Пример #1
0
    def test_compute_flux(self):
        """
        Test the liquid batch reactor with a simple kinetic model. 
        """

        rxn1 = Reaction(reactants=[self.C2H6, self.CH3],
                        products=[self.C2H5, self.CH4],
                        kinetics=Arrhenius(A=(686.375 * 6, 'm^3/(mol*s)'),
                                           n=4.40721,
                                           Ea=(7.82799, 'kcal/mol'),
                                           T0=(298.15, 'K')))

        core_species = [self.CH4, self.CH3, self.C2H6, self.C2H5]
        edge_species = []
        core_reactions = [rxn1]
        edge_reactions = []

        c0 = {self.C2H5: 0.1, self.CH3: 0.1, self.CH4: 0.4, self.C2H6: 0.4}

        rxn_system = LiquidReactor(self.T, c0, 1, termination=[])

        rxn_system.initialize_model(core_species, core_reactions, edge_species,
                                    edge_reactions)

        tlist = np.array([10**(i / 10.0) for i in range(-130, -49)],
                         np.float64)

        # Integrate to get the solution at each time point
        t, y, reaction_rates, species_rates = [], [], [], []
        for t1 in tlist:
            rxn_system.advance(t1)
            t.append(rxn_system.t)
            # You must make a copy of y because it is overwritten by DASSL at
            # each call to advance()
            y.append(rxn_system.y.copy())
            reaction_rates.append(rxn_system.core_reaction_rates.copy())
            species_rates.append(rxn_system.core_species_rates.copy())

        # Convert the solution vectors to np arrays
        t = np.array(t, np.float64)
        reaction_rates = np.array(reaction_rates, np.float64)
        species_rates = np.array(species_rates, np.float64)

        # Check that we're computing the species fluxes correctly
        for i in range(t.shape[0]):
            self.assertAlmostEqual(reaction_rates[i, 0],
                                   species_rates[i, 0],
                                   delta=1e-6 * reaction_rates[i, 0])
            self.assertAlmostEqual(reaction_rates[i, 0],
                                   -species_rates[i, 1],
                                   delta=1e-6 * reaction_rates[i, 0])
            self.assertAlmostEqual(reaction_rates[i, 0],
                                   -species_rates[i, 2],
                                   delta=1e-6 * reaction_rates[i, 0])
            self.assertAlmostEqual(reaction_rates[i, 0],
                                   species_rates[i, 3],
                                   delta=1e-6 * reaction_rates[i, 0])

        # Check that we've reached equilibrium
        self.assertAlmostEqual(reaction_rates[-1, 0], 0.0, delta=1e-2)
Пример #2
0
    def test_corespecies_rate(self):
        """
        Test if a specific core species rate is equal to 0 over time.
        """

        c0 = {self.C2H5: 0.1, self.CH3: 0.1, self.CH4: 0.4, self.C2H6: 0.4}
        rxn1 = Reaction(reactants=[self.C2H6, self.CH3],
                        products=[self.C2H5, self.CH4],
                        kinetics=Arrhenius(A=(686.375 * 6, 'm^3/(mol*s)'),
                                           n=4.40721,
                                           Ea=(7.82799, 'kcal/mol'),
                                           T0=(298.15, 'K')))

        core_species = [self.CH4, self.CH3, self.C2H6, self.C2H5]
        edge_species = []
        core_reactions = [rxn1]
        edge_reactions = []
        sensitivity = []
        termination_conversion = []
        sensitivity_threshold = 0.001
        const_species = ["CH4"]
        sens_conds = {
            self.C2H5: 0.1,
            self.CH3: 0.1,
            self.CH4: 0.4,
            self.C2H6: 0.4,
            'T': self.T
        }

        rxn_system = LiquidReactor(self.T,
                                   c0,
                                   1,
                                   termination_conversion,
                                   sensitivity,
                                   sensitivity_threshold,
                                   const_spc_names=const_species,
                                   sens_conditions=sens_conds)
        # The test regarding the writing of constantSPCindices from input file is check with the previous test.
        rxn_system.const_spc_indices = [0]

        rxn_system.initialize_model(core_species, core_reactions, edge_species,
                                    edge_reactions)

        tlist = np.array([10**(i / 10.0) for i in range(-130, -49)],
                         np.float64)

        # Integrate to get the solution at each time point
        t, y, reaction_rates, species_rates = [], [], [], []
        for t1 in tlist:
            rxn_system.advance(t1)
            t.append(rxn_system.t)
            self.assertEqual(
                rxn_system.core_species_rates[0], 0,
                "Core species rate has to be equal to 0 for species hold constant. "
                "Here it is equal to {0}".format(
                    rxn_system.core_species_rates[0]))
Пример #3
0
    def test_compute_derivative(self):
        rxn_list = [
            Reaction(reactants=[self.C2H6],
                     products=[self.CH3, self.CH3],
                     kinetics=Arrhenius(A=(686.375e6, '1/s'),
                                        n=4.40721,
                                        Ea=(7.82799, 'kcal/mol'),
                                        T0=(298.15, 'K'))),
            Reaction(reactants=[self.C2H6, self.CH3],
                     products=[self.C2H5, self.CH4],
                     kinetics=Arrhenius(A=(46.375 * 6, 'm^3/(mol*s)'),
                                        n=3.40721,
                                        Ea=(6.82799, 'kcal/mol'),
                                        T0=(298.15, 'K'))),
            Reaction(reactants=[self.C2H6, self.CH3, self.CH3],
                     products=[self.C2H5, self.C2H5, self.H2],
                     kinetics=Arrhenius(A=(146.375 * 6, 'm^6/(mol^2*s)'),
                                        n=2.40721,
                                        Ea=(8.82799, 'kcal/mol'),
                                        T0=(298.15, 'K'))),
        ]

        core_species = [self.CH4, self.CH3, self.C2H6, self.C2H5, self.H2]
        edge_species = []
        core_reactions = rxn_list
        edge_reactions = []
        num_core_species = len(core_species)

        c0 = {
            self.CH4: 0.2,
            self.CH3: 0.1,
            self.C2H6: 0.35,
            self.C2H5: 0.15,
            self.H2: 0.2
        }

        rxn_system0 = LiquidReactor(self.T, c0, 1, termination=[])
        rxn_system0.initialize_model(core_species, core_reactions,
                                     edge_species, edge_reactions)
        dfdt0 = rxn_system0.residual(0.0, rxn_system0.y,
                                     np.zeros(rxn_system0.y.shape))[0]
        solver_dfdk = rxn_system0.compute_rate_derivative()
        # print 'Solver d(dy/dt)/dk'
        # print solver_dfdk

        integration_time = 1e-8

        model_settings = ModelSettings(tol_keep_in_edge=0,
                                       tol_move_to_core=1,
                                       tol_interrupt_simulation=0)
        simulator_settings = SimulatorSettings()

        rxn_system0.termination.append(TerminationTime(
            (integration_time, 's')))

        rxn_system0.simulate(core_species,
                             core_reactions, [], [], [], [],
                             model_settings=model_settings,
                             simulator_settings=simulator_settings)

        y0 = rxn_system0.y

        dfdk = np.zeros((num_core_species, len(rxn_list)))  # d(dy/dt)/dk

        c0 = {
            self.CH4: 0.2,
            self.CH3: 0.1,
            self.C2H6: 0.35,
            self.C2H5: 0.15,
            self.H2: 0.2
        }

        for i in range(len(rxn_list)):
            k0 = rxn_list[i].get_rate_coefficient(self.T)
            rxn_list[i].kinetics.A.value_si = rxn_list[
                i].kinetics.A.value_si * (1 + 1e-3)
            dk = rxn_list[i].get_rate_coefficient(self.T) - k0

            rxn_system = LiquidReactor(self.T, c0, 1, termination=[])
            rxn_system.initialize_model(core_species, core_reactions,
                                        edge_species, edge_reactions)

            dfdt = rxn_system.residual(0.0, rxn_system.y,
                                       np.zeros(rxn_system.y.shape))[0]
            dfdk[:, i] = (dfdt - dfdt0) / dk

            rxn_system.termination.append(
                TerminationTime((integration_time, 's')))
            model_settings = ModelSettings(tol_keep_in_edge=0,
                                           tol_move_to_core=1,
                                           tol_interrupt_simulation=0)
            simulator_settings = SimulatorSettings()
            rxn_system.simulate(core_species,
                                core_reactions, [], [], [], [],
                                model_settings=model_settings,
                                simulator_settings=simulator_settings)

            rxn_list[i].kinetics.A.value_si = rxn_list[
                i].kinetics.A.value_si / (1 + 1e-3)  # reset A factor

        for i in range(num_core_species):
            for j in range(len(rxn_list)):
                self.assertAlmostEqual(dfdk[i, j],
                                       solver_dfdk[i, j],
                                       delta=abs(1e-3 * dfdk[i, j]))
Пример #4
0
    def test_jacobian(self):
        """
        Unit test for the jacobian function:
        Solve a reaction system and check if the analytical jacobian matches
        the finite difference jacobian.
        """

        core_species = [self.CH4, self.CH3, self.C2H6, self.C2H5, self.H2]
        edge_species = []
        num_core_species = len(core_species)
        c0 = {
            self.CH4: 0.2,
            self.CH3: 0.1,
            self.C2H6: 0.35,
            self.C2H5: 0.15,
            self.H2: 0.2
        }
        edge_reactions = []

        rxn_list = [
            Reaction(reactants=[self.C2H6],
                     products=[self.CH3, self.CH3],
                     kinetics=Arrhenius(A=(686.375 * 6, '1/s'),
                                        n=4.40721,
                                        Ea=(7.82799, 'kcal/mol'),
                                        T0=(298.15, 'K'))),
            Reaction(reactants=[self.CH3, self.CH3],
                     products=[self.C2H6],
                     kinetics=Arrhenius(A=(686.375 * 6, 'm^3/(mol*s)'),
                                        n=4.40721,
                                        Ea=(7.82799, 'kcal/mol'),
                                        T0=(298.15, 'K'))),
            Reaction(reactants=[self.C2H6, self.CH3],
                     products=[self.C2H5, self.CH4],
                     kinetics=Arrhenius(A=(46.375 * 6, 'm^3/(mol*s)'),
                                        n=3.40721,
                                        Ea=(6.82799, 'kcal/mol'),
                                        T0=(298.15, 'K'))),
            Reaction(reactants=[self.C2H5, self.CH4],
                     products=[self.C2H6, self.CH3],
                     kinetics=Arrhenius(A=(46.375 * 6, 'm^3/(mol*s)'),
                                        n=3.40721,
                                        Ea=(6.82799, 'kcal/mol'),
                                        T0=(298.15, 'K'))),
            Reaction(reactants=[self.C2H5, self.CH4],
                     products=[self.CH3, self.CH3, self.CH3],
                     kinetics=Arrhenius(A=(246.375 * 6, 'm^3/(mol*s)'),
                                        n=1.40721,
                                        Ea=(3.82799, 'kcal/mol'),
                                        T0=(298.15, 'K'))),
            Reaction(reactants=[self.CH3, self.CH3, self.CH3],
                     products=[self.C2H5, self.CH4],
                     kinetics=Arrhenius(A=(246.375 * 6, 'm^6/(mol^2*s)'),
                                        n=1.40721,
                                        Ea=(3.82799, 'kcal/mol'),
                                        T0=(298.15, 'K'))),
            Reaction(reactants=[self.C2H6, self.CH3, self.CH3],
                     products=[self.C2H5, self.C2H5, self.H2],
                     kinetics=Arrhenius(A=(146.375 * 6, 'm^6/(mol^2*s)'),
                                        n=2.40721,
                                        Ea=(8.82799, 'kcal/mol'),
                                        T0=(298.15, 'K'))),
            Reaction(reactants=[self.C2H5, self.C2H5, self.H2],
                     products=[self.C2H6, self.CH3, self.CH3],
                     kinetics=Arrhenius(A=(146.375 * 6, 'm^6/(mol^2*s)'),
                                        n=2.40721,
                                        Ea=(8.82799, 'kcal/mol'),
                                        T0=(298.15, 'K'))),
            Reaction(reactants=[self.C2H6, self.C2H6],
                     products=[self.CH3, self.CH4, self.C2H5],
                     kinetics=Arrhenius(A=(1246.375 * 6, 'm^3/(mol*s)'),
                                        n=0.40721,
                                        Ea=(8.82799, 'kcal/mol'),
                                        T0=(298.15, 'K'))),
            Reaction(reactants=[self.CH3, self.CH4, self.C2H5],
                     products=[self.C2H6, self.C2H6],
                     kinetics=Arrhenius(A=(46.375 * 6, 'm^6/(mol^2*s)'),
                                        n=0.10721,
                                        Ea=(8.82799, 'kcal/mol'),
                                        T0=(298.15, 'K'))),
        ]

        # Analytical Jacobian for reaction 6
        def jacobian_rxn6(c, kf, kr, s):
            c1, c2, c3, c4 = c[s[1]], c[s[2]], c[s[3]], c[s[4]]
            jaco = np.zeros((5, 5))

            jaco[1, 1] = -4 * kf * c1 * c2
            jaco[1, 2] = -2 * kf * c1 * c1
            jaco[1, 3] = 4 * kr * c3 * c4
            jaco[1, 4] = 2 * kr * c3 * c3
            jaco[2, 1:] = 0.5 * jaco[1, 1:]
            jaco[3, 1:] = -jaco[1, 1:]
            jaco[4, 1:] = -0.5 * jaco[1, 1:]
            return jaco

        # Analytical Jacobian for reaction 7
        def jacobian_rxn7(c, kf, kr, s):
            c1, c2, c3, c4 = c[s[1]], c[s[2]], c[s[3]], c[s[4]]
            jaco = np.zeros((5, 5))

            jaco[1, 1] = -4 * kr * c1 * c2
            jaco[1, 2] = -2 * kr * c1 * c1
            jaco[1, 3] = 4 * kf * c3 * c4
            jaco[1, 4] = 2 * kf * c3 * c3
            jaco[2, 1:] = 0.5 * jaco[1, 1:]
            jaco[3, 1:] = -jaco[1, 1:]
            jaco[4, 1:] = -0.5 * jaco[1, 1:]
            return jaco

        for rxn_num, rxn in enumerate(rxn_list):
            core_reactions = [rxn]

            rxn_system0 = LiquidReactor(self.T, c0, 1, termination=[])
            rxn_system0.initialize_model(core_species, core_reactions,
                                         edge_species, edge_reactions)
            dydt0 = rxn_system0.residual(0.0, rxn_system0.y,
                                         np.zeros(rxn_system0.y.shape))[0]

            dN = .000001 * sum(rxn_system0.y)

            # Let the solver compute the jacobian
            solver_jacobian = rxn_system0.jacobian(0.0, rxn_system0.y, dydt0,
                                                   0.0)

            if rxn_num not in (6, 7):
                dydt = []
                for i in range(num_core_species):
                    rxn_system0.y[i] += dN
                    dydt.append(
                        rxn_system0.residual(0.0, rxn_system0.y,
                                             np.zeros(rxn_system0.y.shape))[0])
                    rxn_system0.y[i] -= dN  # reset y

                # Compute the jacobian using finite differences
                jacobian = np.zeros((num_core_species, num_core_species))
                for i in range(num_core_species):
                    for j in range(num_core_species):
                        jacobian[i, j] = (dydt[j][i] - dydt0[i]) / dN
                        self.assertAlmostEqual(jacobian[i, j],
                                               solver_jacobian[i, j],
                                               delta=abs(1e-4 *
                                                         jacobian[i, j]))
            # The forward finite difference is very unstable for reactions
            # 6 and 7. Use Jacobians calculated by hand instead.
            elif rxn_num == 6:
                kforward = rxn.get_rate_coefficient(self.T)
                kreverse = kforward / rxn.get_equilibrium_constant(self.T)
                jacobian = jacobian_rxn6(c0, kforward, kreverse, core_species)
                for i in range(num_core_species):
                    for j in range(num_core_species):
                        self.assertAlmostEqual(jacobian[i, j],
                                               solver_jacobian[i, j],
                                               delta=abs(1e-4 *
                                                         jacobian[i, j]))
            elif rxn_num == 7:
                kforward = rxn.get_rate_coefficient(self.T)
                kreverse = kforward / rxn.get_equilibrium_constant(self.T)
                jacobian = jacobian_rxn7(c0, kforward, kreverse, core_species)
                for i in range(num_core_species):
                    for j in range(num_core_species):
                        self.assertAlmostEqual(jacobian[i, j],
                                               solver_jacobian[i, j],
                                               delta=abs(1e-4 *
                                                         jacobian[i, j]))