Пример #1
0
class TestToCrs(TestCase):
    def setUp(self) -> None:
        # test inputs
        predictors = [
            nc.band1, nc.band2, nc.band3, nc.band4, nc.band5, nc.band7
        ]
        self.stack = Raster(predictors)

        # test results
        self.stack_prj = None

    def tearDown(self) -> None:
        self.stack.close()
        self.stack_prj.close()

    def test_to_crs_defaults(self):
        self.stack_prj = self.stack.to_crs({"init": "EPSG:4326"})

        # check raster object
        self.assertIsInstance(self.stack_prj, Raster)
        self.assertEqual(self.stack_prj.count, self.stack.count)
        self.assertEqual(self.stack_prj.read(masked=True).count(), 1012061)

        # test nodata value is recognized
        self.assertEqual(
            self.stack_prj.read(masked=True).min(),
            self.stack.read(masked=True).min())
        self.assertEqual(
            self.stack_prj.read(masked=True).max(),
            self.stack.read(masked=True).max())

    def test_to_crs_custom_nodata(self):
        self.stack_prj = self.stack.to_crs({"init": "EPSG:4326"}, nodata=-999)

        # check raster object
        self.assertIsInstance(self.stack_prj, Raster)
        self.assertEqual(self.stack_prj.count, self.stack.count)
        self.assertEqual(self.stack_prj.read(masked=True).count(), 1012061)

        # test nodata value is recognized
        self.assertEqual(
            self.stack_prj.read(masked=True).min(),
            self.stack.read(masked=True).min())
        self.assertEqual(
            self.stack_prj.read(masked=True).max(),
            self.stack.read(masked=True).max())

    def test_to_crs_in_memory(self):
        self.stack_prj = self.stack.to_crs({"init": "EPSG:4326"},
                                           in_memory=True)

        # check raster object
        self.assertIsInstance(self.stack_prj, Raster)
Пример #2
0
class TestSample(TestCase):
    def setUp(self) -> None:
        predictors = [nc.band1, nc.band2, nc.band3, nc.band4, nc.band5, nc.band7]
        self.stack = Raster(predictors)
        self.strata = Raster(nc.strata)
    
    def tearDown(self) -> None:
        self.stack.close()
        self.strata.close()

    def test_sample_strata(self):
        # extract using a strata raster and returning two arrays
        size = 100
        categories = self.strata.read(masked=True).flatten()
        categories = categories[~categories.mask]
        n_categories = np.unique(categories).shape[0]
        n_samples = size * n_categories

        X, xy = self.stack.sample(size=size, strata=self.strata, return_array=True)
        self.assertEqual(X.shape, (n_samples, 6))
        self.assertEqual(xy.shape, (n_samples, 2))

        # extract using a strata raster and returning a dataframe
        samples = self.stack.sample(size=size, strata=self.strata, return_array=False)
        self.assertEqual(samples.shape, (n_samples, 7))
    
    def test_sample_no_strata(self):
        size = 100
        X, xy = self.stack.sample(size=size, return_array=True)
        self.assertEqual(X.shape, (size, 6))
        self.assertEqual(xy.shape, (size, 2))

        samples = self.stack.sample(size=size, return_array=False)
        self.assertEqual(samples.shape, (size, 7))
Пример #3
0
# spatial cross-validation
from sklearn.cluster import KMeans

# create 10 spatial clusters based on clustering of the training data point x,y coordinates
clusters = KMeans(n_clusters=34, n_jobs=-1)
clusters.fit(df_polygons.geometry.bounds.iloc[:, 0:2])

# cross validate
scores = cross_validate(
  lr, X, y, groups=clusters.labels_,
  scoring='accuracy',
  cv=3,  n_jobs=1)
scores['test_score'].mean()

# prediction
df = stack.read(as_df=True, masked=True)

result = stack.predict(estimator=lr, dtype='int16', nodata=0)
result = stack.predict(estimator=lr, dtype='int16', nodata=0, as_df=True)
result_prob = stack.predict_proba(estimator=lr)
result.names
result_prob.names

result.plot()
plt.show()

result_prob.plot()
plt.show()

# sampling
# extract training data using a random sample
ep.plot_rgb(rgb432, extent=extent, ax=axes[0,0], stretch=True, title='Verdadero color')
manzana.boundary.plot(ax=axes[0,0], color='white', alpha=0.5, linewidth=1)
# Plot falso color
ep.plot_rgb(rgb843, extent=extent, ax=axes[0,1], stretch=True, title='Falso color')
manzana.boundary.plot(ax=axes[0,1], color='white', alpha=0.5, linewidth=1)
# Plot Class Keras
ep.plot_bands(result_keras.read(), extent=extent, ax=axes[1,0], cmap='RdYlGn', 
              alpha=0.8, title="Clasificación ANN", cbar=False)
manzana.boundary.plot(ax=axes[1,0], color='white', alpha=0.5, linewidth=1)
# Plot class KNeigh
# Plot Class Keras
ep.plot_bands(result_neigh.read(), extent=extent, ax=axes[1,1], cmap='RdYlGn', 
              alpha=0.8, title="Clasificación KNeighbors", cbar=False)
manzana.boundary.plot(ax=axes[1,1], color='white', alpha=0.5, linewidth=1)
# Plot ndvi
ep.plot_bands(raster_ndvi.read(), extent=extent, ax=axes[2,0], cmap='RdYlGn', 
              alpha=0.8, title="NDVI", cbar=False)
manzana.boundary.plot(ax=axes[2,0], color='white', alpha=0.5, linewidth=1)
# Plot EVI
ep.plot_bands(raster_evi.read(), extent=extent, ax=axes[2,1], cmap='RdYlGn', 
              alpha=0.8, title="EVI", cbar=False)
manzana.boundary.plot(ax=axes[2,1], color='white', alpha=0.5, linewidth=1)
plt.tight_layout()
plt.show()

# %%
df_ndvi = raster_ndvi.extract_vector(training)
df_ndvi.rename(columns={df_ndvi.columns[0]: 'id'}, inplace=True)

df_evi = raster_evi.extract_vector(training)
df_evi.rename(columns={df_evi.columns[0]: 'id'}, inplace=True)