def test_loss_augmentation(): X, Y = toy.generate_blocks(n_samples=1) x, y = X[0], Y[0] w = np.array([1.0, 1.0, 0.0, -4.0, 0.0]) unary_params = w[:2] pairwise_flat = np.asarray(w[2:]) pairwise_params = np.zeros((2, 2)) pairwise_params[np.tri(2, dtype=np.bool)] = pairwise_flat pairwise_params = pairwise_params + pairwise_params.T - np.diag(np.diag(pairwise_params)) crf = GridCRF() x_loss_augmented = crf.loss_augment(x, y, w) y_hat = crf.inference(x_loss_augmented, w) # test that loss_augmented_inference does the same y_hat_2 = crf.loss_augmented_inference(x, y, w) assert_array_equal(y_hat_2, y_hat) energy = compute_energy(x, y_hat, unary_params, pairwise_params) energy_loss_augmented = compute_energy(x_loss_augmented, y_hat, unary_params, pairwise_params) assert_almost_equal(energy + crf.loss(y, y_hat), energy_loss_augmented) # with zero in w: unary_params[1] = 0 assert_raises(ValueError, crf.loss_augment, x, y, w)
def test_energy(): # make sure that energy as computed by ssvm is the same as by lp np.random.seed(0) found_fractional = False while not found_fractional: x = np.random.normal(size=(2, 2, 3)) unary_params = np.ones(3) pairwise_params = np.random.normal() * np.eye(3) edges = _make_grid_edges(x) # check map inference inf_res, energy_lp = _inference_lp( x, unary_params, pairwise_params, edges=edges, relaxed=True, return_energy=True, exact=True ) found_fractional = np.any(np.max(inf_res[0], axis=-1) != 1) energy_svm = compute_energy(x, inf_res, unary_params, pairwise_params, neighborhood=4) assert_almost_equal(energy_lp, -energy_svm)