def regions(self): """ regions created for the top proposals""" region_fn = os.path.join(self.ds.path, 'cpmc', 'MySegmentsMat', self.name, 'top_regions.mat') if os.path.exists(region_fn): regions = ml.loadmat(region_fn)['top_regions'] else: proposals = self.top_masks regions = reg.produce_regions(proposals) ml.savemat(region_fn, {'top_regions':regions}) logging.debug("Storing regions in %s" % region_fn) if not np.any(np.isnan(regions)): logging.debug("All pixels are covered in one region") return regions
def regions(self): """ regions created for the top proposals""" region_fn = os.path.join(self.ds.path, "cpmc", "MySegmentsMat", self.name, "top_regions.mat") if os.path.exists(region_fn): regions = ml.loadmat(region_fn)["top_regions"] else: proposals = self.top_masks regions = reg.produce_regions(proposals) ml.savemat(region_fn, {"top_regions": regions}) logging.debug("Storing regions in %s" % region_fn) if not np.any(np.isnan(regions)): logging.debug("All pixels are covered in one region") return regions
num = 12 for i in range(num): ax = prepare_jpg_plot() mask = masks[:, :, i] mask[mask > 0] = 6 util.visual.show_image_mask(img, mask, ax, alpha=0.9) fn = 'segment_{:0=2d}.jpg'.format(i + 1) util.visual.add_inner_title(ax, "Score: {:.4}".format(scores[i]), 3, size={ "size": 45, "color": "w" }) save_plot(fn, path) regs = regions.produce_regions(masks[:, :, :num]) ax = prepare_jpg_plot() ax.imshow(regs, cmap=mpl.colors.ListedColormap(np.random.rand(256, 3)), interpolation="nearest") save_plot("regions.png", path) ax = prepare_jpg_plot() reg = img.regions ax.imshow(reg, cmap=mpl.colors.ListedColormap(np.random.rand(256, 3)), interpolation='nearest') ax.set_axis_off() save_plot("regions_all.png", path) ax = prepare_jpg_plot()
n = "2007_005331" img = ds.voc2010_trainval[ds.voc2010_trainval.names.index(n)] masks = img.top_masks scores = img.get_top_scores() num = 12 for i in range(num): ax = prepare_jpg_plot() mask = masks[:,:,i] mask[mask > 0] = 6 util.visual.show_image_mask(img, mask, ax, alpha=0.9) fn = 'segment_{:0=2d}.jpg'.format(i+1) util.visual.add_inner_title(ax, "Score: {:.4}".format(scores[i]), 3, size={"size":45, "color":"w"}) save_plot(fn, path) regs = regions.produce_regions(masks[:,:,:num]) ax = prepare_jpg_plot() ax.imshow(regs,cmap=mpl.colors.ListedColormap ( np.random.rand ( 256,3)), interpolation="nearest") save_plot("regions.png", path) ax = prepare_jpg_plot() reg = img.regions ax.imshow(reg,cmap=mpl.colors.ListedColormap ( np.random.rand ( 256,3)) ,interpolation='nearest') ax.set_axis_off() save_plot("regions_all.png", path) ax = prepare_jpg_plot() util.visual.show_annotated_image(img, ax, show_bg=True, alpha=1.) save_plot("gt.jpg", path) ax = prepare_jpg_plot()