Пример #1
0
def get_neighbors(
    data: AnnData,
    K: int = 100,
    rep: str = "pca",
    n_jobs: int = -1,
    random_state: int = 0,
    full_speed: bool = False,
) -> Tuple[List[int], List[float]]:
    """Find K nearest neighbors for each data point and return the indices and distances arrays.

    Parameters
    ----------

    data : `AnnData`
        An AnnData object.
    K : `int`, optional (default: 100)
        Number of neighbors, including the data point itself.
    rep : `str`, optional (default: 'pca')
        Representation used to calculate kNN. If `None` use data.X
    n_jobs : `int`, optional (default: -1)
        Number of threads to use. -1 refers to all available threads
    random_state: `int`, optional (default: 0)
        Random seed for random number generator.
    full_speed: `bool`, optional (default: False)
        If full_speed, use multiple threads in constructing hnsw index. However, the kNN results are not reproducible. If not full_speed, use only one thread to make sure results are reproducible.

    Returns
    -------

    kNN indices and distances arrays.

    Examples
    --------
    >>> indices, distances = tools.get_neighbors(adata)
    """

    rep = update_rep(rep)
    indices_key = rep + "_knn_indices"
    distances_key = rep + "_knn_distances"

    if knn_is_cached(data, indices_key, distances_key, K):
        indices = data.uns[indices_key]
        distances = data.uns[distances_key]
        logger.info("Found cached kNN results, no calculation is required.")
    else:
        indices, distances = calculate_nearest_neighbors(
            X_from_rep(data, rep),
            K=K,
            n_jobs=effective_n_jobs(n_jobs),
            random_state=random_state,
            full_speed=full_speed,
        )
        data.uns[indices_key] = indices
        data.uns[distances_key] = distances

    return indices, distances
Пример #2
0
def net_umap(
    data: AnnData,
    rep: str = "pca",
    n_jobs: int = -1,
    n_components: int = 2,
    n_neighbors: int = 15,
    min_dist: float = 0.5,
    spread: float = 1.0,
    random_state: int = 0,
    select_frac: float = 0.1,
    select_K: int = 25,
    select_alpha: float = 1.0,
    full_speed: bool = False,
    net_alpha: float = 0.1,
    polish_learning_rate: float = 10.0,
    polish_n_epochs: int = 30,
    out_basis: str = "net_umap",
) -> None:
    """Calculate approximated UMAP embedding using Deep Learning model to improve the speed.

    In specific, the deep model used is MLPRegressor_, the *scikit-learn* implementation of Multi-layer Perceptron regressor.

    .. _MLPRegressor: https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPRegressor.html

    Parameters
    ----------
    data: ``anndata.AnnData``
        Annotated data matrix with rows for cells and columns for genes.

    rep: ``str``, optional, default: ``"pca"``
        Representation of data used for the calculation. By default, use PCA coordinates. If ``None``, use the count matrix ``data.X``.

    n_components: ``int``, optional, default: ``2``
        Dimension of calculated UMAP coordinates. By default, generate 2-dimensional data for 2D visualization.

    n_neighbors: ``int``, optional, default: ``15``
        Number of nearest neighbors considered during the computation.

    min_dist: ``float``, optional, default: ``0.5``
        The effective minimum distance between embedded data points.

    spread: ``float``, optional, default: ``1.0``
        The effective scale of embedded data points.

    random_state: ``int``, optional, default: ``0``
        Random seed set for reproducing results.

    select_frac: ``float``, optional, default: ``0.1``
        Down sampling fraction on the cells.

    select_K: ``int``, optional, default: ``25``
        Number of neighbors to be used to estimate local density for each data point for down sampling.

    select_alpha: ``float``, optional, default: ``1.0``
        Weight the down sample to be proportional to ``radius ** select_alpha``.

    full_speed: ``bool``, optional, default: ``False``
        * If ``True``, use multiple threads in constructing ``hnsw`` index. However, the kNN results are not reproducible.
        * Otherwise, use only one thread to make sure results are reproducible.

    net_alpha: ``float``, optional, default: ``0.1``
        L2 penalty (regularization term) parameter of the deep regressor.

    polish_learning_frac: ``float``, optional, default: ``10.0``
        After running the deep regressor to predict new coordinates, use ``polish_learning_frac`` * ``n_obs`` as the learning rate to polish the coordinates.

    polish_n_iter: ``int``, optional, default: ``30``
        Number of iterations for polishing UMAP run.

    out_basis: ``str``, optional, default: ``"net_umap"``
        Key name for calculated UMAP coordinates to store.

    Returns
    -------
    ``None``

    Update ``data.obsm``:
        * ``data.obsm['X_' + out_basis]``: Net UMAP coordinates of the data.

    Update ``data.obs``:
        * ``data.obs['ds_selected']``: Boolean array to indicate which cells are selected during the down sampling phase.

    Examples
    --------
    >>> scc.net_umap(adata)
    """
    start = time.time()

    rep = update_rep(rep)
    indices_key = rep + "_knn_indices"
    distances_key = rep + "_knn_distances"

    if not knn_is_cached(data, indices_key, distances_key, select_K):
        raise ValueError("Please run neighbors first!")

    n_jobs = effective_n_jobs(n_jobs)

    selected = select_cells(
        data.uns[distances_key],
        select_frac,
        K=select_K,
        alpha=select_alpha,
        random_state=random_state,
    )
    X_full = X_from_rep(data, rep)
    X = X_full[selected, :]

    ds_indices_key = "ds_" + rep + "_knn_indices"  # ds refers to down-sampling
    ds_distances_key = "ds_" + rep + "_knn_distances"
    indices, distances = calculate_nearest_neighbors(
        X,
        K=n_neighbors,
        n_jobs=n_jobs,
        random_state=random_state,
        full_speed=full_speed,
    )
    data.uns[ds_indices_key] = indices
    data.uns[ds_distances_key] = distances

    knn_indices = np.insert(data.uns[ds_indices_key][:, 0:n_neighbors - 1],
                            0,
                            range(X.shape[0]),
                            axis=1)
    knn_dists = np.insert(data.uns[ds_distances_key][:, 0:n_neighbors - 1],
                          0,
                          0.0,
                          axis=1)

    X_umap = calc_umap(
        X,
        n_components,
        n_neighbors,
        min_dist,
        spread,
        random_state,
        knn_indices=knn_indices,
        knn_dists=knn_dists,
    )

    data.uns["X_" + out_basis + "_small"] = X_umap
    data.obs["ds_selected"] = selected

    Y_init = np.zeros((data.shape[0], 2), dtype=np.float64)
    Y_init[selected, :] = X_umap
    Y_init[~selected, :] = net_train_and_predict(X,
                                                 X_umap,
                                                 X_full[~selected, :],
                                                 net_alpha,
                                                 random_state,
                                                 verbose=True)

    data.obsm["X_" + out_basis + "_pred"] = Y_init

    knn_indices = np.insert(data.uns[indices_key][:, 0:n_neighbors - 1],
                            0,
                            range(data.shape[0]),
                            axis=1)
    knn_dists = np.insert(data.uns[distances_key][:, 0:n_neighbors - 1],
                          0,
                          0.0,
                          axis=1)

    data.obsm["X_" + out_basis] = calc_umap(
        X_full,
        n_components,
        n_neighbors,
        min_dist,
        spread,
        random_state,
        init=Y_init,
        n_epochs=polish_n_epochs,
        learning_rate=polish_learning_rate,
        knn_indices=knn_indices,
        knn_dists=knn_dists,
    )

    end = time.time()
    logger.info("Net UMAP is calculated. Time spent = {:.2f}s.".format(end -
                                                                       start))
Пример #3
0
def net_fitsne(
    data: AnnData,
    rep: str = "pca",
    n_jobs: int = -1,
    n_components: int = 2,
    perplexity: float = 30,
    early_exaggeration: int = 12,
    learning_rate: float = 1000,
    random_state: int = 0,
    select_frac: float = 0.1,
    select_K: int = 25,
    select_alpha: float = 1.0,
    net_alpha: float = 0.1,
    polish_learning_frac: float = 0.5,
    polish_n_iter: int = 150,
    out_basis: "str" = "net_fitsne",
) -> None:
    """Calculate approximated FI-tSNE embedding using Deep Learning model to improve the speed.

    In specific, the deep model used is MLPRegressor_, the *scikit-learn* implementation of Multi-layer Perceptron regressor.

    .. _MLPRegressor: https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPRegressor.html

    Parameters
    ----------
    data: ``anndata.AnnData``
        Annotated data matrix with rows for cells (``n_obs``) and columns for genes (``n_feature``).

    rep: ``str``, optional, default: ``"pca"``
        Representation of data used for the calculation. By default, use PCA coordinates. If ``None``, use the count matrix ``data.X``.

    n_jobs: ``int``, optional, default: ``-1``
        Number of threads to use. If ``-1``, use all available threads.

    n_components: ``int``, optional, default: ``2``
        Dimension of calculated tSNE coordinates. By default, generate 2-dimensional data for 2D visualization.

    perplexity: ``float``, optional, default: ``30``
        The perplexity is related to the number of nearest neighbors used in other manifold learning algorithms. Larger datasets usually require a larger perplexity.

    early_exaggeration: ``int``, optional, default: ``12``
        Controls how tight natural clusters in the original space are in the embedded space, and how much space will be between them.

    learning_rate: ``float``, optional, default: ``1000``
        The learning rate can be a critical parameter, which should be between 100 and 1000.

    random_state: ``int``, optional, default: ``0``
        Random seed set for reproducing results.

    select_frac: ``float``, optional, default: ``0.1``
        Down sampling fraction on the cells.

    select_K: ``int``, optional, default: ``25``
        Number of neighbors to be used to estimate local density for each data point for down sampling.

    select_alpha: ``float``, optional, default: ``1.0``
        Weight the down sample to be proportional to ``radius ** select_alpha``.

    net_alpha: ``float``, optional, default: ``0.1``
        L2 penalty (regularization term) parameter of the deep regressor.

    polish_learning_frac: ``float``, optional, default: ``0.5``
        After running the deep regressor to predict new coordinates, use ``polish_learning_frac`` * ``n_obs`` as the learning rate to polish the coordinates.

    polish_n_iter: ``int``, optional, default: ``150``
        Number of iterations for polishing FI-tSNE run.

    out_basis: ``str``, optional, default: ``"net_fitsne"``
        Key name for the approximated FI-tSNE coordinates calculated.

    Returns
    -------
    ``None``

    Update ``data.obsm``:
        * ``data.obsm['X_' + out_basis]``: Net FI-tSNE coordinates of the data.

    Update ``data.obs``:
        * ``data.obs['ds_selected']``: Boolean array to indicate which cells are selected during the down sampling phase.

    Examples
    --------
    >>> scc.net_fitsne(adata)
    """
    start = time.time()

    rep = update_rep(rep)
    indices_key = rep + "_knn_indices"
    distances_key = rep + "_knn_distances"

    if not knn_is_cached(data, indices_key, distances_key, select_K):
        raise ValueError("Please run neighbors first!")

    n_jobs = effective_n_jobs(n_jobs)

    selected = select_cells(
        data.uns[distances_key],
        select_frac,
        K=select_K,
        alpha=select_alpha,
        random_state=random_state,
    )
    X_full = X_from_rep(data, rep)
    X = X_full[selected, :]
    X_fitsne = calc_fitsne(
        X,
        n_jobs,
        n_components,
        perplexity,
        early_exaggeration,
        learning_rate,
        random_state,
    )

    data.uns["X_" + out_basis + "_small"] = X_fitsne
    data.obs["ds_selected"] = selected

    Y_init = np.zeros((data.shape[0], 2), dtype=np.float64)
    Y_init[selected, :] = X_fitsne
    Y_init[~selected, :] = net_train_and_predict(X,
                                                 X_fitsne,
                                                 X_full[~selected, :],
                                                 net_alpha,
                                                 random_state,
                                                 verbose=True)

    data.obsm["X_" + out_basis + "_pred"] = Y_init

    polish_learning_rate = polish_learning_frac * data.shape[0]
    data.obsm["X_" + out_basis] = calc_fitsne(
        X_full,
        n_jobs,
        n_components,
        perplexity,
        early_exaggeration,
        polish_learning_rate,
        random_state,
        initialization=Y_init,
        max_iter=polish_n_iter,
        stop_early_exag_iter=0,
        mom_switch_iter=0,
    )

    end = time.time()
    logger.info(
        "Net FItSNE is calculated. Time spent = {:.2f}s.".format(end - start))
Пример #4
0
def umap(
    data: AnnData,
    rep: str = "pca",
    n_components: int = 2,
    n_neighbors: int = 15,
    min_dist: float = 0.5,
    spread: float = 1.0,
    random_state: int = 0,
    out_basis: str = "umap",
) -> None:
    """Calculate UMAP embedding using umap-learn_ package.

    .. _umap-learn: https://github.com/lmcinnes/umap

    Parameters
    ----------
    data: ``anndata.AnnData``
        Annotated data matrix with rows for cells and columns for genes.

    rep: ``str``, optional, default: ``"pca"``
        Representation of data used for the calculation. By default, use PCA coordinates. If ``None``, use the count matrix ``data.X``.

    n_components: ``int``, optional, default: ``2``
        Dimension of calculated UMAP coordinates. By default, generate 2-dimensional data for 2D visualization.

    n_neighbors: ``int``, optional, default: ``15``
        Number of nearest neighbors considered during the computation.

    min_dist: ``float``, optional, default: ``0.5``
        The effective minimum distance between embedded data points.

    spread: ``float``, optional, default: ``1.0``
        The effective scale of embedded data points.

    random_state: ``int``, optional, default: ``0``
        Random seed set for reproducing results.

    out_basis: ``str``, optional, default: ``"umap"``
        Key name for calculated UMAP coordinates to store.

    Returns
    -------
    ``None``

    Update ``data.obsm``:
        * ``data.obsm['X_' + out_basis]``: UMAP coordinates of the data.

    Examples
    --------
    >>> scc.umap(adata)
    """
    start = time.time()

    rep = update_rep(rep)
    indices_key = rep + "_knn_indices"
    distances_key = rep + "_knn_distances"

    X = X_from_rep(data, rep)
    if not knn_is_cached(data, indices_key, distances_key, n_neighbors):
        raise ValueError("Please run neighbors first!")

    knn_indices = np.insert(data.uns[indices_key][:, 0:n_neighbors - 1],
                            0,
                            range(data.shape[0]),
                            axis=1)
    knn_dists = np.insert(data.uns[distances_key][:, 0:n_neighbors - 1],
                          0,
                          0.0,
                          axis=1)
    data.obsm["X_" + out_basis] = calc_umap(
        X,
        n_components,
        n_neighbors,
        min_dist,
        spread,
        random_state,
        knn_indices=knn_indices,
        knn_dists=knn_dists,
    )

    end = time.time()
    logger.info("UMAP is calculated. Time spent = {:.2f}s.".format(end -
                                                                   start))
Пример #5
0
def fitsne(
    data: AnnData,
    rep: str = "pca",
    n_jobs: int = -1,
    n_components: int = 2,
    perplexity: float = 30,
    early_exaggeration: int = 12,
    learning_rate: float = 1000,
    random_state: int = 0,
    out_basis: str = "fitsne",
) -> None:
    """Calculate FIt-SNE embedding using fitsne_ package.

    .. _fitsne: https://github.com/KlugerLab/FIt-SNE

    Parameters
    ----------
    data: ``anndata.AnnData``
        Annotated data matrix with rows for cells and columns for genes.

    rep: ``str``, optional, default: ``"pca"``
        Representation of data used for the calculation. By default, use PCA coordinates. If ``None``, use the count matrix ``data.X``.

    n_jobs: ``int``, optional, default: ``-1``
        Number of threads to use. If ``-1``, use all available threads.

    n_components: ``int``, optional, default: ``2``
        Dimension of calculated FI-tSNE coordinates. By default, generate 2-dimensional data for 2D visualization.

    perplexity: ``float``, optional, default: ``30``
        The perplexity is related to the number of nearest neighbors used in other manifold learning algorithms. Larger datasets usually require a larger perplexity.

    early_exaggeration: ``int``, optional, default: ``12``
        Controls how tight natural clusters in the original space are in the embedded space, and how much space will be between them.

    learning_rate: ``float``, optional, default: ``1000``
        The learning rate can be a critical parameter, which should be between 100 and 1000.

    random_state: ``int``, optional, default: ``0``
        Random seed set for reproducing results.

    out_basis: ``str``, optional, default: ``"fitsne"``
        Key name for calculated FI-tSNE coordinates to store.

    Returns
    -------
    ``None``

    Update ``data.obsm``:
        * ``data.obsm['X_' + out_basis]``: FI-tSNE coordinates of the data.

    Examples
    --------
    >>> scc.fitsne(adata)
    """
    start = time.time()

    rep = update_rep(rep)
    n_jobs = effective_n_jobs(n_jobs)

    data.obsm["X_" + out_basis] = calc_fitsne(
        X_from_rep(data, rep),
        n_jobs,
        n_components,
        perplexity,
        early_exaggeration,
        learning_rate,
        random_state,
    )

    end = time.time()
    logger.info("FIt-SNE is calculated. Time spent = {:.2f}s.".format(end -
                                                                      start))
Пример #6
0
def net_fle(
    data: AnnData,
    file_name: str = None,
    n_jobs: int = -1,
    rep: str = "diffmap",
    K: int = 50,
    full_speed: bool = False,
    target_change_per_node: float = 2.0,
    target_steps: int = 5000,
    is3d: bool = False,
    memory: int = 8,
    random_state: int = 0,
    select_frac: float = 0.1,
    select_K: int = 25,
    select_alpha: float = 1.0,
    net_alpha: float = 0.1,
    polish_target_steps: int = 1500,
    out_basis: str = "net_fle",
) -> None:
    """Construct the approximated Force-directed (FLE) graph using Deep Learning model to improve the speed.

    In specific, the deep model used is MLPRegressor_, the *scikit-learn* implementation of Multi-layer Perceptron regressor.

    .. _MLPRegressor: https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPRegressor.html

    Parameters
    ----------
    data: ``anndata.AnnData``
        Annotated data matrix with rows for cells and columns for genes.

    file_name: ``str``, optional, default: ``None``
        Temporary file to store the coordinates as the input to forceatlas2. If ``None``, use ``tempfile.mkstemp`` to generate file name.

    n_jobs: ``int``, optional, default: ``-1``
        Number of threads to use. If ``-1``, use all available threads.

    rep: ``str``, optional, default: ``"diffmap"``
        Representation of data used for the calculation. By default, use Diffusion Map coordinates. If ``None``, use the count matrix ``data.X``.

    K: ``int``, optional, default: ``50``
        Number of nearest neighbors to be considered during the computation.

    full_speed: ``bool``, optional, default: ``False``
        * If ``True``, use multiple threads in constructing ``hnsw`` index. However, the kNN results are not reproducible.
        * Otherwise, use only one thread to make sure results are reproducible.

    target_change_per_node: ``float``, optional, default: ``2.0``
        Target change per node to stop ForceAtlas2.

    target_steps: ``int``, optional, default: ``5000``
        Maximum number of iterations before stopping the ForceAtlas2 algorithm.

    is3d: ``bool``, optional, default: ``False``
        If ``True``, calculate 3D force-directed layout.

    memory: ``int``, optional, default: ``8``
        Memory size in GB for the Java FA2 component. By default, use 8GB memory.

    random_state: ``int``, optional, default: ``0``
        Random seed set for reproducing results.

    select_frac: ``float``, optional, default: ``0.1``
        Down sampling fraction on the cells.

    select_K: ``int``, optional, default: ``25``
        Number of neighbors to be used to estimate local density for each data point for down sampling.

    select_alpha: ``float``, optional, default: ``1.0``
        Weight the down sample to be proportional to ``radius ** select_alpha``.

    net_alpha: ``float``, optional, default: ``0.1``
        L2 penalty (regularization term) parameter of the deep regressor.

    polish_target_steps: ``int``, optional, default: ``1500``
        After running the deep regressor to predict new coordinate, Number of ForceAtlas2 iterations.

    out_basis: ``str``, optional, default: ``"net_fle"``
        Key name for calculated FLE coordinates to store.

    Returns
    -------
    ``None``

    Update ``data.obsm``:
        * ``data.obsm['X_' + out_basis]``: Net FLE coordinates of the data.

    Update ``data.obs``:
        * ``data.obs['ds_selected']``: Boolean array to indicate which cells are selected during the down sampling phase.

    Examples
    --------
    >>> scc.net_fle(adata)
    """
    start = time.time()

    if file_name is None:
        if file_name is None:
            import tempfile

            _, file_name = tempfile.mkstemp()

    n_jobs = effective_n_jobs(n_jobs)
    rep = update_rep(rep)

    if ("W_" + rep) not in data.uns:
        neighbors(
            data,
            K=K,
            rep=rep,
            n_jobs=n_jobs,
            random_state=random_state,
            full_speed=full_speed,
        )

    indices_key = rep + "_knn_indices"
    distances_key = rep + "_knn_distances"

    if not knn_is_cached(data, indices_key, distances_key, select_K):
        raise ValueError("Please run neighbors first!")

    selected = select_cells(
        data.uns[distances_key],
        select_frac,
        K=select_K,
        alpha=select_alpha,
        random_state=random_state,
    )

    X_full = X_from_rep(data, rep)
    X = X_full[selected, :]

    ds_indices_key = "ds_" + rep + "_knn_indices"
    ds_distances_key = "ds_" + rep + "_knn_distances"
    indices, distances = calculate_nearest_neighbors(X,
                                                     K=K,
                                                     n_jobs=n_jobs,
                                                     random_state=random_state,
                                                     full_speed=full_speed)
    data.uns[ds_indices_key] = indices
    data.uns[ds_distances_key] = distances

    W = calculate_affinity_matrix(indices, distances)

    X_fle = calc_force_directed_layout(
        W,
        file_name + ".small",
        n_jobs,
        target_change_per_node,
        target_steps,
        is3d,
        memory,
        random_state,
    )

    data.uns["X_" + out_basis + "_small"] = X_fle
    data.obs["ds_diffmap_selected"] = selected

    Y_init = np.zeros((data.shape[0], 2), dtype=np.float64)
    Y_init[selected, :] = X_fle
    Y_init[~selected, :] = net_train_and_predict(X,
                                                 X_fle,
                                                 X_full[~selected, :],
                                                 net_alpha,
                                                 random_state,
                                                 verbose=True)

    data.obsm["X_" + out_basis + "_pred"] = Y_init

    data.obsm["X_" + out_basis] = calc_force_directed_layout(
        W_from_rep(data, rep),
        file_name,
        n_jobs,
        target_change_per_node,
        polish_target_steps,
        is3d,
        memory,
        random_state,
        init=Y_init,
    )

    end = time.time()
    logger.info("Net FLE is calculated. Time spent = {:.2f}s.".format(end -
                                                                      start))