def get_neighbors( data: AnnData, K: int = 100, rep: str = "pca", n_jobs: int = -1, random_state: int = 0, full_speed: bool = False, ) -> Tuple[List[int], List[float]]: """Find K nearest neighbors for each data point and return the indices and distances arrays. Parameters ---------- data : `AnnData` An AnnData object. K : `int`, optional (default: 100) Number of neighbors, including the data point itself. rep : `str`, optional (default: 'pca') Representation used to calculate kNN. If `None` use data.X n_jobs : `int`, optional (default: -1) Number of threads to use. -1 refers to all available threads random_state: `int`, optional (default: 0) Random seed for random number generator. full_speed: `bool`, optional (default: False) If full_speed, use multiple threads in constructing hnsw index. However, the kNN results are not reproducible. If not full_speed, use only one thread to make sure results are reproducible. Returns ------- kNN indices and distances arrays. Examples -------- >>> indices, distances = tools.get_neighbors(adata) """ rep = update_rep(rep) indices_key = rep + "_knn_indices" distances_key = rep + "_knn_distances" if knn_is_cached(data, indices_key, distances_key, K): indices = data.uns[indices_key] distances = data.uns[distances_key] logger.info("Found cached kNN results, no calculation is required.") else: indices, distances = calculate_nearest_neighbors( X_from_rep(data, rep), K=K, n_jobs=effective_n_jobs(n_jobs), random_state=random_state, full_speed=full_speed, ) data.uns[indices_key] = indices data.uns[distances_key] = distances return indices, distances
def net_umap( data: AnnData, rep: str = "pca", n_jobs: int = -1, n_components: int = 2, n_neighbors: int = 15, min_dist: float = 0.5, spread: float = 1.0, random_state: int = 0, select_frac: float = 0.1, select_K: int = 25, select_alpha: float = 1.0, full_speed: bool = False, net_alpha: float = 0.1, polish_learning_rate: float = 10.0, polish_n_epochs: int = 30, out_basis: str = "net_umap", ) -> None: """Calculate approximated UMAP embedding using Deep Learning model to improve the speed. In specific, the deep model used is MLPRegressor_, the *scikit-learn* implementation of Multi-layer Perceptron regressor. .. _MLPRegressor: https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPRegressor.html Parameters ---------- data: ``anndata.AnnData`` Annotated data matrix with rows for cells and columns for genes. rep: ``str``, optional, default: ``"pca"`` Representation of data used for the calculation. By default, use PCA coordinates. If ``None``, use the count matrix ``data.X``. n_components: ``int``, optional, default: ``2`` Dimension of calculated UMAP coordinates. By default, generate 2-dimensional data for 2D visualization. n_neighbors: ``int``, optional, default: ``15`` Number of nearest neighbors considered during the computation. min_dist: ``float``, optional, default: ``0.5`` The effective minimum distance between embedded data points. spread: ``float``, optional, default: ``1.0`` The effective scale of embedded data points. random_state: ``int``, optional, default: ``0`` Random seed set for reproducing results. select_frac: ``float``, optional, default: ``0.1`` Down sampling fraction on the cells. select_K: ``int``, optional, default: ``25`` Number of neighbors to be used to estimate local density for each data point for down sampling. select_alpha: ``float``, optional, default: ``1.0`` Weight the down sample to be proportional to ``radius ** select_alpha``. full_speed: ``bool``, optional, default: ``False`` * If ``True``, use multiple threads in constructing ``hnsw`` index. However, the kNN results are not reproducible. * Otherwise, use only one thread to make sure results are reproducible. net_alpha: ``float``, optional, default: ``0.1`` L2 penalty (regularization term) parameter of the deep regressor. polish_learning_frac: ``float``, optional, default: ``10.0`` After running the deep regressor to predict new coordinates, use ``polish_learning_frac`` * ``n_obs`` as the learning rate to polish the coordinates. polish_n_iter: ``int``, optional, default: ``30`` Number of iterations for polishing UMAP run. out_basis: ``str``, optional, default: ``"net_umap"`` Key name for calculated UMAP coordinates to store. Returns ------- ``None`` Update ``data.obsm``: * ``data.obsm['X_' + out_basis]``: Net UMAP coordinates of the data. Update ``data.obs``: * ``data.obs['ds_selected']``: Boolean array to indicate which cells are selected during the down sampling phase. Examples -------- >>> scc.net_umap(adata) """ start = time.time() rep = update_rep(rep) indices_key = rep + "_knn_indices" distances_key = rep + "_knn_distances" if not knn_is_cached(data, indices_key, distances_key, select_K): raise ValueError("Please run neighbors first!") n_jobs = effective_n_jobs(n_jobs) selected = select_cells( data.uns[distances_key], select_frac, K=select_K, alpha=select_alpha, random_state=random_state, ) X_full = X_from_rep(data, rep) X = X_full[selected, :] ds_indices_key = "ds_" + rep + "_knn_indices" # ds refers to down-sampling ds_distances_key = "ds_" + rep + "_knn_distances" indices, distances = calculate_nearest_neighbors( X, K=n_neighbors, n_jobs=n_jobs, random_state=random_state, full_speed=full_speed, ) data.uns[ds_indices_key] = indices data.uns[ds_distances_key] = distances knn_indices = np.insert(data.uns[ds_indices_key][:, 0:n_neighbors - 1], 0, range(X.shape[0]), axis=1) knn_dists = np.insert(data.uns[ds_distances_key][:, 0:n_neighbors - 1], 0, 0.0, axis=1) X_umap = calc_umap( X, n_components, n_neighbors, min_dist, spread, random_state, knn_indices=knn_indices, knn_dists=knn_dists, ) data.uns["X_" + out_basis + "_small"] = X_umap data.obs["ds_selected"] = selected Y_init = np.zeros((data.shape[0], 2), dtype=np.float64) Y_init[selected, :] = X_umap Y_init[~selected, :] = net_train_and_predict(X, X_umap, X_full[~selected, :], net_alpha, random_state, verbose=True) data.obsm["X_" + out_basis + "_pred"] = Y_init knn_indices = np.insert(data.uns[indices_key][:, 0:n_neighbors - 1], 0, range(data.shape[0]), axis=1) knn_dists = np.insert(data.uns[distances_key][:, 0:n_neighbors - 1], 0, 0.0, axis=1) data.obsm["X_" + out_basis] = calc_umap( X_full, n_components, n_neighbors, min_dist, spread, random_state, init=Y_init, n_epochs=polish_n_epochs, learning_rate=polish_learning_rate, knn_indices=knn_indices, knn_dists=knn_dists, ) end = time.time() logger.info("Net UMAP is calculated. Time spent = {:.2f}s.".format(end - start))
def net_fitsne( data: AnnData, rep: str = "pca", n_jobs: int = -1, n_components: int = 2, perplexity: float = 30, early_exaggeration: int = 12, learning_rate: float = 1000, random_state: int = 0, select_frac: float = 0.1, select_K: int = 25, select_alpha: float = 1.0, net_alpha: float = 0.1, polish_learning_frac: float = 0.5, polish_n_iter: int = 150, out_basis: "str" = "net_fitsne", ) -> None: """Calculate approximated FI-tSNE embedding using Deep Learning model to improve the speed. In specific, the deep model used is MLPRegressor_, the *scikit-learn* implementation of Multi-layer Perceptron regressor. .. _MLPRegressor: https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPRegressor.html Parameters ---------- data: ``anndata.AnnData`` Annotated data matrix with rows for cells (``n_obs``) and columns for genes (``n_feature``). rep: ``str``, optional, default: ``"pca"`` Representation of data used for the calculation. By default, use PCA coordinates. If ``None``, use the count matrix ``data.X``. n_jobs: ``int``, optional, default: ``-1`` Number of threads to use. If ``-1``, use all available threads. n_components: ``int``, optional, default: ``2`` Dimension of calculated tSNE coordinates. By default, generate 2-dimensional data for 2D visualization. perplexity: ``float``, optional, default: ``30`` The perplexity is related to the number of nearest neighbors used in other manifold learning algorithms. Larger datasets usually require a larger perplexity. early_exaggeration: ``int``, optional, default: ``12`` Controls how tight natural clusters in the original space are in the embedded space, and how much space will be between them. learning_rate: ``float``, optional, default: ``1000`` The learning rate can be a critical parameter, which should be between 100 and 1000. random_state: ``int``, optional, default: ``0`` Random seed set for reproducing results. select_frac: ``float``, optional, default: ``0.1`` Down sampling fraction on the cells. select_K: ``int``, optional, default: ``25`` Number of neighbors to be used to estimate local density for each data point for down sampling. select_alpha: ``float``, optional, default: ``1.0`` Weight the down sample to be proportional to ``radius ** select_alpha``. net_alpha: ``float``, optional, default: ``0.1`` L2 penalty (regularization term) parameter of the deep regressor. polish_learning_frac: ``float``, optional, default: ``0.5`` After running the deep regressor to predict new coordinates, use ``polish_learning_frac`` * ``n_obs`` as the learning rate to polish the coordinates. polish_n_iter: ``int``, optional, default: ``150`` Number of iterations for polishing FI-tSNE run. out_basis: ``str``, optional, default: ``"net_fitsne"`` Key name for the approximated FI-tSNE coordinates calculated. Returns ------- ``None`` Update ``data.obsm``: * ``data.obsm['X_' + out_basis]``: Net FI-tSNE coordinates of the data. Update ``data.obs``: * ``data.obs['ds_selected']``: Boolean array to indicate which cells are selected during the down sampling phase. Examples -------- >>> scc.net_fitsne(adata) """ start = time.time() rep = update_rep(rep) indices_key = rep + "_knn_indices" distances_key = rep + "_knn_distances" if not knn_is_cached(data, indices_key, distances_key, select_K): raise ValueError("Please run neighbors first!") n_jobs = effective_n_jobs(n_jobs) selected = select_cells( data.uns[distances_key], select_frac, K=select_K, alpha=select_alpha, random_state=random_state, ) X_full = X_from_rep(data, rep) X = X_full[selected, :] X_fitsne = calc_fitsne( X, n_jobs, n_components, perplexity, early_exaggeration, learning_rate, random_state, ) data.uns["X_" + out_basis + "_small"] = X_fitsne data.obs["ds_selected"] = selected Y_init = np.zeros((data.shape[0], 2), dtype=np.float64) Y_init[selected, :] = X_fitsne Y_init[~selected, :] = net_train_and_predict(X, X_fitsne, X_full[~selected, :], net_alpha, random_state, verbose=True) data.obsm["X_" + out_basis + "_pred"] = Y_init polish_learning_rate = polish_learning_frac * data.shape[0] data.obsm["X_" + out_basis] = calc_fitsne( X_full, n_jobs, n_components, perplexity, early_exaggeration, polish_learning_rate, random_state, initialization=Y_init, max_iter=polish_n_iter, stop_early_exag_iter=0, mom_switch_iter=0, ) end = time.time() logger.info( "Net FItSNE is calculated. Time spent = {:.2f}s.".format(end - start))
def umap( data: AnnData, rep: str = "pca", n_components: int = 2, n_neighbors: int = 15, min_dist: float = 0.5, spread: float = 1.0, random_state: int = 0, out_basis: str = "umap", ) -> None: """Calculate UMAP embedding using umap-learn_ package. .. _umap-learn: https://github.com/lmcinnes/umap Parameters ---------- data: ``anndata.AnnData`` Annotated data matrix with rows for cells and columns for genes. rep: ``str``, optional, default: ``"pca"`` Representation of data used for the calculation. By default, use PCA coordinates. If ``None``, use the count matrix ``data.X``. n_components: ``int``, optional, default: ``2`` Dimension of calculated UMAP coordinates. By default, generate 2-dimensional data for 2D visualization. n_neighbors: ``int``, optional, default: ``15`` Number of nearest neighbors considered during the computation. min_dist: ``float``, optional, default: ``0.5`` The effective minimum distance between embedded data points. spread: ``float``, optional, default: ``1.0`` The effective scale of embedded data points. random_state: ``int``, optional, default: ``0`` Random seed set for reproducing results. out_basis: ``str``, optional, default: ``"umap"`` Key name for calculated UMAP coordinates to store. Returns ------- ``None`` Update ``data.obsm``: * ``data.obsm['X_' + out_basis]``: UMAP coordinates of the data. Examples -------- >>> scc.umap(adata) """ start = time.time() rep = update_rep(rep) indices_key = rep + "_knn_indices" distances_key = rep + "_knn_distances" X = X_from_rep(data, rep) if not knn_is_cached(data, indices_key, distances_key, n_neighbors): raise ValueError("Please run neighbors first!") knn_indices = np.insert(data.uns[indices_key][:, 0:n_neighbors - 1], 0, range(data.shape[0]), axis=1) knn_dists = np.insert(data.uns[distances_key][:, 0:n_neighbors - 1], 0, 0.0, axis=1) data.obsm["X_" + out_basis] = calc_umap( X, n_components, n_neighbors, min_dist, spread, random_state, knn_indices=knn_indices, knn_dists=knn_dists, ) end = time.time() logger.info("UMAP is calculated. Time spent = {:.2f}s.".format(end - start))
def fitsne( data: AnnData, rep: str = "pca", n_jobs: int = -1, n_components: int = 2, perplexity: float = 30, early_exaggeration: int = 12, learning_rate: float = 1000, random_state: int = 0, out_basis: str = "fitsne", ) -> None: """Calculate FIt-SNE embedding using fitsne_ package. .. _fitsne: https://github.com/KlugerLab/FIt-SNE Parameters ---------- data: ``anndata.AnnData`` Annotated data matrix with rows for cells and columns for genes. rep: ``str``, optional, default: ``"pca"`` Representation of data used for the calculation. By default, use PCA coordinates. If ``None``, use the count matrix ``data.X``. n_jobs: ``int``, optional, default: ``-1`` Number of threads to use. If ``-1``, use all available threads. n_components: ``int``, optional, default: ``2`` Dimension of calculated FI-tSNE coordinates. By default, generate 2-dimensional data for 2D visualization. perplexity: ``float``, optional, default: ``30`` The perplexity is related to the number of nearest neighbors used in other manifold learning algorithms. Larger datasets usually require a larger perplexity. early_exaggeration: ``int``, optional, default: ``12`` Controls how tight natural clusters in the original space are in the embedded space, and how much space will be between them. learning_rate: ``float``, optional, default: ``1000`` The learning rate can be a critical parameter, which should be between 100 and 1000. random_state: ``int``, optional, default: ``0`` Random seed set for reproducing results. out_basis: ``str``, optional, default: ``"fitsne"`` Key name for calculated FI-tSNE coordinates to store. Returns ------- ``None`` Update ``data.obsm``: * ``data.obsm['X_' + out_basis]``: FI-tSNE coordinates of the data. Examples -------- >>> scc.fitsne(adata) """ start = time.time() rep = update_rep(rep) n_jobs = effective_n_jobs(n_jobs) data.obsm["X_" + out_basis] = calc_fitsne( X_from_rep(data, rep), n_jobs, n_components, perplexity, early_exaggeration, learning_rate, random_state, ) end = time.time() logger.info("FIt-SNE is calculated. Time spent = {:.2f}s.".format(end - start))
def net_fle( data: AnnData, file_name: str = None, n_jobs: int = -1, rep: str = "diffmap", K: int = 50, full_speed: bool = False, target_change_per_node: float = 2.0, target_steps: int = 5000, is3d: bool = False, memory: int = 8, random_state: int = 0, select_frac: float = 0.1, select_K: int = 25, select_alpha: float = 1.0, net_alpha: float = 0.1, polish_target_steps: int = 1500, out_basis: str = "net_fle", ) -> None: """Construct the approximated Force-directed (FLE) graph using Deep Learning model to improve the speed. In specific, the deep model used is MLPRegressor_, the *scikit-learn* implementation of Multi-layer Perceptron regressor. .. _MLPRegressor: https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPRegressor.html Parameters ---------- data: ``anndata.AnnData`` Annotated data matrix with rows for cells and columns for genes. file_name: ``str``, optional, default: ``None`` Temporary file to store the coordinates as the input to forceatlas2. If ``None``, use ``tempfile.mkstemp`` to generate file name. n_jobs: ``int``, optional, default: ``-1`` Number of threads to use. If ``-1``, use all available threads. rep: ``str``, optional, default: ``"diffmap"`` Representation of data used for the calculation. By default, use Diffusion Map coordinates. If ``None``, use the count matrix ``data.X``. K: ``int``, optional, default: ``50`` Number of nearest neighbors to be considered during the computation. full_speed: ``bool``, optional, default: ``False`` * If ``True``, use multiple threads in constructing ``hnsw`` index. However, the kNN results are not reproducible. * Otherwise, use only one thread to make sure results are reproducible. target_change_per_node: ``float``, optional, default: ``2.0`` Target change per node to stop ForceAtlas2. target_steps: ``int``, optional, default: ``5000`` Maximum number of iterations before stopping the ForceAtlas2 algorithm. is3d: ``bool``, optional, default: ``False`` If ``True``, calculate 3D force-directed layout. memory: ``int``, optional, default: ``8`` Memory size in GB for the Java FA2 component. By default, use 8GB memory. random_state: ``int``, optional, default: ``0`` Random seed set for reproducing results. select_frac: ``float``, optional, default: ``0.1`` Down sampling fraction on the cells. select_K: ``int``, optional, default: ``25`` Number of neighbors to be used to estimate local density for each data point for down sampling. select_alpha: ``float``, optional, default: ``1.0`` Weight the down sample to be proportional to ``radius ** select_alpha``. net_alpha: ``float``, optional, default: ``0.1`` L2 penalty (regularization term) parameter of the deep regressor. polish_target_steps: ``int``, optional, default: ``1500`` After running the deep regressor to predict new coordinate, Number of ForceAtlas2 iterations. out_basis: ``str``, optional, default: ``"net_fle"`` Key name for calculated FLE coordinates to store. Returns ------- ``None`` Update ``data.obsm``: * ``data.obsm['X_' + out_basis]``: Net FLE coordinates of the data. Update ``data.obs``: * ``data.obs['ds_selected']``: Boolean array to indicate which cells are selected during the down sampling phase. Examples -------- >>> scc.net_fle(adata) """ start = time.time() if file_name is None: if file_name is None: import tempfile _, file_name = tempfile.mkstemp() n_jobs = effective_n_jobs(n_jobs) rep = update_rep(rep) if ("W_" + rep) not in data.uns: neighbors( data, K=K, rep=rep, n_jobs=n_jobs, random_state=random_state, full_speed=full_speed, ) indices_key = rep + "_knn_indices" distances_key = rep + "_knn_distances" if not knn_is_cached(data, indices_key, distances_key, select_K): raise ValueError("Please run neighbors first!") selected = select_cells( data.uns[distances_key], select_frac, K=select_K, alpha=select_alpha, random_state=random_state, ) X_full = X_from_rep(data, rep) X = X_full[selected, :] ds_indices_key = "ds_" + rep + "_knn_indices" ds_distances_key = "ds_" + rep + "_knn_distances" indices, distances = calculate_nearest_neighbors(X, K=K, n_jobs=n_jobs, random_state=random_state, full_speed=full_speed) data.uns[ds_indices_key] = indices data.uns[ds_distances_key] = distances W = calculate_affinity_matrix(indices, distances) X_fle = calc_force_directed_layout( W, file_name + ".small", n_jobs, target_change_per_node, target_steps, is3d, memory, random_state, ) data.uns["X_" + out_basis + "_small"] = X_fle data.obs["ds_diffmap_selected"] = selected Y_init = np.zeros((data.shape[0], 2), dtype=np.float64) Y_init[selected, :] = X_fle Y_init[~selected, :] = net_train_and_predict(X, X_fle, X_full[~selected, :], net_alpha, random_state, verbose=True) data.obsm["X_" + out_basis + "_pred"] = Y_init data.obsm["X_" + out_basis] = calc_force_directed_layout( W_from_rep(data, rep), file_name, n_jobs, target_change_per_node, polish_target_steps, is3d, memory, random_state, init=Y_init, ) end = time.time() logger.info("Net FLE is calculated. Time spent = {:.2f}s.".format(end - start))