Пример #1
0
def test_parfor1():
    "parfor"

    x = np.arange(10)
    y1 = list(map(_func1, x))
    y2 = parfor(_func1, x)

    assert_((np.array(y1) == np.array(y2)).all())
Пример #2
0
def test_parfor1():
    "parfor"

    x = np.arange(10)
    y1 = list(map(_func1, x))
    y2 = parfor(_func1, x)

    assert_((np.array(y1) == np.array(y2)).all())
Пример #3
0
def _wigner_laguerre(rho, xvec, yvec, g, parallel):
    """
    Using Laguerre polynomials from scipy to evaluate the Wigner function for
    the density matrices :math:`|m><n|`, :math:`W_{mn}`. The total Wigner
    function is calculated as :math:`W = \sum_{mn} \\rho_{mn} W_{mn}`.
    """

    M = np.prod(rho.shape[0])
    X, Y = meshgrid(xvec, yvec)
    A = 0.5 * g * (X + 1.0j * Y)
    W = zeros(np.shape(A))

    # compute wigner functions for density matrices |m><n| and
    # weight by all the elements in the density matrix
    B = 4 * abs(A) ** 2
    if sp.isspmatrix_csr(rho.data):
        # for compress sparse row matrices
        if parallel:
            iterator = (
                (m, rho, A, B) for m in range(len(rho.data.indptr) - 1))
            W1_out = parfor(_par_wig_eval, iterator)
            W += sum(W1_out)
        else:
            for m in range(len(rho.data.indptr) - 1):
                for jj in range(rho.data.indptr[m], rho.data.indptr[m + 1]):
                    n = rho.data.indices[jj]

                    if m == n:
                        W += real(rho[m, m] * (-1) ** m * genlaguerre(m, 0)(B))

                    elif n > m:
                        W += 2.0 * real(rho[m, n] * (-1) ** m *
                                        (2 * A) ** (n - m) *
                                        sqrt(factorial(m) / factorial(n)) *
                                        genlaguerre(m, n - m)(B))
    else:
        # for dense density matrices
        B = 4 * abs(A) ** 2
        for m in range(M):
            if abs(rho[m, m]) > 0.0:
                W += real(rho[m, m] * (-1) ** m * genlaguerre(m, 0)(B))
            for n in range(m + 1, M):
                if abs(rho[m, n]) > 0.0:
                    W += 2.0 * real(rho[m, n] * (-1) ** m *
                                    (2 * A) ** (n - m) *
                                    sqrt(factorial(m) / factorial(n)) *
                                    genlaguerre(m, n - m)(B))

    return 0.5 * W * g ** 2 * np.exp(-B / 2) / pi
Пример #4
0
def mcsolve(H, psi0, tlist, c_ops, e_ops, ntraj=None,
            args={}, options=None, progress_bar=True,
            map_func=None, map_kwargs=None):
    """Monte Carlo evolution of a state vector :math:`|\psi \\rangle` for a
    given Hamiltonian and sets of collapse operators, and possibly, operators
    for calculating expectation values. Options for the underlying ODE solver
    are given by the Options class.

    mcsolve supports time-dependent Hamiltonians and collapse operators using
    either Python functions of strings to represent time-dependent
    coefficients. Note that, the system Hamiltonian MUST have at least one
    constant term.

    As an example of a time-dependent problem, consider a Hamiltonian with two
    terms ``H0`` and ``H1``, where ``H1`` is time-dependent with coefficient
    ``sin(w*t)``, and collapse operators ``C0`` and ``C1``, where ``C1`` is
    time-dependent with coeffcient ``exp(-a*t)``.  Here, w and a are constant
    arguments with values ``W`` and ``A``.

    Using the Python function time-dependent format requires two Python
    functions, one for each collapse coefficient. Therefore, this problem could
    be expressed as::

        def H1_coeff(t,args):
            return sin(args['w']*t)

        def C1_coeff(t,args):
            return exp(-args['a']*t)

        H = [H0, [H1, H1_coeff]]

        c_ops = [C0, [C1, C1_coeff]]

        args={'a': A, 'w': W}

    or in String (Cython) format we could write::

        H = [H0, [H1, 'sin(w*t)']]

        c_ops = [C0, [C1, 'exp(-a*t)']]

        args={'a': A, 'w': W}

    Constant terms are preferably placed first in the Hamiltonian and collapse
    operator lists.

    Parameters
    ----------
    H : :class:`qutip.Qobj`
        System Hamiltonian.

    psi0 : :class:`qutip.Qobj`
        Initial state vector

    tlist : array_like
        Times at which results are recorded.

    ntraj : int
        Number of trajectories to run.

    c_ops : array_like
        single collapse operator or ``list`` or ``array`` of collapse
        operators.

    e_ops : array_like
        single operator or ``list`` or ``array`` of operators for calculating
        expectation values.

    args : dict
        Arguments for time-dependent Hamiltonian and collapse operator terms.

    options : Options
        Instance of ODE solver options.

    progress_bar: BaseProgressBar
        Optional instance of BaseProgressBar, or a subclass thereof, for
        showing the progress of the simulation. Set to None to disable the
        progress bar.

    map_func: function
        A map function for managing the calls to the single-trajactory solver.

    map_kwargs: dictionary
        Optional keyword arguments to the map_func function.

    Returns
    -------
    results : :class:`qutip.solver.Result`
        Object storing all results from the simulation.

    .. note::

        It is possible to reuse the random number seeds from a previous run
        of the mcsolver by passing the output Result object seeds via the
        Options class, i.e. Options(seeds=prev_result.seeds).
    """

    if debug:
        print(inspect.stack()[0][3])

    if options is None:
        options = Options()

    if ntraj is None:
        ntraj = options.ntraj

    config.map_func = map_func if map_func is not None else parallel_map
    config.map_kwargs = map_kwargs if map_kwargs is not None else {}

    if not psi0.isket:
        raise Exception("Initial state must be a state vector.")

    if isinstance(c_ops, Qobj):
        c_ops = [c_ops]

    if isinstance(e_ops, Qobj):
        e_ops = [e_ops]

    if isinstance(e_ops, dict):
        e_ops_dict = e_ops
        e_ops = [e for e in e_ops.values()]
    else:
        e_ops_dict = None

    config.options = options

    if progress_bar:
        if progress_bar is True:
            config.progress_bar = TextProgressBar()
        else:
            config.progress_bar = progress_bar
    else:
        config.progress_bar = BaseProgressBar()

    # set num_cpus to the value given in qutip.settings if none in Options
    if not config.options.num_cpus:
        config.options.num_cpus = qutip.settings.num_cpus
        if config.options.num_cpus == 1:
            # fallback on serial_map if num_cpu == 1, since there is no
            # benefit of starting multiprocessing in this case
            config.map_func = serial_map

    # set initial value data
    if options.tidy:
        config.psi0 = psi0.tidyup(options.atol).full().ravel()
    else:
        config.psi0 = psi0.full().ravel()

    config.psi0_dims = psi0.dims
    config.psi0_shape = psi0.shape

    # set options on ouput states
    if config.options.steady_state_average:
        config.options.average_states = True

    # set general items
    config.tlist = tlist
    if isinstance(ntraj, (list, np.ndarray)):
        config.ntraj = np.sort(ntraj)[-1]
    else:
        config.ntraj = ntraj

    # set norm finding constants
    config.norm_tol = options.norm_tol
    config.norm_steps = options.norm_steps

    # convert array based time-dependence to string format
    H, c_ops, args = _td_wrap_array_str(H, c_ops, args, tlist)

    # SETUP ODE DATA IF NONE EXISTS OR NOT REUSING
    # --------------------------------------------
    if not options.rhs_reuse or not config.tdfunc:
        # reset config collapse and time-dependence flags to default values
        config.soft_reset()

        # check for type of time-dependence (if any)
        time_type, h_stuff, c_stuff = _td_format_check(H, c_ops, 'mc')
        c_terms = len(c_stuff[0]) + len(c_stuff[1]) + len(c_stuff[2])
        # set time_type for use in multiprocessing
        config.tflag = time_type

        # check for collapse operators
        if c_terms > 0:
            config.cflag = 1
        else:
            config.cflag = 0

        # Configure data
        _mc_data_config(H, psi0, h_stuff, c_ops, c_stuff, args, e_ops,
                        options, config)

        # compile and load cython functions if necessary
        _mc_func_load(config)

    else:
        # setup args for new parameters when rhs_reuse=True and tdfunc is given
        # string based
        if config.tflag in [1, 10, 11]:
            if any(args):
                config.c_args = []
                arg_items = list(args.items())
                for k in range(len(arg_items)):
                    config.c_args.append(arg_items[k][1])
        # function based
        elif config.tflag in [2, 3, 20, 22]:
            config.h_func_args = args

    # load monte carlo class
    mc = _MC(config)

    # Run the simulation
    mc.run()

    # Remove RHS cython file if necessary
    if not options.rhs_reuse and config.tdname:
        _cython_build_cleanup(config.tdname)

    # AFTER MCSOLVER IS DONE
    # ----------------------

    # Store results in the Result object
    output = Result()
    output.solver = 'mcsolve'
    output.seeds = config.options.seeds
    # state vectors
    if (mc.psi_out is not None and config.options.average_states
            and config.cflag and ntraj != 1):
        output.states = parfor(_mc_dm_avg, mc.psi_out.T)
    elif mc.psi_out is not None:
        output.states = mc.psi_out

    # expectation values
    if (mc.expect_out is not None and config.cflag
            and config.options.average_expect):
        # averaging if multiple trajectories
        if isinstance(ntraj, int):
            output.expect = [np.mean(np.array([mc.expect_out[nt][op]
                                               for nt in range(ntraj)],
                                              dtype=object),
                                     axis=0)
                             for op in range(config.e_num)]
        elif isinstance(ntraj, (list, np.ndarray)):
            output.expect = []
            for num in ntraj:
                expt_data = np.mean(mc.expect_out[:num], axis=0)
                data_list = []
                if any([not op.isherm for op in e_ops]):
                    for k in range(len(e_ops)):
                        if e_ops[k].isherm:
                            data_list.append(np.real(expt_data[k]))
                        else:
                            data_list.append(expt_data[k])
                else:
                    data_list = [data for data in expt_data]
                output.expect.append(data_list)
    else:
        # no averaging for single trajectory or if average_expect flag
        # (Options) is off
        if mc.expect_out is not None:
            output.expect = mc.expect_out

    # simulation parameters
    output.times = config.tlist
    output.num_expect = config.e_num
    output.num_collapse = config.c_num
    output.ntraj = config.ntraj
    output.col_times = mc.collapse_times_out
    output.col_which = mc.which_op_out

    if e_ops_dict:
        output.expect = {e: output.expect[n]
                         for n, e in enumerate(e_ops_dict.keys())}

    return output
Пример #5
0
def mcsolve(H, psi0, tlist, c_ops, e_ops, ntraj=None,
            args={}, options=None, progress_bar=True,
            map_func=None, map_kwargs=None):
    """Monte Carlo evolution of a state vector :math:`|\psi \\rangle` for a
    given Hamiltonian and sets of collapse operators, and possibly, operators
    for calculating expectation values. Options for the underlying ODE solver
    are given by the Options class.

    mcsolve supports time-dependent Hamiltonians and collapse operators using
    either Python functions of strings to represent time-dependent
    coefficients. Note that, the system Hamiltonian MUST have at least one
    constant term.

    As an example of a time-dependent problem, consider a Hamiltonian with two
    terms ``H0`` and ``H1``, where ``H1`` is time-dependent with coefficient
    ``sin(w*t)``, and collapse operators ``C0`` and ``C1``, where ``C1`` is
    time-dependent with coeffcient ``exp(-a*t)``.  Here, w and a are constant
    arguments with values ``W`` and ``A``.

    Using the Python function time-dependent format requires two Python
    functions, one for each collapse coefficient. Therefore, this problem could
    be expressed as::

        def H1_coeff(t,args):
            return sin(args['w']*t)

        def C1_coeff(t,args):
            return exp(-args['a']*t)

        H = [H0, [H1, H1_coeff]]

        c_ops = [C0, [C1, C1_coeff]]

        args={'a': A, 'w': W}

    or in String (Cython) format we could write::

        H = [H0, [H1, 'sin(w*t)']]

        c_ops = [C0, [C1, 'exp(-a*t)']]

        args={'a': A, 'w': W}

    Constant terms are preferably placed first in the Hamiltonian and collapse
    operator lists.

    Parameters
    ----------
    H : :class:`qutip.Qobj`
        System Hamiltonian.

    psi0 : :class:`qutip.Qobj`
        Initial state vector

    tlist : array_like
        Times at which results are recorded.

    ntraj : int
        Number of trajectories to run.

    c_ops : array_like
        single collapse operator or ``list`` or ``array`` of collapse
        operators.

    e_ops : array_like
        single operator or ``list`` or ``array`` of operators for calculating
        expectation values.

    args : dict
        Arguments for time-dependent Hamiltonian and collapse operator terms.

    options : Options
        Instance of ODE solver options.

    progress_bar: BaseProgressBar
        Optional instance of BaseProgressBar, or a subclass thereof, for
        showing the progress of the simulation. Set to None to disable the
        progress bar.

    map_func: function
        A map function for managing the calls to the single-trajactory solver.

    map_kwargs: dictionary
        Optional keyword arguments to the map_func function.

    Returns
    -------
    results : :class:`qutip.solver.Result`
        Object storing all results from the simulation.

    .. note::

        It is possible to reuse the random number seeds from a previous run
        of the mcsolver by passing the output Result object seeds via the
        Options class, i.e. Options(seeds=prev_result.seeds).
    """

    if debug:
        print(inspect.stack()[0][3])

    if options is None:
        options = Options()

    if ntraj is None:
        ntraj = options.ntraj

    config.map_func = map_func if map_func is not None else parallel_map
    config.map_kwargs = map_kwargs if map_kwargs is not None else {}

    if not psi0.isket:
        raise Exception("Initial state must be a state vector.")

    if isinstance(c_ops, Qobj):
        c_ops = [c_ops]

    if isinstance(e_ops, Qobj):
        e_ops = [e_ops]

    if isinstance(e_ops, dict):
        e_ops_dict = e_ops
        e_ops = [e for e in e_ops.values()]
    else:
        e_ops_dict = None

    config.options = options

    if progress_bar:
        if progress_bar is True:
            config.progress_bar = TextProgressBar()
        else:
            config.progress_bar = progress_bar
    else:
        config.progress_bar = BaseProgressBar()

    # set num_cpus to the value given in qutip.settings if none in Options
    if not config.options.num_cpus:
        config.options.num_cpus = qutip.settings.num_cpus
        if config.options.num_cpus == 1:
            # fallback on serial_map if num_cpu == 1, since there is no
            # benefit of starting multiprocessing in this case
            config.map_func = serial_map

    # set initial value data
    if options.tidy:
        config.psi0 = psi0.tidyup(options.atol).full().ravel()
    else:
        config.psi0 = psi0.full().ravel()

    config.psi0_dims = psi0.dims
    config.psi0_shape = psi0.shape

    # set options on ouput states
    if config.options.steady_state_average:
        config.options.average_states = True

    # set general items
    config.tlist = tlist
    if isinstance(ntraj, (list, np.ndarray)):
        config.ntraj = np.sort(ntraj)[-1]
    else:
        config.ntraj = ntraj

    # set norm finding constants
    config.norm_tol = options.norm_tol
    config.norm_steps = options.norm_steps

    # convert array based time-dependence to string format
    H, c_ops, args = _td_wrap_array_str(H, c_ops, args, tlist)

    # SETUP ODE DATA IF NONE EXISTS OR NOT REUSING
    # --------------------------------------------
    if not options.rhs_reuse or not config.tdfunc:
        # reset config collapse and time-dependence flags to default values
        config.soft_reset()

        # check for type of time-dependence (if any)
        time_type, h_stuff, c_stuff = _td_format_check(H, c_ops, 'mc')
        c_terms = len(c_stuff[0]) + len(c_stuff[1]) + len(c_stuff[2])
        # set time_type for use in multiprocessing
        config.tflag = time_type

        # check for collapse operators
        if c_terms > 0:
            config.cflag = 1
        else:
            config.cflag = 0

        # Configure data
        _mc_data_config(H, psi0, h_stuff, c_ops, c_stuff, args, e_ops,
                        options, config)

        # compile and load cython functions if necessary
        _mc_func_load(config)

    else:
        # setup args for new parameters when rhs_reuse=True and tdfunc is given
        # string based
        if config.tflag in [1, 10, 11]:
            if any(args):
                config.c_args = []
                arg_items = list(args.items())
                for k in range(len(arg_items)):
                    config.c_args.append(arg_items[k][1])
        # function based
        elif config.tflag in [2, 3, 20, 22]:
            config.h_func_args = args

    # load monte carlo class
    mc = _MC(config)

    # Run the simulation
    mc.run()

    # Remove RHS cython file if necessary
    if not options.rhs_reuse and config.tdname:
        _cython_build_cleanup(config.tdname)

    # AFTER MCSOLVER IS DONE
    # ----------------------

    # Store results in the Result object
    output = Result()
    output.solver = 'mcsolve'
    output.seeds = config.options.seeds
    # state vectors
    if (mc.psi_out is not None and config.options.average_states
            and config.cflag and ntraj != 1):
        output.states = parfor(_mc_dm_avg, mc.psi_out.T)
    elif mc.psi_out is not None:
        output.states = mc.psi_out

    # expectation values
    if (mc.expect_out is not None and config.cflag
            and config.options.average_expect):
        # averaging if multiple trajectories
        if isinstance(ntraj, int):
            output.expect = [np.mean(np.array([mc.expect_out[nt][op]
                                               for nt in range(ntraj)],
                                              dtype=object),
                                     axis=0)
                             for op in range(config.e_num)]
        elif isinstance(ntraj, (list, np.ndarray)):
            output.expect = []
            for num in ntraj:
                expt_data = np.mean(mc.expect_out[:num], axis=0)
                data_list = []
                if any([not op.isherm for op in e_ops]):
                    for k in range(len(e_ops)):
                        if e_ops[k].isherm:
                            data_list.append(np.real(expt_data[k]))
                        else:
                            data_list.append(expt_data[k])
                else:
                    data_list = [data for data in expt_data]
                output.expect.append(data_list)
    else:
        # no averaging for single trajectory or if average_expect flag
        # (Options) is off
        if mc.expect_out is not None:
            output.expect = mc.expect_out

    # simulation parameters
    output.times = config.tlist
    output.num_expect = config.e_num
    output.num_collapse = config.c_num
    output.ntraj = config.ntraj
    output.col_times = mc.collapse_times_out
    output.col_which = mc.which_op_out

    if e_ops_dict:
        output.expect = {e: output.expect[n]
                         for n, e in enumerate(e_ops_dict.keys())}

    return output