 738)

        # test nodata value is recognized
        self.assertEqual(self.masked_object.read(masked=True).min(), 38)
        self.assertEqual(self.masked_object.read(masked=True).max(), 168)

    def test_mask_custom_nodata(self):
        self.masked_object = self.stack.mask(self.mask_py, nodata=-99999)

        # check raster object
        self.assertIsInstance(self.masked_object, Raster)
        self.assertEqual(self.masked_object.count, self.stack.count)
        self.assertEqual(self.masked_object.read(masked=True).count(), 738)

        # test nodata value is recognized
        self.assertEqual(self.masked_object.read(masked=True).min(), 38.0)
        self.assertEqual(self.masked_object.read(masked=True).max(), 168.0)

    def test_mask_in_memory(self):
        self.masked_object = self.stack.mask(self.mask_py, in_memory=True)

        # check raster object
        self.assertIsInstance(self.masked_object, Raster)
Пример #19
0
class TestExtract(TestCase):
    def setUp(self) -> None:
        self.predictors = [
            nc.band1, nc.band2, nc.band3, nc.band4, nc.band5, nc.band7
        ]
        self.extracted_grass = pd.read_table(nc.extracted_pixels,
                                             delimiter=" ")

        self.stack = Raster(self.predictors)

    def tearDown(self) -> None:
        self.stack.close()

    def test_extract_points(self):
        training_pt = geopandas.read_file(nc.points)

        # check that extracted training data as a DataFrame match known values
        df = self.stack.extract_vector(gdf=training_pt)
        df = df.dropna()
        training_pt = training_pt.dropna()

        self.assertTrue(
            (df["lsat7_2000_10"].values == training_pt["b1"].values).all())
        self.assertTrue(
            (df["lsat7_2000_20"].values == training_pt["b2"].values).all())
        self.assertTrue(
            (df["lsat7_2000_30"].values == training_pt["b3"].values).all())
        self.assertTrue(
            (df["lsat7_2000_40"].values == training_pt["b4"].values).all())
        self.assertTrue(
            (df["lsat7_2000_50"].values == training_pt["b5"].values).all())
        self.assertTrue(
            (df["lsat7_2000_70"].values == training_pt["b7"].values).all())

    def test_extract_polygons(self):
        # extract training data from polygons
        training_py = geopandas.read_file(nc.polygons)
        df = self.stack.extract_vector(gdf=training_py)
        df = df.dropna()

        df = df.merge(
            right=training_py.loc[:, ("id", "label")],
            left_on="geometry_idx",
            right_on="index",
            right_index=True,
        )

        # compare to extracted data using GRASS GIS
        self.assertEqual(df.shape[0], self.extracted_grass.shape[0])
        self.assertAlmostEqual(df["lsat7_2000_10"].mean(),
                               self.extracted_grass["b1"].mean(),
                               places=2)
        self.assertAlmostEqual(df["lsat7_2000_20"].mean(),
                               self.extracted_grass["b2"].mean(),
                               places=2)
        self.assertAlmostEqual(df["lsat7_2000_30"].mean(),
                               self.extracted_grass["b3"].mean(),
                               places=2)
        self.assertAlmostEqual(df["lsat7_2000_40"].mean(),
                               self.extracted_grass["b4"].mean(),
                               places=2)
        self.assertAlmostEqual(df["lsat7_2000_50"].mean(),
                               self.extracted_grass["b5"].mean(),
                               places=2)
        self.assertAlmostEqual(df["lsat7_2000_70"].mean(),
                               self.extracted_grass["b7"].mean(),
                               places=2)

    def test_extract_lines(self):
        # extract training data from lines
        training_py = geopandas.read_file(nc.polygons)
        training_lines = deepcopy(training_py)
        training_lines["geometry"] = training_lines.geometry.boundary
        df = self.stack.extract_vector(gdf=training_lines).dropna()

        # check shapes of extracted pixels
        self.assertEqual(df.shape[0], 948)

    def test_extract_raster(self):
        # extract training data from labelled pixels
        with rasterio.open(nc.labelled_pixels) as src:
            df = self.stack.extract_raster(src)

        df = df.dropna()

        self.assertEqual(df.shape[0], self.extracted_grass.shape[0])
        self.assertAlmostEqual(df["lsat7_2000_10"].mean(),
                               self.extracted_grass["b1"].mean(),
                               places=3)
        self.assertAlmostEqual(df["lsat7_2000_20"].mean(),
                               self.extracted_grass["b2"].mean(),
                               places=3)
        self.assertAlmostEqual(df["lsat7_2000_30"].mean(),
                               self.extracted_grass["b3"].mean(),
                               places=3)
        self.assertAlmostEqual(df["lsat7_2000_40"].mean(),
                               self.extracted_grass["b4"].mean(),
                               places=3)
        self.assertAlmostEqual(df["lsat7_2000_50"].mean(),
                               self.extracted_grass["b5"].mean(),
                               places=3)
        self.assertAlmostEqual(df["lsat7_2000_70"].mean(),
                               self.extracted_grass["b7"].mean(),
                               places=3)