def test_parfor1(): "parfor" x = np.arange(10) y1 = list(map(_func1, x)) y2 = parfor(_func1, x) assert_((np.array(y1) == np.array(y2)).all())
def _wigner_laguerre(rho, xvec, yvec, g, parallel): """ Using Laguerre polynomials from scipy to evaluate the Wigner function for the density matrices :math:`|m><n|`, :math:`W_{mn}`. The total Wigner function is calculated as :math:`W = \sum_{mn} \\rho_{mn} W_{mn}`. """ M = np.prod(rho.shape[0]) X, Y = meshgrid(xvec, yvec) A = 0.5 * g * (X + 1.0j * Y) W = zeros(np.shape(A)) # compute wigner functions for density matrices |m><n| and # weight by all the elements in the density matrix B = 4 * abs(A) ** 2 if sp.isspmatrix_csr(rho.data): # for compress sparse row matrices if parallel: iterator = ( (m, rho, A, B) for m in range(len(rho.data.indptr) - 1)) W1_out = parfor(_par_wig_eval, iterator) W += sum(W1_out) else: for m in range(len(rho.data.indptr) - 1): for jj in range(rho.data.indptr[m], rho.data.indptr[m + 1]): n = rho.data.indices[jj] if m == n: W += real(rho[m, m] * (-1) ** m * genlaguerre(m, 0)(B)) elif n > m: W += 2.0 * real(rho[m, n] * (-1) ** m * (2 * A) ** (n - m) * sqrt(factorial(m) / factorial(n)) * genlaguerre(m, n - m)(B)) else: # for dense density matrices B = 4 * abs(A) ** 2 for m in range(M): if abs(rho[m, m]) > 0.0: W += real(rho[m, m] * (-1) ** m * genlaguerre(m, 0)(B)) for n in range(m + 1, M): if abs(rho[m, n]) > 0.0: W += 2.0 * real(rho[m, n] * (-1) ** m * (2 * A) ** (n - m) * sqrt(factorial(m) / factorial(n)) * genlaguerre(m, n - m)(B)) return 0.5 * W * g ** 2 * np.exp(-B / 2) / pi
def mcsolve(H, psi0, tlist, c_ops, e_ops, ntraj=None, args={}, options=None, progress_bar=True, map_func=None, map_kwargs=None): """Monte Carlo evolution of a state vector :math:`|\psi \\rangle` for a given Hamiltonian and sets of collapse operators, and possibly, operators for calculating expectation values. Options for the underlying ODE solver are given by the Options class. mcsolve supports time-dependent Hamiltonians and collapse operators using either Python functions of strings to represent time-dependent coefficients. Note that, the system Hamiltonian MUST have at least one constant term. As an example of a time-dependent problem, consider a Hamiltonian with two terms ``H0`` and ``H1``, where ``H1`` is time-dependent with coefficient ``sin(w*t)``, and collapse operators ``C0`` and ``C1``, where ``C1`` is time-dependent with coeffcient ``exp(-a*t)``. Here, w and a are constant arguments with values ``W`` and ``A``. Using the Python function time-dependent format requires two Python functions, one for each collapse coefficient. Therefore, this problem could be expressed as:: def H1_coeff(t,args): return sin(args['w']*t) def C1_coeff(t,args): return exp(-args['a']*t) H = [H0, [H1, H1_coeff]] c_ops = [C0, [C1, C1_coeff]] args={'a': A, 'w': W} or in String (Cython) format we could write:: H = [H0, [H1, 'sin(w*t)']] c_ops = [C0, [C1, 'exp(-a*t)']] args={'a': A, 'w': W} Constant terms are preferably placed first in the Hamiltonian and collapse operator lists. Parameters ---------- H : :class:`qutip.Qobj` System Hamiltonian. psi0 : :class:`qutip.Qobj` Initial state vector tlist : array_like Times at which results are recorded. ntraj : int Number of trajectories to run. c_ops : array_like single collapse operator or ``list`` or ``array`` of collapse operators. e_ops : array_like single operator or ``list`` or ``array`` of operators for calculating expectation values. args : dict Arguments for time-dependent Hamiltonian and collapse operator terms. options : Options Instance of ODE solver options. progress_bar: BaseProgressBar Optional instance of BaseProgressBar, or a subclass thereof, for showing the progress of the simulation. Set to None to disable the progress bar. map_func: function A map function for managing the calls to the single-trajactory solver. map_kwargs: dictionary Optional keyword arguments to the map_func function. Returns ------- results : :class:`qutip.solver.Result` Object storing all results from the simulation. .. note:: It is possible to reuse the random number seeds from a previous run of the mcsolver by passing the output Result object seeds via the Options class, i.e. Options(seeds=prev_result.seeds). """ if debug: print(inspect.stack()[0][3]) if options is None: options = Options() if ntraj is None: ntraj = options.ntraj config.map_func = map_func if map_func is not None else parallel_map config.map_kwargs = map_kwargs if map_kwargs is not None else {} if not psi0.isket: raise Exception("Initial state must be a state vector.") if isinstance(c_ops, Qobj): c_ops = [c_ops] if isinstance(e_ops, Qobj): e_ops = [e_ops] if isinstance(e_ops, dict): e_ops_dict = e_ops e_ops = [e for e in e_ops.values()] else: e_ops_dict = None config.options = options if progress_bar: if progress_bar is True: config.progress_bar = TextProgressBar() else: config.progress_bar = progress_bar else: config.progress_bar = BaseProgressBar() # set num_cpus to the value given in qutip.settings if none in Options if not config.options.num_cpus: config.options.num_cpus = qutip.settings.num_cpus if config.options.num_cpus == 1: # fallback on serial_map if num_cpu == 1, since there is no # benefit of starting multiprocessing in this case config.map_func = serial_map # set initial value data if options.tidy: config.psi0 = psi0.tidyup(options.atol).full().ravel() else: config.psi0 = psi0.full().ravel() config.psi0_dims = psi0.dims config.psi0_shape = psi0.shape # set options on ouput states if config.options.steady_state_average: config.options.average_states = True # set general items config.tlist = tlist if isinstance(ntraj, (list, np.ndarray)): config.ntraj = np.sort(ntraj)[-1] else: config.ntraj = ntraj # set norm finding constants config.norm_tol = options.norm_tol config.norm_steps = options.norm_steps # convert array based time-dependence to string format H, c_ops, args = _td_wrap_array_str(H, c_ops, args, tlist) # SETUP ODE DATA IF NONE EXISTS OR NOT REUSING # -------------------------------------------- if not options.rhs_reuse or not config.tdfunc: # reset config collapse and time-dependence flags to default values config.soft_reset() # check for type of time-dependence (if any) time_type, h_stuff, c_stuff = _td_format_check(H, c_ops, 'mc') c_terms = len(c_stuff[0]) + len(c_stuff[1]) + len(c_stuff[2]) # set time_type for use in multiprocessing config.tflag = time_type # check for collapse operators if c_terms > 0: config.cflag = 1 else: config.cflag = 0 # Configure data _mc_data_config(H, psi0, h_stuff, c_ops, c_stuff, args, e_ops, options, config) # compile and load cython functions if necessary _mc_func_load(config) else: # setup args for new parameters when rhs_reuse=True and tdfunc is given # string based if config.tflag in [1, 10, 11]: if any(args): config.c_args = [] arg_items = list(args.items()) for k in range(len(arg_items)): config.c_args.append(arg_items[k][1]) # function based elif config.tflag in [2, 3, 20, 22]: config.h_func_args = args # load monte carlo class mc = _MC(config) # Run the simulation mc.run() # Remove RHS cython file if necessary if not options.rhs_reuse and config.tdname: _cython_build_cleanup(config.tdname) # AFTER MCSOLVER IS DONE # ---------------------- # Store results in the Result object output = Result() output.solver = 'mcsolve' output.seeds = config.options.seeds # state vectors if (mc.psi_out is not None and config.options.average_states and config.cflag and ntraj != 1): output.states = parfor(_mc_dm_avg, mc.psi_out.T) elif mc.psi_out is not None: output.states = mc.psi_out # expectation values if (mc.expect_out is not None and config.cflag and config.options.average_expect): # averaging if multiple trajectories if isinstance(ntraj, int): output.expect = [np.mean(np.array([mc.expect_out[nt][op] for nt in range(ntraj)], dtype=object), axis=0) for op in range(config.e_num)] elif isinstance(ntraj, (list, np.ndarray)): output.expect = [] for num in ntraj: expt_data = np.mean(mc.expect_out[:num], axis=0) data_list = [] if any([not op.isherm for op in e_ops]): for k in range(len(e_ops)): if e_ops[k].isherm: data_list.append(np.real(expt_data[k])) else: data_list.append(expt_data[k]) else: data_list = [data for data in expt_data] output.expect.append(data_list) else: # no averaging for single trajectory or if average_expect flag # (Options) is off if mc.expect_out is not None: output.expect = mc.expect_out # simulation parameters output.times = config.tlist output.num_expect = config.e_num output.num_collapse = config.c_num output.ntraj = config.ntraj output.col_times = mc.collapse_times_out output.col_which = mc.which_op_out if e_ops_dict: output.expect = {e: output.expect[n] for n, e in enumerate(e_ops_dict.keys())} return output