Пример #1
0
    def test_corespeciesRate(self):
        """
        Test if a specific core species rate is equal to 0 over time.
        """
                
        c0 = {self.C2H5: 0.1, self.CH3: 0.1, self.CH4: 0.4, self.C2H6: 0.4}
        rxn1 = Reaction(
            reactants=[self.C2H6, self.CH3],
            products=[self.C2H5, self.CH4],
            kinetics=Arrhenius(A=(686.375*6, 'm^3/(mol*s)'), n=4.40721, Ea=(7.82799, 'kcal/mol'), T0=(298.15, 'K'))
        )
 
        coreSpecies = [self.CH4, self.CH3, self.C2H6, self.C2H5]
        edgeSpecies = []
        coreReactions = [rxn1]
        edgeReactions = []
        sensitivity = []
        terminationConversion = []
        sensitivityThreshold = 0.001
        ConstSpecies = ["CH4"]
        
        rxnSystem = LiquidReactor(self.T, c0, terminationConversion, sensitivity, sensitivityThreshold, ConstSpecies)
        # The test regarding the writing of constantSPCindices from input file is check with the previous test.
        rxnSystem.constSPCIndices = [0]
        
        rxnSystem.initializeModel(coreSpecies, coreReactions, edgeSpecies, edgeReactions)
 
        tlist = numpy.array([10**(i/10.0) for i in range(-130, -49)], numpy.float64)
 
        # Integrate to get the solution at each time point
        t, y, reactionRates, speciesRates = [], [], [], []
        for t1 in tlist:
            rxnSystem.advance(t1)
            t.append(rxnSystem.t)
            self.assertEqual(rxnSystem.coreSpeciesRates[0], 0, "Core species rate has to be equal to 0 for species hold constant. Here it is equal to {0}".format(rxnSystem.coreSpeciesRates[0]))
Пример #2
0
    def testComputeFlux(self):
        """
        Test the liquid batch reactor with a simple kinetic model. 
        """

        rxn1 = Reaction(reactants=[self.C2H6, self.CH3],
                        products=[self.C2H5, self.CH4],
                        kinetics=Arrhenius(A=(686.375 * 6, 'm^3/(mol*s)'),
                                           n=4.40721,
                                           Ea=(7.82799, 'kcal/mol'),
                                           T0=(298.15, 'K')))

        coreSpecies = [self.CH4, self.CH3, self.C2H6, self.C2H5]
        edgeSpecies = []
        coreReactions = [rxn1]
        edgeReactions = []

        c0 = {self.C2H5: 0.1, self.CH3: 0.1, self.CH4: 0.4, self.C2H6: 0.4}

        rxnSystem = LiquidReactor(self.T, c0, termination=[])

        rxnSystem.initializeModel(coreSpecies, coreReactions, edgeSpecies,
                                  edgeReactions)

        tlist = numpy.array([10**(i / 10.0) for i in xrange(-130, -49)],
                            numpy.float64)

        # Integrate to get the solution at each time point
        t, y, reactionRates, speciesRates = [], [], [], []
        for t1 in tlist:
            rxnSystem.advance(t1)
            t.append(rxnSystem.t)
            # You must make a copy of y because it is overwritten by DASSL at
            # each call to advance()
            y.append(rxnSystem.y.copy())
            reactionRates.append(rxnSystem.coreReactionRates.copy())
            speciesRates.append(rxnSystem.coreSpeciesRates.copy())

        # Convert the solution vectors to numpy arrays
        t = numpy.array(t, numpy.float64)
        reactionRates = numpy.array(reactionRates, numpy.float64)
        speciesRates = numpy.array(speciesRates, numpy.float64)

        # Check that we're computing the species fluxes correctly
        for i in xrange(t.shape[0]):
            self.assertAlmostEqual(reactionRates[i, 0],
                                   speciesRates[i, 0],
                                   delta=1e-6 * reactionRates[i, 0])
            self.assertAlmostEqual(reactionRates[i, 0],
                                   -speciesRates[i, 1],
                                   delta=1e-6 * reactionRates[i, 0])
            self.assertAlmostEqual(reactionRates[i, 0],
                                   -speciesRates[i, 2],
                                   delta=1e-6 * reactionRates[i, 0])
            self.assertAlmostEqual(reactionRates[i, 0],
                                   speciesRates[i, 3],
                                   delta=1e-6 * reactionRates[i, 0])

        # Check that we've reached equilibrium
        self.assertAlmostEqual(reactionRates[-1, 0], 0.0, delta=1e-2)
Пример #3
0
    def test_corespeciesRate(self):
        "Test if a specific core species rate is equal to 0 over time"    
                
        c0={self.C2H5: 0.1, self.CH3: 0.1, self.CH4: 0.4, self.C2H6: 0.4}
        rxn1 = Reaction(reactants=[self.C2H6,self.CH3], products=[self.C2H5,self.CH4], kinetics=Arrhenius(A=(686.375*6,'m^3/(mol*s)'), n=4.40721, Ea=(7.82799,'kcal/mol'), T0=(298.15,'K')))
 
        coreSpecies = [self.CH4,self.CH3,self.C2H6,self.C2H5]
        edgeSpecies = []
        coreReactions = [rxn1]
        edgeReactions = []
        sensitivity=[]
        terminationConversion = []
        sensitivityThreshold=0.001
        ConstSpecies = ["CH4"]
        
        rxnSystem = LiquidReactor(self.T, c0, terminationConversion, sensitivity,sensitivityThreshold,ConstSpecies)
        ##The test regarding the writting of constantSPCindices from input file is check with the previous test.
        rxnSystem.constSPCIndices=[0]
        
        rxnSystem.initializeModel(coreSpecies, coreReactions, edgeSpecies, edgeReactions)
 
        tlist = numpy.array([10**(i/10.0) for i in range(-130, -49)], numpy.float64)
 
        # Integrate to get the solution at each time point
        t = []; y = []; reactionRates = []; speciesRates = []
        for t1 in tlist:
            rxnSystem.advance(t1)
            t.append(rxnSystem.t)
            self.assertEqual(rxnSystem.coreSpeciesRates[0], 0,"Core species rate has to be equal to 0 for species hold constant. Here it is equal to {0}".format(rxnSystem.coreSpeciesRates[0]))
Пример #4
0
    def test_compute_derivative(self):

        rxnList = []
        rxnList.append(Reaction(reactants=[self.C2H6], products=[self.CH3,self.CH3], kinetics=Arrhenius(A=(686.375e6,'1/s'), n=4.40721, Ea=(7.82799,'kcal/mol'), T0=(298.15,'K')))) 
        rxnList.append(Reaction(reactants=[self.C2H6,self.CH3], products=[self.C2H5,self.CH4], kinetics=Arrhenius(A=(46.375*6,'m^3/(mol*s)'), n=3.40721, Ea=(6.82799,'kcal/mol'), T0=(298.15,'K'))))        
        rxnList.append(Reaction(reactants=[self.C2H6,self.CH3,self.CH3], products=[self.C2H5,self.C2H5,self.H2], kinetics=Arrhenius(A=(146.375*6,'m^6/(mol^2*s)'), n=2.40721, Ea=(8.82799,'kcal/mol'), T0=(298.15,'K'))))
        
        
        coreSpecies = [self.CH4,self.CH3,self.C2H6,self.C2H5, self.H2]
        edgeSpecies = []
        coreReactions = rxnList
        edgeReactions = []
        numCoreSpecies = len(coreSpecies)
        
        c0={self.CH4:0.2,self.CH3:0.1,self.C2H6:0.35,self.C2H5:0.15, self.H2:0.2}

        rxnSystem0 = LiquidReactor(self.T, c0,termination=[])
        rxnSystem0.initializeModel(coreSpecies, coreReactions, edgeSpecies, edgeReactions)
        dfdt0 = rxnSystem0.residual(0.0, rxnSystem0.y, numpy.zeros(rxnSystem0.y.shape))[0]
        solver_dfdk = rxnSystem0.computeRateDerivative()
        #print 'Solver d(dy/dt)/dk'
        #print solver_dfdk
        
        integrationTime = 1e-8
        
        modelSettings = ModelSettings(toleranceKeepInEdge = 0,toleranceMoveToCore=1,toleranceInterruptSimulation=0)
        simulatorSettings = SimulatorSettings()
        
        rxnSystem0.termination.append(TerminationTime((integrationTime,'s')))
        
        rxnSystem0.simulate(coreSpecies, coreReactions, [], [], [],[], modelSettings=modelSettings,simulatorSettings=simulatorSettings)

        y0 = rxnSystem0.y
        
        dfdk = numpy.zeros((numCoreSpecies,len(rxnList)))   # d(dy/dt)/dk
        
        c0={self.CH4:0.2,self.CH3:0.1,self.C2H6:0.35,self.C2H5:0.15, self.H2:0.2}

        for i in xrange(len(rxnList)):
            k0 = rxnList[i].getRateCoefficient(self.T)
            rxnList[i].kinetics.A.value_si = rxnList[i].kinetics.A.value_si*(1+1e-3)               
            dk = rxnList[i].getRateCoefficient(self.T) - k0

            rxnSystem = LiquidReactor(self.T, c0,termination=[])
            rxnSystem.initializeModel(coreSpecies, coreReactions, edgeSpecies, edgeReactions)

            dfdt = rxnSystem.residual(0.0, rxnSystem.y, numpy.zeros(rxnSystem.y.shape))[0]  
            dfdk[:,i]=(dfdt-dfdt0)/dk          
            
            
            rxnSystem.termination.append(TerminationTime((integrationTime,'s')))
            modelSettings = ModelSettings(toleranceKeepInEdge = 0,toleranceMoveToCore=1,toleranceInterruptSimulation=0)
            simulatorSettings = SimulatorSettings()
            rxnSystem.simulate(coreSpecies, coreReactions,[],[],[],[], modelSettings=modelSettings,simulatorSettings=simulatorSettings)
            
            rxnList[i].kinetics.A.value_si = rxnList[i].kinetics.A.value_si/(1+1e-3)  # reset A factor
            
        for i in xrange(numCoreSpecies):
            for j in xrange(len(rxnList)):
                self.assertAlmostEqual(dfdk[i,j], solver_dfdk[i,j], delta=abs(1e-3*dfdk[i,j]))
Пример #5
0
    def test_jacobian(self):
        """
        Unit test for the jacobian function:
        Solve a reaction system and check if the analytical jacobian matches the finite difference jacobian

        """

        coreSpecies = [self.CH4,self.CH3,self.C2H6,self.C2H5]
        edgeSpecies = []

        rxn1 = Reaction(reactants=[self.C2H6,self.CH3], products=[self.C2H5,self.CH4], kinetics=Arrhenius(A=(686.375*6,'m^3/(mol*s)'), n=4.40721, Ea=(7.82799,'kcal/mol'), T0=(298.15,'K')))
        coreReactions = [rxn1]
        edgeReactions = []
        numCoreSpecies = len(coreSpecies)

        rxnList = []
        rxnList.append(Reaction(reactants=[self.C2H6], products=[self.CH3,self.CH3], kinetics=Arrhenius(A=(686.375*6,'1/s'), n=4.40721, Ea=(7.82799,'kcal/mol'), T0=(298.15,'K'))))
        rxnList.append(Reaction(reactants=[self.CH3,self.CH3], products=[self.C2H6], kinetics=Arrhenius(A=(686.375*6,'m^3/(mol*s)'), n=4.40721, Ea=(7.82799,'kcal/mol'), T0=(298.15,'K'))))
        
        rxnList.append(Reaction(reactants=[self.C2H6,self.CH3], products=[self.C2H5,self.CH4], kinetics=Arrhenius(A=(46.375*6,'m^3/(mol*s)'), n=3.40721, Ea=(6.82799,'kcal/mol'), T0=(298.15,'K'))))        
        rxnList.append(Reaction(reactants=[self.C2H5,self.CH4], products=[self.C2H6,self.CH3], kinetics=Arrhenius(A=(46.375*6,'m^3/(mol*s)'), n=3.40721, Ea=(6.82799,'kcal/mol'), T0=(298.15,'K'))))        
        
        rxnList.append(Reaction(reactants=[self.C2H5,self.CH4], products=[self.CH3,self.CH3,self.CH3], kinetics=Arrhenius(A=(246.375*6,'m^3/(mol*s)'), n=1.40721, Ea=(3.82799,'kcal/mol'), T0=(298.15,'K'))))       
        rxnList.append(Reaction(reactants=[self.CH3,self.CH3,self.CH3], products=[self.C2H5,self.CH4], kinetics=Arrhenius(A=(246.375*6,'m^6/(mol^2*s)'), n=1.40721, Ea=(3.82799,'kcal/mol'), T0=(298.15,'K'))))#        
        
        rxnList.append(Reaction(reactants=[self.C2H6,self.CH3,self.CH3], products=[self.C2H5,self.C2H5,self.H2], kinetics=Arrhenius(A=(146.375*6,'m^6/(mol^2*s)'), n=2.40721, Ea=(8.82799,'kcal/mol'), T0=(298.15,'K'))))
        rxnList.append(Reaction(reactants=[self.C2H5,self.C2H5,self.H2], products=[self.C2H6,self.CH3,self.CH3], kinetics=Arrhenius(A=(146.375*6,'m^6/(mol^2*s)'), n=2.40721, Ea=(8.82799,'kcal/mol'), T0=(298.15,'K'))))
        
        rxnList.append(Reaction(reactants=[self.C2H6,self.C2H6], products=[self.CH3,self.CH4,self.C2H5], kinetics=Arrhenius(A=(1246.375*6,'m^3/(mol*s)'), n=0.40721, Ea=(8.82799,'kcal/mol'), T0=(298.15,'K'))))
        rxnList.append(Reaction(reactants=[self.CH3,self.CH4,self.C2H5], products=[self.C2H6,self.C2H6], kinetics=Arrhenius(A=(46.375*6,'m^6/(mol^2*s)'), n=0.10721, Ea=(8.82799,'kcal/mol'), T0=(298.15,'K'))))
        

        for rxn in rxnList:
            coreSpecies = [self.CH4,self.CH3,self.C2H6,self.C2H5,self.H2]
            edgeSpecies = []
            coreReactions = [rxn]
            
            c0={self.CH4:0.2,self.CH3:0.1,self.C2H6:0.35,self.C2H5:0.15, self.H2:0.2}
            rxnSystem0 = LiquidReactor(self.T, c0,termination=[])
            rxnSystem0.initializeModel(coreSpecies, coreReactions, edgeSpecies, edgeReactions)
            dydt0 = rxnSystem0.residual(0.0, rxnSystem0.y, numpy.zeros(rxnSystem0.y.shape))[0]
            
            dN = .000001*sum(rxnSystem0.y)
            dN_array = dN*numpy.eye(numCoreSpecies)
            
            dydt = []
            for i in xrange(numCoreSpecies):
                rxnSystem0.y[i] += dN 
                dydt.append(rxnSystem0.residual(0.0, rxnSystem0.y, numpy.zeros(rxnSystem0.y.shape))[0])
                rxnSystem0.y[i] -= dN  # reset y to original y0
            
            # Let the solver compute the jacobian       
            solverJacobian = rxnSystem0.jacobian(0.0, rxnSystem0.y, dydt0, 0.0)     
            # Compute the jacobian using finite differences
            jacobian = numpy.zeros((numCoreSpecies, numCoreSpecies))
            for i in xrange(numCoreSpecies):
                for j in xrange(numCoreSpecies):
                    jacobian[i,j] = (dydt[j][i]-dydt0[i])/dN
                    self.assertAlmostEqual(jacobian[i,j], solverJacobian[i,j], delta=abs(1e-4*jacobian[i,j]))
Пример #6
0
    def test_compute_derivative(self):

        rxnList = []
        rxnList.append(Reaction(reactants=[self.C2H6], products=[self.CH3,self.CH3], kinetics=Arrhenius(A=(686.375e6,'1/s'), n=4.40721, Ea=(7.82799,'kcal/mol'), T0=(298.15,'K')))) 
        rxnList.append(Reaction(reactants=[self.C2H6,self.CH3], products=[self.C2H5,self.CH4], kinetics=Arrhenius(A=(46.375*6,'m^3/(mol*s)'), n=3.40721, Ea=(6.82799,'kcal/mol'), T0=(298.15,'K'))))        
        rxnList.append(Reaction(reactants=[self.C2H6,self.CH3,self.CH3], products=[self.C2H5,self.C2H5,self.H2], kinetics=Arrhenius(A=(146.375*6,'m^6/(mol^2*s)'), n=2.40721, Ea=(8.82799,'kcal/mol'), T0=(298.15,'K'))))
        
        
        coreSpecies = [self.CH4,self.CH3,self.C2H6,self.C2H5, self.H2]
        edgeSpecies = []
        coreReactions = rxnList
        edgeReactions = []
        numCoreSpecies = len(coreSpecies)
        
        c0={self.CH4:0.2,self.CH3:0.1,self.C2H6:0.35,self.C2H5:0.15, self.H2:0.2}

        rxnSystem0 = LiquidReactor(self.T, c0,termination=[])
        rxnSystem0.initializeModel(coreSpecies, coreReactions, edgeSpecies, edgeReactions)
        dfdt0 = rxnSystem0.residual(0.0, rxnSystem0.y, numpy.zeros(rxnSystem0.y.shape))[0]
        solver_dfdk = rxnSystem0.computeRateDerivative()
        #print 'Solver d(dy/dt)/dk'
        #print solver_dfdk
        
        integrationTime = 1e-8
        rxnSystem0.termination.append(TerminationTime((integrationTime,'s')))
        rxnSystem0.simulate(coreSpecies, coreReactions, [], [], 0, 1, 0)

        y0 = rxnSystem0.y
        
        dfdk = numpy.zeros((numCoreSpecies,len(rxnList)))   # d(dy/dt)/dk
        
        c0={self.CH4:0.2,self.CH3:0.1,self.C2H6:0.35,self.C2H5:0.15, self.H2:0.2}

        for i in xrange(len(rxnList)):
            k0 = rxnList[i].getRateCoefficient(self.T)
            rxnList[i].kinetics.A.value_si = rxnList[i].kinetics.A.value_si*(1+1e-3)               
            dk = rxnList[i].getRateCoefficient(self.T) - k0

            rxnSystem = LiquidReactor(self.T, c0,termination=[])
            rxnSystem.initializeModel(coreSpecies, coreReactions, edgeSpecies, edgeReactions)

            dfdt = rxnSystem.residual(0.0, rxnSystem.y, numpy.zeros(rxnSystem.y.shape))[0]  
            dfdk[:,i]=(dfdt-dfdt0)/dk          
            
            
            rxnSystem.termination.append(TerminationTime((integrationTime,'s')))
            rxnSystem.simulate(coreSpecies, coreReactions, [], [], 0, 1, 0)
            
            rxnList[i].kinetics.A.value_si = rxnList[i].kinetics.A.value_si/(1+1e-3)  # reset A factor
            
        for i in xrange(numCoreSpecies):
            for j in xrange(len(rxnList)):
                self.assertAlmostEqual(dfdk[i,j], solver_dfdk[i,j], delta=abs(1e-3*dfdk[i,j]))
    def testComputeFlux(self):
        """
        Test the liquid batch reactor with a simple kinetic model. 
        """
        
        rxn1 = Reaction(
            reactants=[self.C2H6, self.CH3],
            products=[self.C2H5, self.CH4],
            kinetics=Arrhenius(A=(686.375*6, 'm^3/(mol*s)'), n=4.40721, Ea=(7.82799, 'kcal/mol'), T0=(298.15, 'K'))
        )

        coreSpecies = [self.CH4, self.CH3, self.C2H6, self.C2H5]
        edgeSpecies = []
        coreReactions = [rxn1]
        edgeReactions = []

        c0 = {self.C2H5: 0.1, self.CH3: 0.1, self.CH4: 0.4, self.C2H6: 0.4}

        rxnSystem = LiquidReactor(self.T, c0, 1, termination=[])

        rxnSystem.initializeModel(coreSpecies, coreReactions, edgeSpecies, edgeReactions)

        tlist = numpy.array([10**(i/10.0) for i in xrange(-130, -49)], numpy.float64)

        # Integrate to get the solution at each time point
        t, y, reactionRates, speciesRates = [], [], [], []
        for t1 in tlist:
            rxnSystem.advance(t1)
            t.append(rxnSystem.t)
            # You must make a copy of y because it is overwritten by DASSL at
            # each call to advance()
            y.append(rxnSystem.y.copy())
            reactionRates.append(rxnSystem.coreReactionRates.copy())
            speciesRates.append(rxnSystem.coreSpeciesRates.copy())

        # Convert the solution vectors to numpy arrays
        t = numpy.array(t, numpy.float64)
        reactionRates = numpy.array(reactionRates, numpy.float64)
        speciesRates = numpy.array(speciesRates, numpy.float64)

        # Check that we're computing the species fluxes correctly
        for i in xrange(t.shape[0]):
            self.assertAlmostEqual(reactionRates[i, 0], speciesRates[i, 0], delta=1e-6*reactionRates[i, 0])
            self.assertAlmostEqual(reactionRates[i, 0], -speciesRates[i, 1], delta=1e-6*reactionRates[i, 0])
            self.assertAlmostEqual(reactionRates[i, 0], -speciesRates[i, 2], delta=1e-6*reactionRates[i, 0])
            self.assertAlmostEqual(reactionRates[i, 0], speciesRates[i, 3], delta=1e-6*reactionRates[i, 0])
        
        # Check that we've reached equilibrium 
        self.assertAlmostEqual(reactionRates[-1, 0], 0.0, delta=1e-2)
Пример #8
0
    def test_jacobian(self):
        """
        Unit test for the jacobian function:
        Solve a reaction system and check if the analytical jacobian matches
        the finite difference jacobian.
        """

        coreSpecies = [self.CH4, self.CH3, self.C2H6, self.C2H5, self.H2]
        edgeSpecies = []
        numCoreSpecies = len(coreSpecies)
        c0 = {self.CH4: 0.2, self.CH3: 0.1, self.C2H6: 0.35, self.C2H5: 0.15, self.H2: 0.2}
        edgeReactions = []

        rxnList = []
        rxnList.append(Reaction(
            reactants=[self.C2H6],
            products=[self.CH3, self.CH3],
            kinetics=Arrhenius(A=(686.375*6, '1/s'), n=4.40721, Ea=(7.82799, 'kcal/mol'), T0=(298.15, 'K'))
        ))
        rxnList.append(Reaction(
            reactants=[self.CH3, self.CH3],
            products=[self.C2H6],
            kinetics=Arrhenius(A=(686.375*6, 'm^3/(mol*s)'), n=4.40721, Ea=(7.82799, 'kcal/mol'), T0=(298.15, 'K'))
        ))
        
        rxnList.append(Reaction(
            reactants=[self.C2H6, self.CH3],
            products=[self.C2H5, self.CH4],
            kinetics=Arrhenius(A=(46.375*6, 'm^3/(mol*s)'), n=3.40721, Ea=(6.82799, 'kcal/mol'), T0=(298.15, 'K'))
        ))
        rxnList.append(Reaction(
            reactants=[self.C2H5, self.CH4],
            products=[self.C2H6, self.CH3],
            kinetics=Arrhenius(A=(46.375*6, 'm^3/(mol*s)'), n=3.40721, Ea=(6.82799, 'kcal/mol'), T0=(298.15, 'K'))
        ))
        
        rxnList.append(Reaction(
            reactants=[self.C2H5, self.CH4],
            products=[self.CH3, self.CH3, self.CH3],
            kinetics=Arrhenius(A=(246.375*6, 'm^3/(mol*s)'), n=1.40721, Ea=(3.82799, 'kcal/mol'), T0=(298.15, 'K'))
        ))
        rxnList.append(Reaction(
            reactants=[self.CH3, self.CH3, self.CH3],
            products=[self.C2H5, self.CH4],
            kinetics=Arrhenius(A=(246.375*6, 'm^6/(mol^2*s)'), n=1.40721, Ea=(3.82799, 'kcal/mol'), T0=(298.15, 'K'))
        ))
        
        rxnList.append(Reaction(
            reactants=[self.C2H6, self.CH3, self.CH3],
            products=[self.C2H5, self.C2H5, self.H2],
            kinetics=Arrhenius(A=(146.375*6, 'm^6/(mol^2*s)'), n=2.40721, Ea=(8.82799, 'kcal/mol'), T0=(298.15, 'K'))
        ))
        rxnList.append(Reaction(
            reactants=[self.C2H5, self.C2H5, self.H2],
            products=[self.C2H6, self.CH3, self.CH3],
            kinetics=Arrhenius(A=(146.375*6, 'm^6/(mol^2*s)'), n=2.40721, Ea=(8.82799, 'kcal/mol'), T0=(298.15, 'K'))
        ))

        rxnList.append(Reaction(
            reactants=[self.C2H6, self.C2H6],
            products=[self.CH3, self.CH4, self.C2H5],
            kinetics=Arrhenius(A=(1246.375*6, 'm^3/(mol*s)'), n=0.40721, Ea=(8.82799, 'kcal/mol'), T0=(298.15, 'K'))
        ))
        rxnList.append(Reaction(
            reactants=[self.CH3, self.CH4, self.C2H5],
            products=[self.C2H6, self.C2H6],
            kinetics=Arrhenius(A=(46.375*6, 'm^6/(mol^2*s)'), n=0.10721, Ea=(8.82799, 'kcal/mol'), T0=(298.15, 'K'))
        ))

        # Analytical Jacobian for reaction 6
        def jacobian_rxn6(c, kf, kr, s):
            c1, c2, c3, c4 = c[s[1]], c[s[2]], c[s[3]], c[s[4]]
            J = numpy.zeros((5, 5))

            J[1, 1] = -4 * kf * c1 * c2
            J[1, 2] = -2 * kf * c1 * c1
            J[1, 3] = 4 * kr * c3 * c4
            J[1, 4] = 2 * kr * c3 * c3
            J[2, 1:] = 0.5 * J[1, 1:]
            J[3, 1:] = -J[1, 1:]
            J[4, 1:] = -0.5 * J[1, 1:]
            return J

        # Analytical Jacobian for reaction 7
        def jacobian_rxn7(c, kf, kr, s):
            c1, c2, c3, c4 = c[s[1]], c[s[2]], c[s[3]], c[s[4]]
            J = numpy.zeros((5, 5))

            J[1, 1] = -4 * kr * c1 * c2
            J[1, 2] = -2 * kr * c1 * c1
            J[1, 3] = 4 * kf * c3 * c4
            J[1, 4] = 2 * kf * c3 * c3
            J[2, 1:] = 0.5 * J[1, 1:]
            J[3, 1:] = -J[1, 1:]
            J[4, 1:] = -0.5 * J[1, 1:]
            return J

        for rxn_num, rxn in enumerate(rxnList):
            coreReactions = [rxn]

            rxnSystem0 = LiquidReactor(self.T, c0, 1, termination=[])
            rxnSystem0.initializeModel(coreSpecies, coreReactions, edgeSpecies, edgeReactions)
            dydt0 = rxnSystem0.residual(0.0, rxnSystem0.y, numpy.zeros(rxnSystem0.y.shape))[0]
            
            dN = .000001*sum(rxnSystem0.y)

            # Let the solver compute the jacobian
            solverJacobian = rxnSystem0.jacobian(0.0, rxnSystem0.y, dydt0, 0.0)

            if rxn_num not in (6, 7):
                dydt = []
                for i in xrange(numCoreSpecies):
                    rxnSystem0.y[i] += dN
                    dydt.append(rxnSystem0.residual(0.0, rxnSystem0.y, numpy.zeros(rxnSystem0.y.shape))[0])
                    rxnSystem0.y[i] -= dN  # reset y

                # Compute the jacobian using finite differences
                jacobian = numpy.zeros((numCoreSpecies, numCoreSpecies))
                for i in xrange(numCoreSpecies):
                    for j in xrange(numCoreSpecies):
                        jacobian[i, j] = (dydt[j][i]-dydt0[i])/dN
                        self.assertAlmostEqual(jacobian[i, j], solverJacobian[i, j], delta=abs(1e-4*jacobian[i, j]))
            # The forward finite difference is very unstable for reactions
            # 6 and 7. Use Jacobians calculated by hand instead.
            elif rxn_num == 6:
                kforward = rxn.getRateCoefficient(self.T)
                kreverse = kforward / rxn.getEquilibriumConstant(self.T)
                jacobian = jacobian_rxn6(c0, kforward, kreverse, coreSpecies)
                for i in xrange(numCoreSpecies):
                    for j in xrange(numCoreSpecies):
                        self.assertAlmostEqual(jacobian[i, j], solverJacobian[i, j], delta=abs(1e-4*jacobian[i, j]))
            elif rxn_num == 7:
                kforward = rxn.getRateCoefficient(self.T)
                kreverse = kforward / rxn.getEquilibriumConstant(self.T)
                jacobian = jacobian_rxn7(c0, kforward, kreverse, coreSpecies)
                for i in xrange(numCoreSpecies):
                    for j in xrange(numCoreSpecies):
                        self.assertAlmostEqual(jacobian[i, j], solverJacobian[i, j], delta=abs(1e-4*jacobian[i, j]))
    def test_jacobian(self):
        """
        Unit test for the jacobian function:
        Solve a reaction system and check if the analytical jacobian matches
        the finite difference jacobian.
        """

        coreSpecies = [self.CH4, self.CH3, self.C2H6, self.C2H5, self.H2]
        edgeSpecies = []
        numCoreSpecies = len(coreSpecies)
        c0 = {self.CH4: 0.2, self.CH3: 0.1, self.C2H6: 0.35, self.C2H5: 0.15, self.H2: 0.2}
        edgeReactions = []

        rxnList = []
        rxnList.append(Reaction(
            reactants=[self.C2H6],
            products=[self.CH3, self.CH3],
            kinetics=Arrhenius(A=(686.375*6, '1/s'), n=4.40721, Ea=(7.82799, 'kcal/mol'), T0=(298.15, 'K'))
        ))
        rxnList.append(Reaction(
            reactants=[self.CH3, self.CH3],
            products=[self.C2H6],
            kinetics=Arrhenius(A=(686.375*6, 'm^3/(mol*s)'), n=4.40721, Ea=(7.82799, 'kcal/mol'), T0=(298.15, 'K'))
        ))
        
        rxnList.append(Reaction(
            reactants=[self.C2H6, self.CH3],
            products=[self.C2H5, self.CH4],
            kinetics=Arrhenius(A=(46.375*6, 'm^3/(mol*s)'), n=3.40721, Ea=(6.82799, 'kcal/mol'), T0=(298.15, 'K'))
        ))
        rxnList.append(Reaction(
            reactants=[self.C2H5, self.CH4],
            products=[self.C2H6, self.CH3],
            kinetics=Arrhenius(A=(46.375*6, 'm^3/(mol*s)'), n=3.40721, Ea=(6.82799, 'kcal/mol'), T0=(298.15, 'K'))
        ))
        
        rxnList.append(Reaction(
            reactants=[self.C2H5, self.CH4],
            products=[self.CH3, self.CH3, self.CH3],
            kinetics=Arrhenius(A=(246.375*6, 'm^3/(mol*s)'), n=1.40721, Ea=(3.82799, 'kcal/mol'), T0=(298.15, 'K'))
        ))
        rxnList.append(Reaction(
            reactants=[self.CH3, self.CH3, self.CH3],
            products=[self.C2H5, self.CH4],
            kinetics=Arrhenius(A=(246.375*6, 'm^6/(mol^2*s)'), n=1.40721, Ea=(3.82799, 'kcal/mol'), T0=(298.15, 'K'))
        ))
        
        rxnList.append(Reaction(
            reactants=[self.C2H6, self.CH3, self.CH3],
            products=[self.C2H5, self.C2H5, self.H2],
            kinetics=Arrhenius(A=(146.375*6, 'm^6/(mol^2*s)'), n=2.40721, Ea=(8.82799, 'kcal/mol'), T0=(298.15, 'K'))
        ))
        rxnList.append(Reaction(
            reactants=[self.C2H5, self.C2H5, self.H2],
            products=[self.C2H6, self.CH3, self.CH3],
            kinetics=Arrhenius(A=(146.375*6, 'm^6/(mol^2*s)'), n=2.40721, Ea=(8.82799, 'kcal/mol'), T0=(298.15, 'K'))
        ))

        rxnList.append(Reaction(
            reactants=[self.C2H6, self.C2H6],
            products=[self.CH3, self.CH4, self.C2H5],
            kinetics=Arrhenius(A=(1246.375*6, 'm^3/(mol*s)'), n=0.40721, Ea=(8.82799, 'kcal/mol'), T0=(298.15, 'K'))
        ))
        rxnList.append(Reaction(
            reactants=[self.CH3, self.CH4, self.C2H5],
            products=[self.C2H6, self.C2H6],
            kinetics=Arrhenius(A=(46.375*6, 'm^6/(mol^2*s)'), n=0.10721, Ea=(8.82799, 'kcal/mol'), T0=(298.15, 'K'))
        ))

        # Analytical Jacobian for reaction 6
        def jacobian_rxn6(c, kf, kr, s):
            c1, c2, c3, c4 = c[s[1]], c[s[2]], c[s[3]], c[s[4]]
            J = numpy.zeros((5, 5))

            J[1, 1] = -4 * kf * c1 * c2
            J[1, 2] = -2 * kf * c1 * c1
            J[1, 3] = 4 * kr * c3 * c4
            J[1, 4] = 2 * kr * c3 * c3
            J[2, 1:] = 0.5 * J[1, 1:]
            J[3, 1:] = -J[1, 1:]
            J[4, 1:] = -0.5 * J[1, 1:]
            return J

        # Analytical Jacobian for reaction 7
        def jacobian_rxn7(c, kf, kr, s):
            c1, c2, c3, c4 = c[s[1]], c[s[2]], c[s[3]], c[s[4]]
            J = numpy.zeros((5, 5))

            J[1, 1] = -4 * kr * c1 * c2
            J[1, 2] = -2 * kr * c1 * c1
            J[1, 3] = 4 * kf * c3 * c4
            J[1, 4] = 2 * kf * c3 * c3
            J[2, 1:] = 0.5 * J[1, 1:]
            J[3, 1:] = -J[1, 1:]
            J[4, 1:] = -0.5 * J[1, 1:]
            return J

        for rxn_num, rxn in enumerate(rxnList):
            coreReactions = [rxn]

            rxnSystem0 = LiquidReactor(self.T, c0, 1, termination=[])
            rxnSystem0.initializeModel(coreSpecies, coreReactions, edgeSpecies, edgeReactions)
            dydt0 = rxnSystem0.residual(0.0, rxnSystem0.y, numpy.zeros(rxnSystem0.y.shape))[0]
            
            dN = .000001*sum(rxnSystem0.y)

            # Let the solver compute the jacobian
            solverJacobian = rxnSystem0.jacobian(0.0, rxnSystem0.y, dydt0, 0.0)

            if rxn_num not in (6, 7):
                dydt = []
                for i in xrange(numCoreSpecies):
                    rxnSystem0.y[i] += dN
                    dydt.append(rxnSystem0.residual(0.0, rxnSystem0.y, numpy.zeros(rxnSystem0.y.shape))[0])
                    rxnSystem0.y[i] -= dN  # reset y

                # Compute the jacobian using finite differences
                jacobian = numpy.zeros((numCoreSpecies, numCoreSpecies))
                for i in xrange(numCoreSpecies):
                    for j in xrange(numCoreSpecies):
                        jacobian[i, j] = (dydt[j][i]-dydt0[i])/dN
                        self.assertAlmostEqual(jacobian[i, j], solverJacobian[i, j], delta=abs(1e-4*jacobian[i, j]))
            # The forward finite difference is very unstable for reactions
            # 6 and 7. Use Jacobians calculated by hand instead.
            elif rxn_num == 6:
                kforward = rxn.getRateCoefficient(self.T)
                kreverse = kforward / rxn.getEquilibriumConstant(self.T)
                jacobian = jacobian_rxn6(c0, kforward, kreverse, coreSpecies)
                for i in xrange(numCoreSpecies):
                    for j in xrange(numCoreSpecies):
                        self.assertAlmostEqual(jacobian[i, j], solverJacobian[i, j], delta=abs(1e-4*jacobian[i, j]))
            elif rxn_num == 7:
                kforward = rxn.getRateCoefficient(self.T)
                kreverse = kforward / rxn.getEquilibriumConstant(self.T)
                jacobian = jacobian_rxn7(c0, kforward, kreverse, coreSpecies)
                for i in xrange(numCoreSpecies):
                    for j in xrange(numCoreSpecies):
                        self.assertAlmostEqual(jacobian[i, j], solverJacobian[i, j], delta=abs(1e-4*jacobian[i, j]))