Пример #1
0
    def canonical_scheme(self, t=None):
        """
        Return the canonical scheme.

        This is a scheme that contains this hypergeometric motive in its cohomology.

        EXAMPLES::

            sage: from sage.modular.hypergeometric_motive import HypergeometricData as Hyp
            sage: H = Hyp(cyclotomic=([3],[4]))
            sage: H.gamma_list()
            [-1, 2, 3, -4]
            sage: H.canonical_scheme()
            Spectrum of Quotient of Multivariate Polynomial Ring
            in X0, X1, Y0, Y1 over Fraction Field of Univariate Polynomial Ring
            in t over Rational Field by the ideal
            (X0 + X1 - 1, Y0 + Y1 - 1, (-t)*X0^2*X1^3 + 27/64*Y0*Y1^4)

            sage: H = Hyp(gamma_list=[-2, 3, 4, -5])
            sage: H.canonical_scheme()
            Spectrum of Quotient of Multivariate Polynomial Ring
            in X0, X1, Y0, Y1 over Fraction Field of Univariate Polynomial Ring
            in t over Rational Field by the ideal
            (X0 + X1 - 1, Y0 + Y1 - 1, (-t)*X0^3*X1^4 + 1728/3125*Y0^2*Y1^5)

        REFERENCES:

        [Kat1991]_, section 5.4
        """
        if t is None:
            t = FractionField(QQ['t']).gen()
        basering = t.parent()
        gamma_pos = [u for u in self.gamma_list() if u > 0]
        gamma_neg = [u for u in self.gamma_list() if u < 0]
        N_pos = len(gamma_pos)
        N_neg = len(gamma_neg)
        varX = ['X{}'.format(i) for i in range(N_pos)]
        varY = ['Y{}'.format(i) for i in range(N_neg)]
        ring = PolynomialRing(basering, varX + varY)
        gens = ring.gens()
        X = gens[:N_pos]
        Y = gens[N_pos:]
        eq0 = ring.sum(X) - 1
        eq1 = ring.sum(Y) - 1
        eq2_pos = ring.prod(X[i] ** gamma_pos[i] for i in range(N_pos))
        eq2_neg = ring.prod(Y[j] ** -gamma_neg[j] for j in range(N_neg))

        ideal = ring.ideal([eq0, eq1, self.M_value() * eq2_neg - t * eq2_pos])
        return Spec(ring.quotient(ideal))
    def canonical_scheme(self, t=None):
        """
        Return the canonical scheme.

        This is a scheme that contains this hypergeometric motive in its cohomology.

        EXAMPLES::

            sage: from sage.modular.hypergeometric_motive import HypergeometricData as Hyp
            sage: H = Hyp(cyclotomic=([3],[4]))
            sage: H.gamma_list()
            [-1, 2, 3, -4]
            sage: H.canonical_scheme()
            Spectrum of Quotient of Multivariate Polynomial Ring
            in X0, X1, Y0, Y1 over Fraction Field of Univariate Polynomial Ring
            in t over Rational Field by the ideal
            (X0 + X1 - 1, Y0 + Y1 - 1, (-t)*X0^2*X1^3 + 27/64*Y0*Y1^4)

            sage: H = Hyp(gamma_list=[-2, 3, 4, -5])
            sage: H.canonical_scheme()
            Spectrum of Quotient of Multivariate Polynomial Ring
            in X0, X1, Y0, Y1 over Fraction Field of Univariate Polynomial Ring
            in t over Rational Field by the ideal
            (X0 + X1 - 1, Y0 + Y1 - 1, (-t)*X0^3*X1^4 + 1728/3125*Y0^2*Y1^5)

        REFERENCES:

        [Kat1991]_, section 5.4
        """
        if t is None:
            t = FractionField(QQ['t']).gen()
        basering = t.parent()
        gamma_pos = [u for u in self.gamma_list() if u > 0]
        gamma_neg = [u for u in self.gamma_list() if u < 0]
        N_pos = len(gamma_pos)
        N_neg = len(gamma_neg)
        varX = ['X{}'.format(i) for i in range(N_pos)]
        varY = ['Y{}'.format(i) for i in range(N_neg)]
        ring = PolynomialRing(basering, varX + varY)
        gens = ring.gens()
        X = gens[:N_pos]
        Y = gens[N_pos:]
        eq0 = ring.sum(X) - 1
        eq1 = ring.sum(Y) - 1
        eq2_pos = ring.prod(X[i] ** gamma_pos[i] for i in range(N_pos))
        eq2_neg = ring.prod(Y[j] ** -gamma_neg[j] for j in range(N_neg))

        ideal = ring.ideal([eq0, eq1, self.M_value() * eq2_neg - t * eq2_pos])
        return Spec(ring.quotient(ideal))
Пример #3
0
            def expand(self, n, letter='x'):
                r"""
                Expand ``self`` written in the `\mathbf{w}` basis in `n^2`
                commuting variables which satisfy the relation
                `x_{ij} x_{ik} = 0` for all `i`, `j`, and `k`.

                The expansion of an element of the `\mathbf{w}` basis is
                given by equations (26) and (55) in [HNT06]_.

                INPUT:

                - ``n`` -- an integer
                - ``letter`` -- (default: ``'x'``) a string

                OUTPUT:

                - The symmetric function of ``self`` expressed in the ``n*n``
                  non-commuting variables described by ``letter``.

                REFERENCES:

                .. [HNT06] \F. Hivert, J.-C. Novelli, J.-Y. Thibon.
                   *Commutative combinatorial Hopf algebras*. (2006).
                   :arxiv:`0605262v1`.

                EXAMPLES::

                    sage: w = SymmetricFunctionsNonCommutingVariables(QQ).dual().w()
                    sage: w[[1,3],[2]].expand(4)
                    x02*x11*x20 + x03*x11*x30 + x03*x22*x30 + x13*x22*x31

                One can use a different set of variable by using the
                optional argument ``letter``::

                    sage: w[[1,3],[2]].expand(3, letter='y')
                    y02*y11*y20
                """
                from sage.rings.polynomial.polynomial_ring_constructor import PolynomialRing
                from sage.combinat.permutation import Permutations

                m = self.parent()
                names = ['{}{}{}'.format(letter, i, j) for i in range(n) for j in range(n)]
                R = PolynomialRing(m.base_ring(), n*n, names)
                x = [[R.gens()[i*n+j] for j in range(n)] for i in range(n)]
                I = R.ideal([x[i][j]*x[i][k] for j in range(n) for k in range(n) for i in range(n)])
                Q = R.quotient(I, names)
                x = [[Q.gens()[i*n+j] for j in range(n)] for i in range(n)]
                P = SetPartitions()

                def on_basis(A):
                    k = A.size()
                    ret = R.zero()
                    if n < k:
                        return ret

                    for p in Permutations(k):
                        if P(p.to_cycles()) == A:
                            # -1 for indexing
                            ret += R.sum(prod(x[I[i]][I[p[i]-1]] for i in range(k))
                                         for I in Subsets(range(n), k))
                    return ret

                return m._apply_module_morphism(self, on_basis, codomain=R)